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Abstract

This paper provides a general equilibrium model of a small open developing economy with

pollution generated by tourism industry. The national government imposes a pollution tax on

pollution emission and constructs tourism infrastructure for the tourism sector. We investigate

the effects of an increase in pollution tax rate on welfare, production, and income distribution.

When the elasticity of substitution in the tourism sector is sufficiently low, an increase in pollution

tax paradoxically expands the tourism sector and narrows domestic wage inequality under the

constant tourism terms-of-trade. In addition to the two traditional channels, there is a new

channel through which pollution tax affects the tourism terms-of-trade and domestic welfare.

The new channel, which arises from the difference between the marginal value product of tourism

infrastructure and its price, improves the tourism terms-of-trade and domestic welfare if (a) the

marginal value product of tourism infrastructure is greater than its price, (b) the output of

tourism infrastructure is increased by higher pollution tax rate, and (c) the excess supply of

tourism service decreases with the pollution tax. Given the above three conditions, starting from

a Pigouvian level, the increase in pollution tax improves the tourism terms-of-trade and domestic

welfare.
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1 Introduction

The tourism industry plays an important role for both developed and developing countries as it

creates employment opportunities and attracts foreign currency. To attract a large number of

tourists, tourism industry requires a large-scale investment, for example, water supply, sewerage

systems, ports, airports, parks, highways, and tourism promotion by authorities (e.g., Visit Japan,

Incredible India, and Malaysia Truly Asia), which is difficult to be financed only by the private

sector. Therefore, a national government needs to construct public infrastructure for the tourism

industry, which is referred to as the tourism infrastructure. At the same time, the tourism sector

causes environmental damage. For example, the concentration of people degrades the water quality

in the local community, and traffic congestion pollutes the air by the emission of fumes. To mitigate

these negative effects, the government imposes pollution tax on the tourism industry. Then the

government uses this tax revenue to construct the tourism infrastructure.

Initiated by Copeland (1991), there are many theoretical studies on the analysis of international

tourism. We fucus on the studies that consider environmental problems, including Beladi et al.

(2009), Chao et al. (2008), Chao et al. (2012), Furukawa et al. (2019), Gupta and Dutta (2018),

Kondoh and Kurata (2021), Yabuuchi (2013), Yabuuchi (2015), Yabuuchi (2018), Yanase (2017).

However, these studies do not consider public infrastructure.

Although Yanase (2015) introduces public infrastructure in a tourism economy, he does not

consider environmental problem. Shimizu (2022a) and Shimizu (2022b) construct a model of public

infrastructure that contributes to both tourism and manufacturing industry. Some infrastructures,

such as wireless network, highway, or airport, contribute to many industries as well as tourism

industry. Shimizu (2022b) develops a model of public infrastructure that includes congestion effect,

that is, an increase in users reduced efficiency, while Shimizu (2022a) a model without congestion

effect. Shimizu and Okamoto (2023) develops a model of tourism infrastructure that contributes

only to the tourism industry and analyzes the effect of decrease in emission permits issued to tourism

industry. This paper analyzes the effect of pollution tax in a similar setting to Shimizu and Okamoto

(2023). Main results of this paper are as follows. When the elasticity of substitution in the tourism

sector is sufficiently small, an increase in pollution tax paradoxically expands the tourism sector and

narrows domestic wage inequality under the constant tourism terms-of-trade. When the tourism

terms-of-trade are endogenous, there are two traditional channels through which pollution tax affects

the tourism terms-of-trade and domestic welfare. In this paper, there is a new channel, in addition
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to the two traditional channels. The new channel, which arises from the difference between the

marginal value product of tourism infrastructure and its price, improves the tourism terms-of-trade

and domestic welfare if (a) the marginal value product of tourism infrastructure is greater than

its price, (b) the output of tourism infrastructure is increased by higher pollution tax, and (c) the

excess supply of tourism service decreases with the pollution tax. Given the above three conditions,

starting from a Pigouvian level, the increase in pollution tax improves the tourism terms-of-trade

and domestic welfare.

The remainder of this paper is organized as follows. In section 2, we describe the setup of the

model. Section 3 conducts a comparative static analysis of the supply side of the economy. In

section 4, we examine the total effects of an increase in pollution tax by considering both the supply

and demand sides of the economy. Section 5 concludes.

2 The model

Consider a small open economy that produces a manufacturing good X, tourism service T , and

tourism infrastructure M . The manufacturing good is traded while the tourism infrastructure is

non-traded. The service is also non-traded in the absence of foreign tourists. Unlike the tourism

infrastructure, the service is exported through international tourism. Thus the manufacturing good

is imported. We call the price of tourism service as the tourism terms-of-trade, which plays an

important role in welfare analysis. Suppose that the production of the manufacturing good requires

capital K and skilled labor H, while the production of the tourism service requires unskilled labor

L and emits pollution Z. The national government imposes pollution tax on tourism industry. The

government uses this revenue to construct tourism infrastructure. For simplicity, suppose that the

tourism infrastructure requires only capital input, and further assume that the formation of tourism

infrastructure only enhances the productivity of the tourism industry.1

The production function of the manufacturing good (or traded good) X is given by

X = X(KX ,H),

where Kj denotes the capital input into good j and H is the endowment of skilled labor. Function

X is assumed to be the neoclassical type of production function that exhibits homogeneity of degree

one, and to be strictly quasi-concave.

1Yanase (2015) made the same assumption.
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The production function of the tourism service T is

T = g(M)Y (L,Z),

where the function g represents the positive externality of the infrastructure and the function Y has

the same properties as function X. M is the amount of tourism infrastructure devoted only to the

tourism industry, L is the endowment of unskilled labor, and Z is the amount of pollution. Keeping

M constant and doubling both L and Z, the output of tourism service T doubles. This implies

that the tourism infrastructure in this study has no congestion effect and is the creation atmosphere

type in the terminology of Meade (1952). Another type of tourism infrastructure is unpaid factor

of production type, which has a congestion effect.2

We assume the function g is twice continuously differentiable and has the following properties:

g(M) > 0, g′(M) > 0, g′′(M) < 0 ∀M > 0, lim
M→0

g′(M) = ∞, lim
M→∞

g′(M) = 0.

The production function of the tourism infrastructure is given by

M = KM/aKM , (1)

where aij is the amount of factor i(= L,H,K,Z) to produce one unit of good j(= X,T,M). We

assume a linear production function for tourism infrastructure and, thus, aKM is constant.

We now examine the equilibrium conditions for the supply side of the economy. Let us assume

that perfect competition prevails in the manufacturing and tourism industries. The zero-profit

condition (the price of the good is equal to its unit cost) for the traded good industry is

aHXwH + aKXq = pX , (2)

where pX is the price of traded good, wH the wage rate of skilled labor, and q the rental rate of

capital.

The zero profit condition for the tourism service industry is

aLTwL + aZT s = pT , (3)

where pT is the price of tourism service, wL the wage rate of unskilled labor, s the pollution tax

rate.

2See Shimizu (2022b) for an analysis of this type of public infrastructure (not tourism infrastructure). In this case,

the production function of tourism service is T = T (M,L,Z), where T is homogeneous of degree one in (M,L,Z).

4



The zero profit condition for the public infrastructure sector is

aKMq = pM , (4)

where pM is the price of tourism infrastructure.

The market clearing condition of capital is

aKXX + aKMM = K, (5)

where K is the endowment of capital.

The demand-supply equality of skilled labor requires

aHXX = H. (6)

The market equilibrium condition of unskilled labor requires

aLTT = L. (7)

The amount of pollution emission is given by

aZTT = Z. (8)

The budget constraint of the government is

sZ = pMM, (9)

where the left-hand side (LHS) denotes the pollution tax revenue, and the right-hand side (RHS) rep-

resents the cost of constructing tourism infrastructure.3 Equations (2) - (9) include eight unknowns:

X, T , M , wH , wL, q, Z, and pM . Given pT , these eight equations determine eight unknowns.4

Note that the price of tourism infrastructure pM is determined to satisfy the government’s budget

constraint (9). It follows that the traditional Lindahl pricing rule (i.e., the price of tourism in-

frastructure is equal to its marginal value product) does not necessarily hold; thus, we will obtain

different properties from the standard trade theory.

To facilitate the following analysis, we introduce the elasticity of factor substitution. The elas-

ticity of substitution in each sector σj is defined as

σX =
âKX − âHX

ŵH − q̂
, (10)

3Equations (1) and (4) imply that pMM = qKM .
4The price of tourism service pT is to be determined by the demand and supply of domestic tourism service in

section 4. This approach is also adopted by Chao et al. (2010).
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σT =
âZT − âLT
ŵL − ŝ

. (11)

A hat over a variable implies the rate of change: for example, ŵH ≡ dwH/wH .

The cost minimization in each sector requires

θHX âHX + θKX âKX = 0, (12)

θLT âLT + θZT âZT = −ĝ, (13)

where θij represents the cost share of factor i in sector j. We define ξ ≡ g′M/g > 0 as the elasticity

of g with respect to M , or the productivity improvement rate of the tourism industry by additional

tourism infrastructure. By the definition, we have ĝ = ξM̂ .

Solving (10) and (12), we obtain

âHX = −θKXσX(ŵH − q̂), (14)

âKX = θHXσX(ŵH − q̂). (15)

Similarly, solving (11) and (13), we have

âLT = −θZTσT (ŵL − ŝ)− ĝ, (16)

âZT = θLTσT (ŵL − ŝ)− ĝ. (17)

Differentiating (2) totally and taking into account (12), we obtain

θHXŵH + θKX q̂ = p̂X . (18)

Differentiating (3) totally and substituting (13), we obtain

θLT ŵL + θZT ŝ− ξM̂ = p̂T , (19)

Since aKM is constant, Equation (4) implies

p̂M = q̂. (20)

Differentiating (5) and substituting (15), we obtain

λKXX̂ + λKXθHXσX(ŵH − q̂) + λKMM̂ = K̂, (21)

where λij is the share of factor i in the production of good j.
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Differentiating (6) and substituting (14), we obtain

−θKXσX(ŵH − q̂) + X̂ = Ĥ. (22)

Differentiating (7) and substituting (16), we have

−θZTσT (ŵL − ŝ)− ξM̂ + T̂ = L̂. (23)

Differentiating (8) and substituting (17) yield

θLTσT (ŵL − ŝ)− ξM̂ + T̂ = Ẑ. (24)

Differentiating (9) and considering (20), we obtain

q̂ + M̂ − ŝ = Ẑ. (25)

Equations (18), (19), (21) - (25) are expressed in the matrix form as

0 0 0 θHX 0 θKX 0

0 0 −ξ 0 θLT 0 0

λKX 0 λKM λKXθHXσX 0 −λKXθHXσX 0

1 0 0 −θKXσX 0 θKXσX 0

0 1 −ξ 0 −θZTσT 0 0

0 1 −ξ 0 θLTσT 0 −1

0 0 1 0 0 1 −1





X̂

T̂

M̂

ŵH

ŵL

q̂

Ẑ


=



0

−θZT

0

0

−θZTσT

θLTσT

1


ŝ+



0

1

0

0

0

0

0


p̂T .

(26)

Let the determinant of the 7 × 7 matrix on the LHS of (26) be ∆. Then, ∆ > 0 by the stability of

the system (see Appendix A).

3 Comparative statics: supply side analysis

Utilizing Equation (26), we analyze the effects of an increase in pollution tax and an improvement

in the tourism terms-of-trade. For the purpose of making the analysis as simple as possible, we

examine the relationship between endogenous variables.

From (18), we have

q̂ = −θHX

θKX
ŵH . (27)
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Since the price of traded good is constant under the assumption of a small open economy, an increase

in the skilled wage is balanced by a decrease in the rental rate of capital. Equation (27) implies

ŵH − q̂ = ŵH/θKX . From (22), we have

X̂ = θKXσX(ŵH − q̂) = σXŵH . (28)

Equation (28) means that an increase in the output of traded good X raises the wage of skilled

labor, which is a specific input to that sector.

Substituting (27) and (28) into (21), we obtain

M̂ = − λKXσX
λKMθKX

ŵH = − λKX

λKMθKX
X̂, (29)

which states that an increase in the output of traded good reduces the output of tourism infrastruc-

ture by extracting capital input from that industry. Equations (27) - (29) show that q̂, X̂, and M̂

are proportional to ŵH .

3.1 Pollution tax

Keeping the price of tourism service unchanged, we examine the effects of an increase in pollution

tax. Note that Equations (27) - (29) hold.

Solving (26), we have

T̂

ŝ
=

ξθLTQ− σT [(θZT + ξθLT )Q+ θZTP ]

∆
, (30)

ŵH

ŝ
=

θKXλKM (σT − θLT )

∆
⋛ 0 iff. σT ⋛ θLT , (31)

ŵL

ŝ
=

ξQ(1− σT )− θTZ(P +Q)

∆
, (32)

Ẑ

ŝ
= −σT [(1− ξ)Q+ P ]

∆
< 0, (33)

where P ≡ λKMθHX and Q ≡ λKXσX . From the assumptions g(M) > 0 and g′′(M) < 0, we have

ξ < 1 for M > 0.

The qualitative effects of an increase in pollution tax, which are determined by the signs of

equations (30) - (33), are ambiguous and depend on the elasticity of substitution in the tourism

sector σT . From (30), an increase in pollution tax expands the tourism sector if and only if

σT <
ξθLTQ

(θZT + ξθLT )Q+ θZTP
≡ A.
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We can immediately show that A < θLT .

From (32), the necessary and sufficient condition for the increased pollution tax to push the

wage of unskilled labor up is

σT < 1− θZT

ξ
− θZTP

ξQ
≡ B.

It is straightforward to show that A > B since

A−B =
(θZT )

2

ξ

P +Q

Q

P + (1− ξ)Q

θZT (P +Q) + ξθLTQ
> 0.

Therefore, we have the following relationship in magnitude:

B < A < θLT .

The above results are summarized in Table 1, which shows how the comparative static results with

respect to s depend on σT , with threshold values such as A, B, and θLT .
5

Thus, we have the following proposition.

Proposition 1 Suppose that the price of tourism service pT is constant. When the elasticity of

substitution in the tourism sector is sufficiently low, an increase in the pollution tax expands the

tourism and tourism infrastructure sectors and contracts the manufacturing sector. This narrows

the wage inequality between skilled and unskilled labor. The rental rate of capital and the price of

emission permits rise. As the elasticity of substitution in the tourism sector increases, all the above

results are reversed.

The intuition is as follows. When the elasticity of substitution in the tourism sector σT is

sufficiently low, an increase in pollution tax raises the tax revenue sZ since a decrease in emission

is small. Then the output of tourism infrastructure M increases (see (9)).6 If an increase in M

is significant, the output of tourism service T rises despite the reduction in emission permits Z.

Consequently, the wage of unskilled labor, which is a specific factor into the tourism sector, increases.

At the same time, capital flows from the manufacturing sector, leading to a decrease in the output

of manufacturing good X. The decrease in the output of manufacturing good reduces the wage of

skilled labor, which is a specific input into that industry. Since the price of the manufacturing good

5The stability condition (∆ > 0) imposes the restriction on the value of σT : σT < C ≡ θLT /ξ+ θLTP/(ξQ) (notice

that ∆ = θLT (P +Q)− ξσTQ). Since ξ < 1, it is straightforward to show that C > θLT . Thus, this restriction is not

binding for the range of σT considered here.
6From (33), we have ŝ + Ẑ = [(θLT − σT )(P +Q)/∆]ŝ. Therefore, if σT is less than θLT , an increase in pollution

tax raises tax revenue sZ.
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σT ・・・ B ・・・ A ・・・ θLT ・・・

∂X/∂s − − − − − 0 +

∂T/∂s + + + 0 − − −

∂M/∂s + + + + + 0 −

∂wH/∂s − − − − − 0 +

∂wL/∂s + 0 − − − − −

∂q/∂s + + + + + 0 −

Table 1: Effects of pollution tax (the tourism terms-of-trade are constant)

is constant, the decrease in the wage of skilled labor is offset by the increase in the rental rate of

capital (see (18) or (27)).

When σT is sufficiently high, the increase in pollution tax decreases pollution tax revenue since

the amount of emission decreases significantly. Then the output of tourism infrastructure decreases.

It follows that the output of the tourism service falls due to a decrease in both emission and positive

externality of tourism infrastructure. The wage of unskilled labor, which is a specific factor to the

tourism service sector, decreases despite the increase in demand. Meanwhile, capital flows from the

tourism infrastructure sector to the manufacturing sector, leading to an increase in the output of the

manufacturing good. The increased output of the manufacturing sector raises the wage of skilled

labor, which is a specific input to that sector.

3.2 Improvement in the tourism terms-of-trade

We examine the effects of an improvement in the tourism terms-of-trade. Note that (27), (28), and

(29) still hold. Comparative statics procedure is given in Appendix B.

The effects of an increase in pT are summarized in Table 2 and Proposition 2.

∂X/∂pT ∂T/∂pT ∂M/∂pT ∂wH/∂pT ∂wL/∂pT ∂q/∂pT ∂Z/∂pT

− + + − + + +

Table 2: The effects of an increase in pT
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Proposition 2 An improvement in the tourism terms-of-trade expands the tourism service and

tourism infrastructure sectors, while it contracts the manufacturing sector. This narrows the wage

inequality between skilled and unskilled labor. The rental rate of capital and the amount of emission

rise.

The intuition is straightforward. The improvement in the tourism terms-of-trade expands the

tourism service sector and, thus, the wage of unskilled labor and the amount of pollution rise. The

tax revenue sZ and the output of tourism infrastructure increase at the expense of the manufacturing

sector; this leads to a decrease in the wage of skilled labor. Since the price of manufacturing good

is unchanged, the rental rate of capital rises.

4 The total effect of pollution tax

The previous section treated the price of tourism service pT as a constant. However, pT must be

determined by the market equilibrium condition of the domestic tourism service, that is, supply

and demand for it. We examine the effects of pollution tax, considering that pT is endogenously

determined.

4.1 The effects on the tourism terms-of-trade and welfare

To determine the price of tourism service, we need to introduce the demand side of the economy.

Suppose that both domestic residents and foreign tourists consume the manufacturing good and the

domestic tourism service. The demand side of the economy is described by the expenditure function

of domestic residents and the ordinary demand function of foreign tourists. The expenditure function

is defined as

E(pT , Z, u) ≡ min[pXCX + pTCT : u = (CX)b + f(Z) · (CT )
b],

where CX is the consumption of the manufacturing good by domestic residents, CT the consumption

of tourism service by domestic residents, and u the level of utility. b ∈ (0, 1) is a parameter and

f ′(Z) < 0. The utility function has the property that the marginal utility of the tourism service

(resp. the manufacturing good) decreases with (resp. is not affected by) the amount of pollution.

The expenditure function is derived as follows (see Appendix C):

E = u1/b
[
(ΦX)−b + f · (ΦT )

−b
]−1/b

,

where ΦX ≡ pX + (fpX)
1

1−b (pT )
− b

1−b and ΦT ≡ pT + (pT /f)
1

1−b (pX)−
b

1−b .
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The compensated demand for tourism service is given by (see Appendix C)

CT =
u1/b

ΦT

[
1

(ΦX)b
+ f

(ΦT )b

]1/b =
u1/b

[(ΦT /ΦX)b + f ]
1/b

. (34)

The envelope theorem implies CT = ∂E/∂pT ≡ ET . Then the downward demand function ensures

ETT ≡ ∂2E/∂p2T = ∂CT /∂pT < 0. Since ∂[(ΦX)−b + f · (ΦT )
−b]/∂Z = (ΦT )

−bf ′, 7 we have

EZ ≡ ∂E

∂Z
= u1/b

(
−1

b

)
[(ΦX)−b + f · (ΦT )

−b]−
1
b
−1 ∂

∂Z
[(ΦX)−b + f · (ΦT )

−b]

= −1

b
E[(ΦX)−b + f · (ΦT )

−b]−1(ΦT )
−bf ′

= −1

b

E

[(ΦT /ΦX)b + f ]
f ′ > 0,

which denotes the marginal damage to domestic residents caused by pollution. Eu ≡ ∂E/∂u > 0

represents the inverse of the marginal utility of income. ETu ≡ ∂2E/∂u∂pT = ∂CT /∂u > 0 is the

(positive) income effect on the demand for the tourism service.

We examine the effect of an increase in pollution on the compensated demand for the tourism

service. Differentiating equation (34) with respect to Z, we obtain

ETZ ≡ ∂2E

∂Z∂pT
=

∂CT

∂Z
= −1

b

CT

[(ΦX)−b + f(ΦT )−b]

∂
[
(ΦX)−b + f(ΦT )

−b
]

∂Z
− CT

ΦT

∂ΦT

∂Z

= −1

b

CT

[(ΦX)−b + f(ΦT )−b]
(ΦT )

−bf ′ − CT

ΦT

∂ΦT

∂Z

= −1

b

CT

[(ΦT /ΦX)b + f ]
f ′ − CT

ΦT

∂ΦT

∂Z
,

where ∂ΦT /∂Z > 0 (see Appendix Appendix D). The first term indicates the effect that an increase

in pollution raises the amount of compensated demand required to offset the disutility of pollution,

while the second term reflects that the increase in pollution decreases the attractiveness of the

tourism service. If the latter effect dominates the former, the compensated demand for tourism

service decreases with the amount of pollution.

Foreign tourists also consume the manufacturing good and domestic tourism service. Their

utility function is given by

u∗ = (DX)β + f∗(Z) · (DT )
β

where DX is the consumption of the manufacturing good by foreign tourists, and DT is the con-

sumption of the domestic tourism service by foreign tourists. β ∈ (0, 1) is a parameter and

f∗′(Z) < 0. Foreign tourists’ ordinary demand for the domestic tourism service is derived as

7See Appendix Appendix D.
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DT = I∗/Φ∗
T (see Appendix C), where I∗ is the exogenously given budget of foreign tourists and

Φ∗
T ≡ pT + (pT /f

∗)1/(1−β) (pX)−β/(1−β). Note that ∂DT /∂Z < 0 because an increase in pollution

reduces the attractiveness of the tourism service.

Following Beladi et al. (2009), Chao and Sgro (2013), Chao et al. (2008), Copeland and Taylor

(2003), and Yanase (2017), we define the “after-tax” or “net” revenue function:

R(pT , s) = max[pXX + pTT − sZ : KX +KM = K,X = X(KX , S), T = g(KM/aKM )Y (L,Z)].

The properties of the net revenue function with a positive externality of tourism infrastructure are

given in Appendix E. Note that standard envelope theorem does not hold in the absence of the

Lindahl pricing rule.

Now, we can derive the equilibrium conditions for both the demand and supply sides of the

economy. First, the budget constraint of the economy is given by

E(pT , Z, u) = R(pT , s) + sZ(pT , s), (35)

which states that the total expenditure equals the total revenue. The second term on the RHS

denotes the reward on capital devoted to tourism infrastructure sector.

Second, the market equilibrium condition of the tourism service is

ET (pT , Z, u) +DT (pT , Z) = T (pT , s). (36)

The LHS denotes the demand for the domestic tourism service and the RHS its supply.

(35) and (36) simultaneously determine the tourism terms-of-trade pT and domestic welfare

u. Utilizing these two equations, we analyze the effects of pollution tax on pT and u. Totally

differentiating equations (35) and (36), we obtain−DT − Γ ∂M
∂pT

+ (EZ − s) ∂Z
∂pT

Eu

−ST +
(
ETZ + ∂DT

∂Z

)
∂Z
∂pT

ETu

dpT

du

 =

 Γ∂M
∂s − (EZ − s)∂Z∂s

∂T
∂s −

(
ETZ + ∂DT

∂Z

)
∂Z
∂s

 ds, (37)

where Γ ≡ pT · (∂T/∂M) − pM is the difference between the marginal value product of tourism

infrastructure and its price, ST ≡ ∂T/∂pT − ETT − ∂DT /∂pT > 0 denotes the slope of the excess

supply function of the tourism service, and subscripts with respect to the expenditure function

denote partial derivatives, for example, ETu ≡ ∂2E/∂u∂pT . Note that ∂Z/∂s < 0, ∂M/∂pT > 0,

∂T/∂pT > 0, and ∂Z/∂pT > 0 from the analyses in sections 3.1 and 3.2. Notice that the Lindahl
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pricing rule implies Γ = 0. Let ∆∗ be the determinant of the 2 × 2 matrix of the LHS of (37). The

stability condition then requires ∆∗ > 0.8

We assume three conditions: (a) Γ > 0 (the marginal value product of tourism infrastructure is

greater than its price), (b) ∂M/∂s > 0 (the output of tourism infrastructure is increased by higher

pollution tax rate)9, and (c) ∂(T −CT −DT )/∂s = ∂T/∂s−ETZ · (∂Z/∂s)− (∂DT /∂Z)(∂Z/∂s) =

∂T/∂s− (ETZ + ∂DT /∂Z)(∂Z/∂s) < 0 (the excess supply of the tourism service decreases with the

pollution tax).

Solving equation (37), we obtain

∆∗dpT
ds

= −(EZ − s)
∂Z

∂s
ETu −

[
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s

]
Eu + Γ

∂M

∂s
ETu, (38)

∆∗du

ds
=

[
−DT − Γ

∂M

∂pT
+ (EZ − s)

∂Z

∂pT

] [
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s

]
−
[
−ST +

(
ETZ +

∂DT

∂Z

)
∂Z

∂pT

] [
Γ
∂M

∂s
− (EZ − s)

∂Z

∂s

]
.

(39)

Equation (39) is rewritten as (see Appendix F):

∆∗du

ds
= (EZ − s)

[
∂Z

∂s

(
ETT +

∂DT

∂pT

)
+

ZT

pT s
ξΨ

]
−DT

[
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s

]
+ Γ

{
M

pT s
Ψ

[
TθZT −

(
ETZ +

∂DT

∂Z

)
Z

]
− ∂M

∂s

(
ETT +

∂DT

∂pT

)}
,

(40)

where Ψ ≡ QσT /∆ > 0. In Appendix F, we also show that TθZT − (ETZ + ∂DT /∂Z)Z > 0 if the

conditions (b) and (c) are satisfied. An increase in pollution tax affects the tourism terms-of-trade

and domestic welfare through two traditional channels, as stated by Beladi et al. (2009) and Yanase

(2017). On the one hand, if the marginal damage of pollution to domestic residents is greater than

the pollution tax rate (EZ > s), the pollution reduction caused by an increase in pollution tax raises

the real income of domestic residents (see Copeland (1994)).10 This positive income effect improves

the tourism terms-of-trade. On the other hand, if a pollution tax decreases the domestic excess

supply of the tourism service (∂(T − CT −DT )/∂s = ∂T/∂s− (ETZ + ∂DT /∂Z)(∂Z/∂s) < 0), the

price of the tourism service rises (see Yanase (2017)). These positive terms-of-trade effects improve

domestic welfare. We call the former channel the “pollution distortion” channel and the latter the

8Let Ω ≡ ET +DT −T be the domestic excess demand for tourism service. From (35) and (36), we have dpT /dΩ =

−Eu/∆
∗. Hence, the stability of tourism service market requires ∆∗ > 0.

9From equations (28), (29), and (31), this condition is equivalent to σT < θLT .
10Recall that ∂Z/∂s < 0 from the analysis of section 3.1.
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“excess supply” channel. In (38) or (40), the first (resp. second) term corresponds to the “pollution

distortion” (resp. “excess supply”) channel.

This paper includes the third channel. If the marginal value product of tourism infrastructure

is higher than its price, an increase in tourism infrastructure raises real income, which improves the

tourism terms-of-trade. We call this the “tourism infrastructure” channel, which is represented by

the third term in (38) or (40). If the conditions (b) and (c) are satisfied, an increase in pollution tax

rate increases the tourism infrastructure both directly and indirectly. In addition, if the condition

(a) holds, the increase in tourism infrastructure improves welfare. Therefore, if the conditions (a) -

(c) are satisfied, the tourism infrastructure channel improves the tourism terms-of-trade and welfare.

Thus, we have the following proposition.

Proposition 3 The tourism infrastructure channel, which arises from the difference between the

marginal value product of tourism infrastructure and its price, improves the tourism terms-of-trade

and domestic welfare if the following three conditions are satisfied: (a) the marginal value product of

tourism infrastructure is greater than its price, (b) the output of tourism infrastructure is increased

by higher pollution tax, and (c) the excess supply of tourism service decreases with the pollution tax.

The condition (a) is likely to hold when the marginal value product of the tourism infrastructure

is sufficiently high. The condition (b) is satisfied if and only if the elasticity of substitution in the

tourism industry is sufficiently low to increase the pollution tax revenue. The condition (c) tends

to hold when the output of the tourism service decreases with the pollution tax, which occurs if the

elasticity of substitution in that sector if not very low. Therefore, for both the conditions (b) and

(c) to hold simultaneously, the elasticity of substitution in the tourism sector must be a moderately

small value. By numerical simulations in Appendix G, we show that there exist parameter values

that satisfy the conditions (a), (b), and (c).

Similar to Yanase (2017), we consider a departure from the Pigouvian tax rate. Setting s = EZ

in (38) and (40), respectively, we obtain

∆∗dpT
ds

∣∣∣∣
s=EZ

= −
[
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s

]
Eu + Γ

∂M

∂s
ETu, (41)

∆∗du

ds

∣∣∣∣
s=EZ

= −DT

[
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s

]
+ Γ

{
M

pT s

QσT
∆

[
TθZT −

(
ETZ +

∂DT

∂Z

)
Z

]
− ∂M

∂s

(
ETT +

∂DT

∂pT

)}
.

(42)

Thus, we have a corollary to Proposition 3.
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Corollary 1 Suppose that the conditions (a) - (c) hold. Starting from a Pigouvian level, an increase

in pollution tax unambiguously improves the tourism terms-of-trade and domestic welfare.

At the Pigouvian tax level, the pollution distortion channel vanishes. If the condition (c) is satisfied,

the excess supply channel is positive. In addition, if the conditions (a) - (c) are satisfied, the tourism

infrastructure channel is positive. Therefore, an increase in pollution tax unambiguously improves

the tourism terms-of-trade and domestic welfare.

Corollary 1 is a generalization of Corollary 2 in Yanase (2017). Yanase (2017) does not consider

the tourism infrastructure. Thus, in his model, starting from the Pigouvian pollution tax level and

free trade, the effect of pollution tax is solely determined by the excess supply channel.11

4.2 Effects on outputs, pollution, and factor prices

We now examine the effects of the increase in pollution tax on outputs, pollution, and factor prices,

considering that the tourism terms-of-trade are endogenous. The total effect (including the change

in the tourism terms-of-trade) of the increased pollution tax on each endogenous variable is

dΘ

ds
=

∂Θ

∂s
+

∂Θ

∂pT

dpT
ds

or
s

Θ

dΘ

ds
=

s

Θ

∂Θ

∂s
+

pT
Θ

∂Θ

∂pT

s

pT

dpT
ds

, (43)

where Θ = X,T,M,wH , wL, q, Z. The first term on the RHS of (43) represents the direct effect, while

the second term represents the indirect effect that arises from the change in the tourism terms-of-

trade. Since the sign of the direct effect is ambiguous except for the amount of pollution, we consider

the necessary and sufficient conditions for the indirect effect to be dominant. The indirect effect is

proportional to the change in the tourism terms-of-trade and, thus, the indirect effect dominates

the direct effect if the absolute value of the tourism terms-of-trade effect is sufficiently high.

Substituting (31) and (B.1) into (43) for Θ = wH , the increased pollution tax raises the wage of

skilled labor if and only if
s

pT

dpT
ds

<
σT − θLT

σT
≡ D. (44)

From (27), (28), (29), and (43), the total effects on q, X, and M are proportional to those on

wH .

11Yanase (2017) introduces import tariff, which yields the trade distortion. The trade distortion vanishes when

import tariff rate is zero.
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Similarly, substituting (30), (B.6), and (B.1) into (43) for Θ = T , the necessary and sufficient

condition for the increase in pollution tax rate to increase the production of tourism service is

s

pT

dpT
ds

> 1− ξQ(σT θZT + θLT )

σT [θZTP + (θZT + ξ)Q]
≡ F. (45)

Substituting (32), (B.5), and (B.1) into (43) for Θ = wL, the pollution tax rate and the wage of

unskilled labor move in the same direction if and only if

s

pT

dpT
ds

>
[θZT + ξ(σT − 1)]Q+ θZTP

P +Q
≡ G. (46)

Substituting (33), (B.2), and (B.1) into (43) for Θ = Z, a stricter environmental policy in the form

of increasing the pollution tax rate raises the amount of pollution if and only if

s

pT

dpT
ds

>
(1− ξ)Q+ P

P +Q
≡ H > 0. (47)

If the tourism terms-of-trade effect is positive and sufficiently large, the increase in pollution tax

rate can increase the amount of pollution. This possibility is also pointed out by Yanase (2017, p.

615).

In Appendix H, we show that D < F < H and G < H . There are three cases to be considered:

(i) when σT < ξQ/[θZT (P +Q)+ ξQ], D < F < G < H ; (ii) when ξQ/[θZT (P +Q)+ ξQ] < σT < 1,

D < G < F < H ; and (iii) when σT > 1, G < D < F < H . The results are summarized in Tables 3

- 5.

Thus, we have the following proposition.

Proposition 4 When (s/pT )(dpT /ds) ≥ H, an increase in pollution tax expands the tourism and

tourism infrastructure sectors while it contracts the manufacturing sector. It narrows the wage

inequality between skilled and unskilled labor. The rental rate of capital and the amount of pollution

increase. If (s/pT )(dpT /ds) ≤ min(D,G), all the above results are reversed.

Focusing on the total effect on domestic wage inequality, we have the following proposition.

Proposition 5 When (s/pT )(dpT /ds) ≥ max(D,G), an increase in pollution tax unambiguously

narrows domestic wage inequality. If (s/pT )(dpT /ds) ≤ min(D,G), domestic wage inequality unam-

biguously widens.

From Proposition 5, when the absolute value of the tourism terms-of-trade effect is sufficiently

large, there is a trade-off between reducing pollution and narrowing domestic wage inequality.
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For a double dividend in narrowing wage inequality and reducing pollution to exist, the tourism

terms-of-trade effect must be moderate. More specifically, if (s/pT )(dpT /ds) < min(D,G) or

(s/pT )(dpT /ds) > H, there is a trade-off; for (s/pT )(dpT /ds) ∈ [max(D,G),H), there is a dou-

ble dividend.

If the conditions (a), (b), and (c) are satisfied, a pollution tax can provide a further benefit in

improving domestic welfare (see Proposition 3).

When the production of the tourism sector is Cobb-Douglas (i.e., σT = 1), the above analysis

becomes quite simple (see Appendix I). In this case, at constant tourism terms-of-trade, an increase

in pollution tax reduces the tax revenue, leading to a decrease in the output of tourism infrastructure.

This results in a decline in the output of tourism service and the wage of unskilled labor. At the

same time, capital flows from the tourism infrastructure sector to the traded good sector. It follows

that the output of traded good and the wage of skilled labor go up. Since the price of traded good

is constant, the rental rate of capital goes down.

(s/pT )(dpT /ds) ・・・ D ・・・ F ・・・ G ・・・ H ・・・

dT/ds − − − 0 + + + + +

dwH/ds + 0 − − − − − − −

dwL/ds − − − − − 0 + + +

dZ/ds − − − − − − − 0 +

Table 3: The case of σT < ξQ/[θZT (P +Q) + ξQ]

(s/pT )(dpT /ds) ・・・ D ・・・ G ・・・ F ・・・ H ・・・

dT/ds − − − − − 0 + + +

dwH/ds + 0 − − − − − − −

dwL/ds − − − 0 + + + + +

dZ/ds − − − − − − − 0 +

Table 4: The case of ξQ/[θZT (P +Q) + ξQ] < σT < 1
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(s/pT )(dpT /ds) ・・・ G ・・・ D ・・・ F ・・・ H ・・・

dT/ds − − − − − 0 + + +

dwH/ds + + + 0 − − − − −

dwL/ds − 0 + + + + + + +

dZ/ds − − − − − − − 0 +

Table 5: The case of σT > 1

5 Conclusions

This paper sets up a small open developing tourism economy with tourism infrastructure and ex-

amines the welfare, production, and income distribution effects of an increase in pollution tax. The

tourism service is non-traded in the absence of foreign tourists. The tourism sector emits pollution

and its productivity is enhanced by tourism infrastructure. Since the Lindahl pricing rule is not

assumed, the usual envelope theorem and reciprocity relationship do not necessarily hold. Thus,

we can obtain interesting comparative static results. In particular, if the elasticity of substitution

in the tourism sector is sufficiently low, an increase in pollution tax paradoxically expands tourism

sector at the constant tourism terms-of-trade. Furthermore, the wage inequality between skilled and

unskilled labor narrows.

This paper provides new insights regarding welfare effect of pollution tax. In addition to two

traditional channels pointed out by Beladi et al. (2009) and Yanase (2017), this paper contains an

additional channel through which an increase in pollution tax affects the tourism terms-of-trade

and domestic welfare. The new channel, which arises from the difference between the marginal

value product of tourism infrastructure and its price, increases the tourism terms-of-trade and

domestic welfare if (a) the marginal value product of tourism infrastructure is greater than its price,

(b) the output of tourism infrastructure is increased by the increase in pollution tax, and (c) the

excess supply of a tourism service decreases with pollution tax. Given the above three conditions,

starting from a Pigouvian level, the increase in pollution tax improves the tourism terms-of-trade

and domestic welfare.
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Appendix A Stability condition

Following Chao et al. (2012), Okamoto (1985), Yabuuchi (2015), and Yabuuchi (2018), we consider

the following adjustment process:

Ẋ = a1(pX − aHXwH − aKXq), (A.1)

Ṫ = a2(pT − aLTwL − aZT s), (A.2)

Ṁ = a3(pM − qaKM ), (A.3)

ẇH = a4(aHXX −H), (A.4)

ẇL = a5(aLTT − L), (A.5)

q̇ = a6(aKXX + aKMM −K). (A.6)

The first three equations assume a Marshallian quantity adjustment while the last three equations

a Walrasian price adjustment. A dot over a variable represents the differentiation with respect to

time, and a parameter ak (k = 1, · · · , 6) measures the speed of adjustment.

The Jacobian matrix associated with (A.1) - (A.6) is12

J = a



0 0 0 −aHX 0 −aKX

0 0 ξ pT
M 0 −aLT 0

0 saZT
M − sZ

M2 ξ − sZ
M2 0 sZ

MwL
θLTσT −aKM

aHX 0 0 −θKXσX
H
wH

0 θKXσX
H
q

0 aLT −ξ L
M 0 −θZTσT

L
wL

0

aKX 0 aKM θHXσX
KX
wH

0 −θHXσX
KX
q


= aV J̃W,

where

a =



a1 0 0 0 0 0

0 a2 0 0 0 0

0 0 a3 0 0 0

0 0 0 a4 0 0

0 0 0 0 a5 0

0 0 0 0 0 a6


,

12From (8) and (9), we have

pM =
sZ

M
=

saZT (wL, s,M)T

M
.

This equation is substituted into (A.3).
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V =



pX 0 0 0 0 0

0 pT 0 0 0 0

0 0 pM 0 0 0

0 0 0 H 0 0

0 0 0 0 L 0

0 0 0 0 0 K


,

W−1 =



X 0 0 0 0 0

0 T 0 0 0 0

0 0 M 0 0 0

0 0 0 wH 0 0

0 0 0 0 wL 0

0 0 0 0 0 q


,

J̃ =



0 0 0 −θHX 0 −θKX

0 0 ξ 0 −θLT 0

0 1 −ξ − 1 0 θLTσT −1

1 0 0 −θKXσX 0 θKXσX

0 1 −ξ 0 −θZTσT 0

λKX 0 λKM λKXθHXσX 0 −λKXθHXσX


.

A necessary condition for the stability is |J̃ | > 0.

It is straightforward to show that ∆ = |J̃ | > 0.

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 θHX 0 θKX 0

0 0 −ξ 0 θLT 0 0

λKX 0 λKM λKXθHXσX 0 −λKXθHXσX 0

1 0 0 −θKXσX 0 θKXσX 0

0 1 −ξ 0 −θZTσT 0 0

0 1 −ξ 0 θLTσT 0 −1

0 0 1 0 0 1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Substract the seventh row from the sixth row to obtain

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 θHX 0 θKX 0

0 0 −ξ 0 θLT 0 0

λKX 0 λKM λKXθHXσX 0 −λKXθHXσX 0

1 0 0 −θKXσX 0 θKXσX 0

0 1 −ξ 0 −θZTσT 0 0

0 1 −ξ − 1 0 θLTσT −1 0

0 0 1 0 0 1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Expand ty the seventh column to obtain

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 θHX 0 θKX

0 0 −ξ 0 θLT 0

λKX 0 λKM λKXθHXσX 0 −λKXθHXσX

1 0 0 −θKXσX 0 θKXσX

0 1 −ξ 0 −θZTσT 0

0 1 −ξ − 1 0 θLTσT −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The interchange of the third and sixth rows yields

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 θHX 0 θKX

0 0 −ξ 0 θLT 0

0 1 −ξ − 1 0 θLTσT −1

1 0 0 −θKXσX 0 θKXσX

0 1 −ξ 0 −θZTσT 0

λKX 0 λKM λKXθHXσX 0 −λKXθHXσX

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 −θHX 0 −θKX

0 0 ξ 0 −θLT 0

0 1 −ξ − 1 0 θLTσT −1

1 0 0 −θKXσX 0 θKXσX

0 1 −ξ 0 −θZTσT 0

λKX 0 λKM λKXθHXσX 0 −λKXθHXσX

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |J̃ |.

Then the stability of the system requires ∆ > 0.

22



Appendix B Proof of Proposition 2

Solving (26), we have
ŵH

p̂T
= −θKXλKMσT

∆
< 0. (B.1)

We can show that the effects on other endogenous variables are proportional to the effect on wH .

Equation (28) implies

sgn X̂/p̂T = sgn ŵH/p̂T .

From (29), we have

sgn M̂/p̂T = −sgn ŵH/p̂T .

Substituting (27) and (29) into (25), we obtain

Ẑ

p̂T
=

q̂

p̂T
+
M̂

p̂T
= −θHX

θKX

ŵH

p̂T
− λKXσX
λKMθKX

ŵH

p̂T
= −λKMθHX + λKXσX

λKMθKX

ŵH

p̂T
= − P +Q

λKMθKX

ŵH

p̂T
. (B.2)

From (23) and (24), we have

σT (ŵL − ŝ) = Ẑ. (B.3)

From (B.3), we obtain

σT
ŵL

p̂T
=

Ẑ

p̂T
. (B.4)

Substituting (B.2) into (B.4), we have

ŵL

p̂T
= − P +Q

σTλKMθKX

ŵH

p̂T
. (B.5)

From (B.2) and (B.5), it follows that

sgn ŵL/p̂T = sgn Ẑ/p̂T = −sgn ŵH/p̂T .

Substituting (29) and (B.5) into (23), we have

T̂ /p̂T = −θZTP + (θZT + ξ)Q

λKMθKX

ŵH

p̂T
. (B.6)

Thus, we have

sgn T̂ /p̂T = −sgn ŵH/p̂T .
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Appendix C Consumer problem

Consider the following utility maximization problem:

maxu = (CX)b + f(Z) · (CT )
b

subject to E = pXCX + pTCT .

The usual optimal condition requires that the relative price equals the marginal rate of substitution:

pT
pX

=
∂u/∂CT

∂u/∂CX
= f ·

(
CX

CT

)1−b

. (C.1)

Solving the utility maximization problem, we obtain the ordinary demand function: C̃X = E/ΦX

and C̃T = E/ΦT where ΦX ≡ pX+(fpX)1/(1−b)(pT )
−b/(1−b) and ΦT ≡ pT+(pT /f)

1/(1−b) (pX)−b/(1−b).

Then, the indirect utility function is given by u =
[
(ΦX)−b + f · (ΦT )

−b
]
Eb. Solving the indirect

utility for E, we obtain the expenditure function E = u1/b
[
(ΦX)−b + f · (ΦT )

−b
]−1/b

. Substituting

the expenditure function into the ordinary demand for tourism service, we have the compensated

demand function of tourism service:

CT =
u1/b

ΦT

[
1

(ΦX)b
+ f

(ΦT )b

]1/b =
u1/b

[(ΦT /ΦX)b + f ]
1/b

.

Substituting CX/CT = ΦT /ΦX into equation (C.1) yields

pT
pX

= f ·
(
ΦT

ΦX

)1−b

. (C.2)

Appendix D Marginal damage to domestic residents by pollution

∂

∂Z
[(ΦX)−b + f · (ΦT )

−b] = −b(ΦX)−b−1∂ΦX

∂Z
+ f ′ · (ΦT )

−b − fb(ΦT )
−b−1∂ΦT

∂Z

= −b

[
(ΦX)−b−1∂ΦX

∂Z
+ f · (ΦT )

−b−1∂ΦT

∂Z

]
+ f ′ · (ΦT )

−b

= f ′ · Φ−b
T ,
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where

(ΦX)−b−1∂ΦX

∂Z
+ f · (ΦT )

−b−1∂ΦT

∂Z
= (ΦX)−b−1 1

1− b

(
ΦX

ΦT

)b

pXf ′ − f · (ΦT )
−b−1 1

1− b
f−2pT

(
ΦT

ΦX

)b

f ′

=
f ′

1− b

[
(ΦX)−1

(
1

ΦT

)b

pX − f−1 · (ΦT )
−1pT

(
1

ΦX

)b
]

=
f ′

1− b

1

ΦXΦT

[
(ΦT )

1−bpX − f−1 · (ΦX)1−bpT

]
=

f ′

1− b

pXf−1

ΦXΦT

[
(ΦT )

1−bf − (ΦX)1−b pT
pX

]
= 0 ∵ (C.2)

since

∂ΦX

∂Z
=

1

1− b
f

1
1−b

−1f ′(pX)
1

1−b (pT )
− b

1−b

=
1

1− b
f

b
1−b (pX)

1
1−b (pT )

− b
1−b f ′

=
1

1− b

(
f

pT

) b
1−b

p
1

1−b

X f ′

=
1

1− b

(
fpX
pT

) b
1−b

p
− b

1−b

X p
1

1−b

X f ′

=
1

1− b

(
ΦX

ΦT

)b

pXf ′ ∵ (C.2)

and

∂ΦT

∂Z
= − 1

1− b
f− 1

1−b
−1f ′p

1
1−b

T p
− b

1−b

X

= − 1

1− b
f− 2−b

1−b p
1

1−b

T

(
pT
pXf

) b
1−b

p
− b

1−b

T f
b

1−b f ′

= − 1

1− b
f− 2−2b

1−b pT

(
ΦT

ΦX

)b

f ′ ∵ (C.2)

= − 1

1− b
f−2pT

(
ΦT

ΦX

)b

f ′ > 0.

Appendix E Properties of the “net” revenue function

The first-order conditions for profit maximization in the manufacturing sector are

pX
∂X

∂H
= wH , (E.1)
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pX
∂X

∂KX
= q. (E.2)

Similarly, the first-order conditions for profit maximization in the tourism sector are

pT
∂T

∂L
= wL, (E.3)

pT
∂T

∂Z
= s. (E.4)

Utilizing (4), (5), (E.1) - (E.4), we have

pXdX + pTdT = wHdH + wLdL+ sdZ + qdK + ΓdM, (E.5)

where Γ ≡ pT · (∂T/∂M) − pM is the difference between the marginal value product of tourism

infrastructure and its price.

The “after-tex” or “net” revenue is

R = pXX + pTT − sZ.

Taking (E.5) into account, the change in the “net” revenue is given by

dR = XdpX + TdpT + wHdH + wLdL− Zds+ qdK + ΓdM. (E.6)

The last term in (E.6) implies that an increase in tourism infrastructure raises the net revenue R

if and only if the marginal value of product of tourism infrastructure is larger than its price (i.e.,

pT · (∂T/∂M) > pM ).

From (E.6), we have

RT ≡ ∂R

∂pT
= T + Γ

∂M

∂pT
, (E.7)

Rs ≡
∂R

∂s
= −Z + Γ

∂M

∂s
. (E.8)

Thus, the envelope theorem holds if Γ = 0.
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Appendix F Welfare effect of pollution tax

The numerator of du/ds is∣∣∣∣∣∣−DT − Γ ∂M
∂pT

+ (EZ − s) ∂Z
∂pT

Γ∂M
∂s − (EZ − s)∂Z∂s

−ST +
(
ETZ + ∂DT

∂Z

)
∂Z
∂pT

∂T
∂s −

(
ETZ + ∂DT

∂Z

)
∂Z
∂s

∣∣∣∣∣∣
= −

(
DT + Γ

∂M

∂pT

)[
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s

]
+ (EZ − s)

∂Z

∂pT

[
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s

]
+ ST

[
Γ
∂M

∂s
− (EZ − s)

∂Z

∂s

]
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂pT

[
Γ
∂M

∂s
− (EZ − s)

∂Z

∂s

]
= −DT

[
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s

]
− Γ

∂M

∂pT

[
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s

]
+ (EZ − s)

∂Z

∂pT

∂T

∂s

+ ST

[
Γ
∂M

∂s
− (EZ − s)

∂Z

∂s

]
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂pT
Γ
∂M

∂s

= −DT

[
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s

]
− Γ

∂M

∂pT

[
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s

]
+ (EZ − s)

(
∂Z

∂pT

∂T

∂s
− ST

∂Z

∂s

)
+ STΓ

∂M

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂pT
Γ
∂M

∂s

= −DT

[
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s

]
− Γ

∂M

∂pT

∂T

∂s
− ST

∂M

∂s︸ ︷︷ ︸
(i)

+ Γ

(
ETZ +

∂DT

∂Z

)∂M

∂pT

∂Z

∂s
− ∂Z

∂pT

∂M

∂s︸ ︷︷ ︸
(ii)



+ (EZ − s)

 ∂Z

∂pT

∂T

∂s
− ST

∂Z

∂s︸ ︷︷ ︸
(iii)


= −DT

[
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s

]
− Γ

[
−MT

pT s
θZTΨ+

∂M

∂s

(
ETT +

∂DT

∂pT

)]
− Γ

(
ETZ +

∂DT

∂Z

)
MZ

pT s
Ψ

+ (EZ − s)

[
ZT

pT s
ξΨ+

∂Z

∂s

(
ETT +

∂DT

∂pT

)]
, Ψ ≡ QσT /∆ > 0

= −DT

[
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s

]
+ Γ

MT

pT s
θZTΨ− Γ

∂M

∂s

(
ETT +

∂DT

∂pT

)
− Γ

(
ETZ +

∂DT

∂Z

)
MZ

pT s
Ψ

+ (EZ − s)
ZT

pT s
ξΨ+ (EZ − s)

∂Z

∂s

(
ETT +

∂DT

∂pT

)
= −DT

[
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s

]
− Γ

∂M

∂s

(
ETT +

∂DT

∂pT

)
+ (EZ − s)

∂Z

∂s

(
ETT +

∂DT

∂pT

)
+ Γ

M

pT s
Ψ

[
TθZT −

(
ETZ +

∂DT

∂Z

)
Z

]
+ ξ(EZ − s)

ZT

pT s
Ψ,

which is equation (40) in the main text. The terms (i), (ii), and (iii) can be calculated as follows.

• The term (i)
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∂M

∂pT

∂T

∂s
− ST

∂M

∂s
=

∂M

∂pT

∂T

∂s
−
(

∂T

∂pT
− ETT − ∂DT

∂pT

)
∂M

∂s

=
∂M

∂pT

∂T

∂s
− ∂T

∂pT

∂M

∂s
+

∂M

∂s

(
ETT +

∂DT

∂pT

)
=

MT

pT s

(
M̂

p̂T

T̂

ŝ
− M̂

ŝ

T̂

p̂T

)
+

∂M

∂s

(
ETT +

∂DT

∂pT

)
= −MT

pT s
θZTΨ+

∂M

∂s

(
ETT +

∂DT

∂pT

)
since

M̂

p̂T

T̂

ŝ
− M̂

ŝ

T̂

p̂T
=

Q

λKMθKX

ŵH

p̂T

σT [(θZT + ξθLT )Q+ θZTP ]− ξθLTQ

∆

− Q

λKMθKX

ŵH

ŝ

θZTP + (θZT + ξ)Q

λKMθKX

ŵH

p̂T
∵ (29), (30), and (B.6)

=
Q

λKMθKX

ŵH

p̂T

[
σT [(θZT + ξθLT )Q+ θZTP ]− ξθLTQ

∆

+
θKXλKM (θLT − σT )

∆

θZTP + (θZT + ξ)Q

λKMθKX

]
∵ (31)

=
Q

λKMθKX

ŵH

p̂T

1

∆
θZT [Q(θLT − σT ξ) + θLTP︸ ︷︷ ︸

∆

]

=
Q

λKMθKX

ŵH

p̂T
θZT

= − Q

λKMθKX

θKXλKMσT
∆

θZT ∵ (B.1)

= −θZT
QσT
∆

= −θZTΨ.

• The term (ii)

∂M

∂pT

∂Z

∂s
− ∂Z

∂pT

∂M

∂s
=

MZ

pT s

(
M̂

p̂T

Ẑ

ŝ
− Ẑ

p̂T

M̂

ŝ

)
= −MZ

pT s
Ψ,
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since

M̂

p̂T

Ẑ

ŝ
− Ẑ

p̂T

M̂

ŝ
= − Q

λKMθKX

ŵH

p̂T

Ẑ

ŝ
+

Q

λKMθKX

ŵH

ŝ

Ẑ

p̂T
∵ (29)

=
Q

λKMθKX

[
− ŵH

p̂T

Ẑ

ŝ
+

ŵH

ŝ

Ẑ

p̂T

]

=
J

λKMθKX

[
− ŵH

p̂T

Ẑ

ŝ
− ŵH

ŝ

λKMθSX + λKXσX
λKMθKX

ŵH

p̂T

]
∵ (B.2)

=
Q

λKMθKX

ŵH

p̂T

[
− Ẑ

ŝ
− ŵH

ŝ

λKMθSX + λKXσX
λKMθKX

]

=
Q

λKMθKX

ŵH

p̂T

[
σT [(1− ξ)Q+ P ]

∆
+

θKXλKM (θLT − σT )

∆

P +Q

λKMθKX

]
∵ (31) and (33)

=
Q

λKMθKX

ŵH

p̂T

1

∆
{σT [(1− ξ)Q+ P ] + (θLT − σT )(P +Q)}

=
Q

λKMθKX

ŵH

p̂T

1

∆
[Q(θLT − ξσT ) + θLTP ]

=
Q

λKMθKX

ŵH

p̂T

= − Q

λKMθKX

θKXλKMσT
∆

∵ (B.1)

= −QσT
∆

= −Ψ.

• The term (iii)

From (30), (33), and (B.6), we obtain

∂Z

∂pT

∂T

∂s
− ST

∂Z

∂s
=

∂Z

∂pT

∂T

∂s
−
(

∂T

∂pT
− ETT − ∂DT

∂pT

)
∂Z

∂s

=
∂Z

∂pT

∂T

∂s
− ∂T

∂pT

∂Z

∂s
+

∂Z

∂s

(
ETT +

∂DT

∂pT

)
=

ZT

pT s

(
Ẑ

p̂T

T̂

ŝ
− T̂

p̂T

Ẑ

ŝ

)
+

∂Z

∂s

(
ETT +

∂DT

∂pT

)
=

ZT

pT s
ξΨ+

∂Z

∂s

(
ETT +

∂DT

∂pT

)
,
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since

Ẑ

p̂T

T̂

ŝ
− T̂

p̂T

Ẑ

ŝ
=

P +Q

λKMθKX

ŵH

p̂T

σT [(θZT + ξθLT )Q+ θZTP ]− ξθLTQ

∆

− θZTP + (θZT + ξ)Q

λKMθKX

ŵH

p̂T

σT [(1− ξ)Q+ P ]

∆
∵ (30), (33), (B.2), and (B.6)

=
1

λKMθKX∆

ŵH

p̂T
{(P +Q){σT [(θZT + ξθLT )Q+ θZTP ]− ξθLTQ}

− [θZTP + (θZT + ξ)Q]σT [(1− ξ)Q+ P ]}

=
1

λKMθKX∆

θKXλKMσT
∆

ξQ∆ ∵ (B.1)

=
ξσTQ

∆

= ξΨ,

where

(P +Q){σT [(θZT + ξθLT )Q+ θZTP ]− ξθLTQ} − [θZTP + (θZT + ξ)Q]σT [(1− ξ)Q+ P ]

= σT {(P +Q)[(θZT + ξθLT )Q+ θZTP ]− [θZTP + (θZT + ξ)Q][(1− ξ)Q+ P ]} − (P +Q)ξθLTQ

= σT ξ
2Q2 − (P +Q)ξθLTQ

= −ξQ[(P +Q)θLT − σT ξQ]

= −ξQ∆.

From the condition (c):
∂T

∂s
−
(
ETZ +

∂DT

∂Z

)
∂Z

∂s
< 0

↔ T

s

T̂

ŝ
−
(
ETZ +

∂DT

∂Z

)
Z

s

Ẑ

ŝ
< 0

↔ −T
θZTσT [(1− ξ)Q+ P ] + ξ(σT − θLT )Q

∆
+

(
ETZ +

∂DT

∂Z

)
Z
σT [(1− ξ)Q+ P ]

∆
< 0 ∵ (30) and (33)

↔ σT [(1− ξ)Q+ P ]

[
−TθZT +

(
ETZ +

∂DT

∂Z

)
Z

]
− Tξ(σT − θLT )Q < 0

↔ σT [(1− ξ)Q+ P ]

[
TθZT −

(
ETZ +

∂DT

∂Z

)
Z

]
− Tξ(θLT − σT )Q > 0

↔
[
TθZT −

(
ETZ +

∂DT

∂Z

)
Z

]
>

Tξ(θLT − σT )Q

σT [(1− ξ)Q+ P ]
> 0.

Note that θLT − σT > 0 from the condition (b).
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Appendix G Numerical Simulations

We conduct numerical simulations to find out a set of parameter values that satisfy the conditions

from (1) to (3). Numerical simulations utilize MATLAB 2021a.

For this purpose, we specify the production function. Suppose that the production function of

the traded good is a Cobb-Douglas function:

X = AXHδ(KX)1−δ, (G.1)

where AX is productivity parameter for the traded good sector, and we specify AX ≡ δ−δ(1−δ)−(1−δ)

for the notational simplicity. δ ∈ (0, 1) is the factor cost share of skilled labor. Thus, we have

θHX = δ and θKX = 1− δ. The associated unit cost is then given by (wH)δq1−δ.

The production function of the tourism service is assumed to be the constant elasticity of sub-

stitution (CES) function:

T = M ξ[ηL−ρ + (1− η)Z−ρ]−1/ρ, (G.2)

where η ∈ (0, 1) and ρ ≥ −1 are parameters. It is well known that the elasticity of substitution is

σT = 1/(1 + ρ). We specify g(M) = M ξ, where ξ ∈ (0, 1) is a constant. The associated unit cost is

derived as M−ξ[η1/(1+ρ)(wL)
ρ/(1+ρ) + (1− η)1/(1+ρ)sρ/(1+ρ)](1+ρ)/ρ.

From (7) and (8), we obtain
aLT
aZT

=
L

Z
. (G.3)

The cost minimization in the tourism sector yields

wL

s
=

η

1− η

(
aZT

aLT

)1+ρ

=
η

1− η

(
Z

L

)1+ρ

. (G.4)

Utilizing Shephard’s lemma, we obtain the unit requirement of emission in the tourism sector

by differentiating the unit cost function with respect to pollution tax rate:

aZT = M−ξ[η(Z/L)ρ + (1− η)]1/ρ. (G.5)

Using (G.4), the factor cost share of emission in the tourism sector is

θZT =
(1− η)

1
1+ρ s

ρ
1+ρ

η
1

1+ρ (wL)
ρ

1+ρ + (1− η)
1

1+ρ r
ρ

1+ρ

=
(1− η)Lρ

ηZρ + (1− η)Lρ

The zero-profit condition for the traded good sector (2) becomes

(wS)
δq1−δ = pX . (G.6)
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Using (G.4), the zero-profit condition for the tourism sector becomes

s

1− η
M−ξ[η(Z/L)ρ + 1− η]

1+ρ
ρ = pT (G.7)

Substituting (4), the budget constraint of the government (9) becomes

sZ = qaKMM. (G.8)

Substituting (G.5) into (8), we have

M−ξ[η(Z/L)ρ + (1− η)]1/ρT = Z. (G.9)

Substituting (G.8) and taking into account that the factor cost share of capital in the traded

good sector is 1− δ, the market clearing condition of capital (5) can be rewritten as

(1− δ)pXX + sZ = qK. (G.10)

Recalling that the factor cost share of skilled labor in the trade good sector is δ, the demand-supply

equality of skilled labor (6) becomes

δpXX = wHH. (G.11)

The utility function of domestic residents is specified as

u =
√

CX +
1

Z

√
CT .

The utility maximization yields

ZpT
√
CT = pX

√
CX . (G.12)

Suppose that the utility function of foreign tourists is given by

u∗ =
√
DX +

1

Z

√
DT .

The tourists’ ordinary demand function of the tourism service is derived as

DT =
I∗

pT (1 +
pT
pX

Z2)
. (G.13)

The market-clearing condition for the tourism service is given by

CT +DT = T. (G.14)

The budget constraint of the economy requires

pXX + pTT = pXCX + pTCT . (G.15)
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Equations (G.6) - (G.15) determine X, T , M , wH , q, Z pT , CX , CT , and DT . We set the parameter

values as follows: pX = 1, δ = η = 0.6, ξ = 0.8, ρ = 2, L = 3, H = 1, K = 25, aKM = 2, I∗ = 4, and

s = 0.5. The elasticity of substitution in the tourism sector is σT = 1/(1 + ρ) = 0.3333. The factor

cost share of pollution tax is θZT = (1−η)Lρ/[ηZρ+(1−η)Lρ] = 0.4164. Since ξ > θZT , the condition

(a) is satisfied. By the definition, θLT = 1 − θZT = 0.5836. Then, σT < θLT , implying that the

condition (b) holds. Finally, ∂(T −CT −DT )/∂s = ∂T/∂s−(ETZ+∂DT /∂Z)∂Z/∂s = −3.5241 < 0.

Therefore, the condition (c) holds.

Appendix H Proofs of Proposition 4 and Proposition 5

F −D =
θLT
σT

− ξQ(σT θZT + θLT )

σT [θZTP + (θZT + ξ)Q]

=
1

σT

[
θLT − ξQ(σT θZT + θLT )

θZTP + (θZT + ξ)Q

]
=

1

σT

θLT θZTP + θLT (θZT + ξ)Q− ξQ(σT θZT + θLT )

θZTP + (θZT + ξ)Q

=
1

σT

θLT θZTP + θLT θZTQ− ξQσT θZT

θZTP + (θZT + ξ)Q

=
θZT

σT

∆

θZTP + (θZT + ξ)Q
> 0.

H −G =
(1− ξ)Q+ P − [θZT + ξ(σT − 1)]Q− θZTP

P +Q

=
[1− ξ − θZT − ξσT + ξ]Q+ θLTP

P +Q

=
∆

P +Q
> 0.

H − F =
P +Q− ξQ

P +Q
− 1 +

ξQ(σT θZT + θLT )

σT [θZTP + (θZT + ξ)Q]

= − ξQ

P +Q
+

ξQ(σT θZT + θLT )

σT [θZTP + (θZT + ξ)Q]

= ξQ

{
σT θZT + θLT

σT [θZTP + (θZT + ξ)Q]
− 1

P +Q

}
= ξQ

(P +Q)(σT θZT + θLT )− σT [θZTP + (θZT + ξ)Q]

σT [θZTP + (θZT + ξ)Q](P +Q)

= ξQ
(P +Q)(σT θZT + θLT )− σT [θZT (P +Q) + ξQ]

σT [θZTP + (θZT + ξ)Q](P +Q)

= ξQ
∆

σT [θZTP + (θZT + ξ)Q](P +Q)
> 0.
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H −D =
P +Q− ξQ

P +Q
− 1 +

θLT
σT

= − ξQ

P +Q
+

θLT
σT

=
−ξQσT + θLT (P +Q)

σT (P +Q)

=
∆

σT (P +Q)
> 0.

G−D =
[θZT + ξ(σT − 1)]Q+ θZTP

P +Q
− 1 +

θLT
σT

= θZT +
ξ(σT − 1)Q

P +Q
− 1 +

θLT
σT

= −θLT +
ξ(σT − 1)Q

P +Q
+

θLT
σT

= −θLT
σT − 1

σT
+

ξ(σT − 1)Q

P +Q

= (σT − 1)

(
−θLT

σT
+

ξQ

P +Q

)

= (1− σT )

θLT
σT

− ξQ

P +Q︸ ︷︷ ︸
(H−D)


= (1− σT )

(θLT − ξσT )Q+ θLTP

σT (P +Q)

= (1− σT )
∆

σT (P +Q)
.

Therefore, G > D if and only if 1− σT > 0.
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F −G = 1− ξQ(σT θZT + θLT )

σT [θZTP + (θZT + ξ)Q]
− θZT (P +Q) +Qξ(σT − 1)

P +Q

= θLT − ξQ(σT θZT + θLT )

σT [θZTP + (θZT + ξ)Q]
− Qξ(σT − 1)

P +Q

= − ξQ(σT θZT + θLT )

σT [θZTP + (θZT + ξ)Q]
+ θLT − (σT − 1)

θLT
σT

+ (σT − 1)
θLT
σT

− Qξ(σT − 1)

P +Q

= − ξQ(σT θZT + θLT )

σT [θZTP + (θZT + ξ)Q]
+

θLT
σT︸ ︷︷ ︸

F−D

+(σT − 1)

θLT
σT

− Qξ

P +Q︸ ︷︷ ︸
H−D


=

θZT

σT

∆

θZTP + (θZT + ξ)Q
+ (σT − 1)

∆

σT (P +Q)

=
∆

σT

[
θZT

θZTP + (θZT + ξ)Q
+

σT − 1

P +Q

]
=

∆

σT

[
θZT

θZT (P +Q) + ξQ
+

σT − 1

P +Q

]
=

∆

σT

θZT (P +Q) + (σT − 1)[θZT (P +Q) + ξQ]

(P +Q)[θZT (P +Q) + ξQ]

=
∆

σT

σT [θZT (P +Q) + ξQ]− ξQ

(P +Q)[θZT (P +Q) + ξQ]
.

Then, the necessary and sufficient condition for F > G is

σT >
ξQ

θZT (P +Q) + ξQ
.

Appendix I The case where the production function of the tourism

sector is Cobb-Douglas

When the production function of the tourism industry is Cobb-Douglas, that is, σT = 1, the com-

parative static results in section 3.1, where the tourism terms-of-trade are fixed, are simplified as

T̂

ŝ
=

ŵL

ŝ
= −θZT (P +Q)

∆
< 0, (I.1)

ŵH

ŝ
=

θZTλKMθKX

∆
> 0, (I.2)

Ẑ

ŝ
= − [(1− ξ)Q+ P ]

∆
< 0. (I.3)
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∂X/∂s ∂T/∂s ∂M/∂s ∂wH/∂s ∂wL/∂s ∂q/∂s ∂Z/∂s

+ − − + − − −

Table 6: The effects of pollution tax (the tourism terms-of-trade are constant and σT = 1)

The total effect

Now, consider the total effect of an increase in pollution tax, taking into account the indirect effect

induced by the change in the tourism terms-of-trade. Letting σT be unity in equation (44), the

necessary and sufficient condition for an increase in pollution tax raise the wage of skilled labor is

s

pT

dpT
ds

< θZT .

Similarly, from (45), the increase in pollution tax expands the tourism sector if and only if

s

pT

dpT
ds

> 1− ξQ(θZT + θLT )

θZTP + (θZT + ξ)Q
≡ F ′.

From (46), the necessary and sufficient condition for raising pollution tax to increase the wage

of unskilled labor is
s

pT

dpT
ds

> θZT .

From (47), the pollution tax rate and the amount of pollution move in the same direction if and

only if
s

pT

dpT
ds

>
(1− ξ)Q+ P

P +Q
= H > 0.

It is straightforward to show that

θZT < F ′ < H.

s
pT

dpT
ds ・・・ θZT ・・・ F ′ ・・・ H ・・・

dT/ds − − − 0 + + +

dwH/ds + 0 − − − − −

dwL/ds − 0 + + + + +

dZ/ds − − − − − 0 +

Table 7: The case of σT = 1
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