Doctoral Thesis

Methods for Extending Lifetime
1in Wireless Sensor Networks

Qian Zhao

March 2016

Graduate School of Applied Informatics
University of Hyogo

Abstract

This doctoral thesis addresses several issues related to the foremost concerned prob-
lem in wireless sensor networks (WSNs): the restricted battery energy. In order to extend
the lifetime of wireless sensor network systems, this thesis investigates how to reduce the
energy consumption from the main energy consumer in wireless sensor networks: energy
consumed in sensors, tasks that manipulate sensors and wireless communications.

Nowadays, wireless sensor nodes are becoming more and more common in various
settings and require a long battery life for a better maintainability. However, since most
sensor nodes are powered by batteries, energy efficiency is a critical problem affecting
our ability to successfully and efficiently maintain WSNs. In many cases, it is extremely
difficult or impossible to maintain sensor nodes, for example, when they are deployed in
tunnels, oceans, volcanoes, or other dangerous and/or difficult-to-reach places. Moreover,
the increasing complexity of WSN systems leads to an increased energy consumption.
Due to these reasons, sensor nodes should be able to run on batteries for prolonged periods
of time without the need for replacement. Reducing energy consumption in such systems
is urgent for further improvement of the WSN systems.

In WSNs, electric power is primarily consumed by wireless communication, sensors
in a node, and CPUs where tasks that are used to control sensors. In this doctoral the-
sis, we investigate problems that cause short battery life in WSNs from two perspectives,
and give appropriate methods to solve those problems. First, from the perspective of the
execution forms of sensors in a sensor node, we note that simultaneous sensor activation
generates high peak power consumption. Therefore, battery voltage drops quickly, and
sensors stop working even though some useful charge remains in the battery. Moreover,
tasks should have capability to activate or deactivate sensors due to sensors’ execution
form in an energy efficient manner. Second, from the perspective of wireless communi-
cation, communication distances must be considered in minimizing energy consumption.
Another problem is the energy hole problem, which is known to cause non-uniform en-
ergy drains in many communication topologies, results in premature termination of entire
networks. Moreover, since some sensor nodes in a WSN may be unreliable, it must be tol-
erant to faults. The goal of this doctoral thesis, therefore, is to describe novel algorithms
for separately solving these problems in order to extend the lifetime of WSNs. In order
to verify the effectiveness of the proposed algorithms, we conduct simulations to evaluate
the battery life extension by utilizing these algorithms, and the simulation results showed

the algorithms’ superiority.

Contents

Introduction

1.1 Motivation
1.2 Contributions
1.3 Outline e

Sensor and Task Scheduling

Related Works

2.1 Periodic Task Scheduling
2.1.1 Earliest Deadline First Scheduling
2.1.2 Rate Monotonic Scheduling

2.2 Energy-Efficient Approaches
2.2.1 Dynamic Voltage Scaling
2.2.2 Real-Time Dynamic Voltage Scaling
2.2.3 Quasi-Static Voltage Scaling

2.3 Sensor Scheduling

2.4 Battery Recovery Effect. L.

Problem Definition Of Sensor Scheduling
3.1 Experimental Results with General Sensor Execution Schedule

3.2 Sensor Scheduling Techniques and Strategies

Sensor and Task Scheduling Algorithms

4.1 EDF Based Scheduling Algorithm
4.2 Uniform Distribution Scheduling Algorithm
4.3 Blank Filling Scheduling Algorithm
4.4 Task Execution Scheduling Algorithm

10
10
11
14
17
17

20
20
22

5

11|

6

7

8

10

Simulations
5.1 Characteristics of the Simulator.

5.2 Simulation Results

Energy Efficient Wireless Communication

Related Works

6.1 Energy Efficient Routing Approaches
6.1.1 Energy Efficient Routing Algorithms
6.1.2 Minimum Spanning Tree Routing

6.2 Energy Hole Aware Approaches

6.3 Fault Tolerance Approaches

Energy Hole Aware Energy Efficient Routing Algorithms
7.1 Preliminaries and problem Definitions
7.2 Wireless Communication Route Construction
7.2.1 Wireless Communication Graph
7.2.2 Energy Hole Aware Energy Efficient Communication Routing Al-
gorithm
7.3 Route Switching Algorithms 0oL
7.3.1 Tired Node Resting Switching Algorithm
7.3.2 Complementary Switching Algorithm
7.3.3 Route Switching Overheads
7.3.4 Node leaving and joining the network

7.3.5 Comparison with previouswork

Fault Tolerant Algorithms
8.1 EHAEC for One-Fault Tolerance
8.2 Active Spare Selecting Algorithm

Simulations
9.1 Simulations of Energy Hole Aware Energy Efficient Routing Algorithms .
9.2 Simulations of Fault Tolerant Algorithms

9.2.1 Fault-Tolerance-First Evaluation

Summary and Conclusions
10.1 Sensor and Task Scheduling

10.2 Energy Efficient Wireless Communication

1

35
35
36

45

46
47
47
49
51
52

54
54
57
58

58
66
66
68
71
71
72

74
74
77

80
80
83
84

10.3 WSN Applications Using Proposed Methods

Acknowledgments

References

i1

List of Figures

2.1
2.2
23
24

3.1
3.2
33
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
53
54
5.5
5.6
5.7
5.8

6.1

7.1
7.2

Schedule produced by EDF and RM on the same set of periodic tasks . . 9
CPU utilizations before scheduling task 3 9
Rate capacity effect [15], 18
Recovery effect [15][16] 18
GreenTap e 21
Two sensor execution schedules 22
Experiment results of the two sensor schedules 23
Sensor Model 24
Motivation example of sensor schedule 24
Sensor activation of EDF-BSA 27
Sensor activationby EDF-BSA 28
Sensor activationby UDSA 28
Sensor activationby BFSA oo oo 31
Sensor and task executionmodel o oL 32
Sensor schedule and task schedule of proposed method 33
Sensor scheduling simulation 1 37
Sensor scheduling simulation2 38
Sensor scheduling simulation3 39
Sensor scheduling simulation4 40
Sensor scheduling simulation5 41
Sensor scheduling simulation6 42
Overall simulationresults, 43
Sensor scheduling simulation7 44
Execution of Prim’s algorithm 50
Wireless sensor network topology. 55
Algorithms’ performance for different WSN lifetime definitions. 55

v

7.3
7.4
7.5
7.6
7.7
7.8
7.9

8.1
8.2
8.3

9.1
9.2
93
94

9.5

9.6
9.7

Phony weight. L
Explanation of EXTRACT-MIN(Q).
EHAEC and PrimRouting.
Route switching by TINORESA: rhombic nodes are tired nodes.
Routes of EHAEC and COMSA.
The use of theoretical bound of A of example in Fig.7.7.

Communication patterns of the proposed algorithms and the algorithm in

EHAEC-1FT example.
Graph of IFTSGand 1FTT..
ASSAexample.

A 20-nodeand a 50-node WSN. L.
Simulationresults. L L
Topology comparison of PRIM and EHAEC in the 50-node WSN.
Simulated lifetime for the second situation (fault tolerance is more impor-

tant than energy efficiency).o
Simulated fault tolerant effect when fault tolerance is more important than

energy efficiency.
Simulated lifetime for the ASSA with different values of @ and

Simulated number of node failures for the ASSA with different values of

60
63
67

85
86

List of Tables

2.1
2.2
23
24

3.1
3.2

4.1
4.2

5.1
5.2
53
54
5.5
5.6
5.7

8.1

9.1
9.2
9.3

Aperiodictaskset L 8
Off-line Algorithm [11] 15
On-line Algorithm [11] 16
Battery models overview [15]. 19
Battery specification 21
Sensor node specification L. 21
Parameters of sensor schedule example 26
Evaluation of task scheduling algorithms in the case of three sensor schedul-

ingalgorithms 34
Sensor parameter set in simulation 1 37
Sensor parameter set in simulation2 38
Sensor parameter set in simulation3 L., 39
Sensor parameter set in simulation4 40
Sensor parameter set in simulation5 41
Sensor parameter set in simulation 6 42
Sensor parameter set in simulation7 L. 43
IFTSG lookup table, 75
Algorithms’ efficiency by DIRECT in the 20-node network 81
Algorithms’ efficiency by DIRECT in the 50-node network 83
Efficiency when fault tolerance is more important than energy efficiency. . 84

vi

Chapter 1
Introduction

Looking back at the history of human civilizations in thousands of years, there is no
period like we are living now: strength global economy, top speed developing technology,
refined infrastructure etc., which makes our age the most outstanding in history. Out
of question, the industrial revolution! is the turning point of this rapid progress. From
the first to the third industrial revolution, technology innovation has lead a tremendous
change of our world. Now we are on the edge of the third industrial revolution (digital
revolution) going to the fourth, in which “smart cyber physical technology” is leading
this change. Especially, in the fourth industrial revolution (Industrie 4.0) [1], a concept of
“Smart Factory” has been proposed. It is a collective term for technologies and concepts
of value chain organization which draws together Cyber Physical Systems (CPS), the
Internet of Things (IoT), and the Internet of Services (IoS). Within the modular structured
Smart Factories of Industrie 4.0, CPS monitor Physical processes, create a virtual copy
of physical world and make decentralized decisions. Over the IoT, CPS communicate
and cooperate with each other and humans in real time. Via the 10S, both internal and
cross-organizational services are offered and utilized by participants of the value chain
[1]. Thanks to the great efforts of smart humans, such kind of systems are becoming
pervasive in our earth.

In view of Industrie 4.0, we have no choice but to talk about the Wireless Sensor
Network (WSN) System since it is an important component of Industrie 4.0, owing to
wireless sensors are indispensable base devices of CPS and IoT. In this doctoral thesis,
we will raise some major issues exist in the WSN systems, analyze them in detail and

present our new effective resolutions.

IThree industrial revolutions have been occurred until now, and the main contribution of the three in-
dustrial revolutions are steam power, electric power and digital technology, respectively.

1.1 Motivation

A wireless sensor network (WSN) system is a kind of pervasive computing system that
consists a large number of wireless sensor nodes able to collect environmental measure-
ments, such as temperature, sound, light and .etc. These sensing data are finally trans-
mitted to a WSN application that makes decisions based on the sensing data by using a
wireless communication device such like ZigBee and Wi-sun. Wireless sensor nodes are
now extensively used in many applications to improve people’s lives and for security. For
example, they are used to manage air conditioners, lights, and alarms, to save electric
power, and to warn people of danger by sensing environmental conditions. Sensor nodes
are used for infrastructure elements such as bridges and tunnels to detect conditions that
could lead to problems such as a collapse, by sensing reflected sound waves. Wireless
sensor networks are fast becoming ubiquitous.

However, as most sensor nodes in wireless sensor networks are powered by batteries,
the battery life is a problem affecting our ability to maintain them. In many cases it is
impossible to maintain sensor nodes, such as when they are deployed in tunnels, oceans,
volcanoes, or other dangerous, difficult-to-reach places. Therefore, sensor nodes should
be able to run on batteries for prolonged periods without needing to be replaced, the aim
being maintenance free operation. In practical, considering the lifetime of digital devices
which is about 10 years, a device which can operate on a battery about 10 years can be
said as maintenance free. In WSNs, electric power is primarily consumed by wireless
communication, sensors in a node, and CPUs where tasks that are used to control sensors.
In order to extend the lifetime of WSNs, these energy consumption should be reduced as
much as possible. Therefore, reducing energy consumption from these consumers are the
main topic of this thesis.

We investigate problems that cause short battery life in WSNs from two perspectives.
First, from the perspective of the execution forms of sensors in a sensor node, taking ad-
vantage of an experiment of examining sensor schedules, we note that simultaneous sen-
sor activation generates high peak power consumption. High peak power consumption
causes battery voltage drop to the operation voltage quickly, hence, sensors stop working
even though some useful charge remains in the battery. Therefore, appropriate sensor
execution form is required. However, sensors are required to finish their data acquisi-
tions before the determined deadlines, hence, time constrains should be considered in the
sensor execution form. Moreover, tasks should have capability to activate or deactivate
sensors due to sensors’ execution form in an energy efficient manner. Energy efficient
task execution form should be considered accompany with the form of sensor execution.

Second, from the perspective of wireless communications, energy consumption is mainly

affected by communication distance and the size of transmitted data, especially the en-
ergy consumption grows in proportion to 2nd~6th power of the communication distance.
Hence, from the viewpoint of topology control, communication distances must be reduced
as much as possible by control the network topology. However, another problem is the
energy hole problem, which is known as a reason causing non-uniform energy drains in
many communication topologies. This is because a node will terminates quicker than
the others if it relays data more often than the others, results in premature termination of
entire networks. The strategy of avoiding energy hole problem should be taken into con-
sideration in the design of topology control methods. Moreover, since sensor nodes may
be damaged in some harsh environment or some sensor nodes run out of energy faster
than others due to some other reasons, it is important for a WSN to tolerate such faults.

Therefore, a fault tolerance is required when optimizing the communication topology.

1.2 Contributions

The main contributions of this thesis are new algorithms for solving the raised energy
efficient problems in WSNss.

From the first perspective, we need a way of emptying the battery before of when
the battery voltage reached the operation voltage. We devised three energy-efficient
algorithms: an EDF Based Scheduling Algorithm (EDF-BSA), a Uniform Distribution
Scheduling Algorithm (UDSA) and a Blank Filling Scheduling Algorithm (BFSA). Dur-
ing the design and simulation of these scheduling algorithms, we found that BFSA is
the most efficient solution in that when the battery voltage reaches operation voltage, the
battery life is maximized. Therefore, BFSA is capable of efficiently dealing with this
problem. Moreover, the tasks should have the capability to activate or deactivate sensors
simultaneously when they are to be executed periodically. We devised two task execution
scheduling algorithms, DVFS-enabled periodical task execution algorithm (DVES-PTEA)
and execution time scaling periodical task execution algorithm (ETS-PTEA) to solve the
problem.

From the second perspective, in order to shorten the communication distance as well
as relax the energy hole problem for reducing energy consumption of data communica-
tion, we devised an Energy Hole Aware Energy Efficient Communication Routing Al-
gorithm (EHAEC). For further solve the energy hole problem, we proposed two route
switching algorithms Tired Node Resting Switching Algorithm (TINORESA) and Com-
plementary Switching Algorithm (COMSA) in order to uniformly distribute the energy
consumption of sensor nodes to avoid energy holes. For tolerating node failures, we also

proposed two kinds of provisioned tolerance algorithms. EHAEC for one-fault tolerance

(EHAEC-1FT) is proposed to tolerate one node failure in the network, and Active Spare
Selecting Algorithm (ASSA) is proposed to designate backups for critical nodes. More-
over, we show that EHAEC-1FT can be extended to X-nFT for any routing algorithm X

to tolerate n-1 node failures.

1.3 Outline

The rest of the thesis is mainly divided into two parts. The first part discuss problems
from the perspective of sensor and task scheduling, while the second part discuss prob-
lems from the perspective of wireless communications. In the first part, Chapter 2 ad-
dresses studies related scheduling techniques, Chapter 3 defines the problem, Chapter
4 presents the proposed algorithms, Chapter 5 shows the results of simulations of each
of these scheduling algorithms. In the second part, Chapter 6 present related works of
energy efficient problems in wireless communications, Chapter 7 and Chapter 8 present
the energy efficient routing algorithms and the fault tolerant algorithms, respectively, and
Chapter 9 shows the simulation results. Finally, Chapter 10 conclude this work and raises
some real applications which our proposed methods adapt.

This doctoral thesis is based on the original works of the author. Chapters 2 to 5 are
based on [51, 54], Chapters 6 to 9 are based on [52, 53, 55]. And works [56, 57, 58, 59, 60]

are some of the author’s publications that related to this thesis.

Part I

Sensor and Task Scheduling

Chapter 2

Related Works

In this chapter, we introduce some concepts and some pieces of research which relate
to scheduling and energy-efficient issues. In embedded systems, some of those systems
which are required to finish their missions before a specific time constraint are known as
embedded real-time systems. In this kind of systems, time constraint is defined as that a
control task must produce its result within a specific deadline, which is defined based on
the requirement of the system. In addition, activities that require regular activation in a
real-time system should be handled as periodic tasks,. In the first part of this chapter, we
raise some well-known task scheduling methods.

On the other hand, in order to deal with the energy-efficient issue in the system level,
reducing the supply voltage is considered as an efficient way since the electric power con-
sumed per cycle with CMOS circuitry scales quadratically to the supply voltage. There-
fore, we introduce some researches which concentrated on reducing power consumption
by scaling supply voltages in the second part of this chapter.

Moreover, we introduce some other sensor scheduling methodologies and the battery
recovery effect which affect the lifetime of batteries in the third part and the fourth part

of this chapter, respectively.

2.1 Periodic Task Scheduling

A periodic task [2] is a task that has a constant time interval between successive task
request times. In this section, we show two basic scheduling algorithms for handling
periodic tasks: Earliest Deadline First (EDF) scheduling algorithm and Rate Monotonic
(RM) scheduling algorithm. Moreover, a test that determines whether a set of ready tasks
can be scheduled such that each task meet its deadline is called a schedulability test. We
show the schedulability analysis of each scheduling algorithm.

In order to simplify the schedulability analysis, the following assumptions were made

on the tasks [2]:

e Al: The instance of a periodic task 7; are regularly activated at a constant rate. The

interval 7; between two consecutive activations is the period of the task.
e A2: All instances of a periodic task 7; have the same worst case execution time C;.

e A3: All instances of a periodic task 7; have the same relative deadline D;, which is

equal to the period T;.

e A4: All tasks in a periodic task set I" are independent; that is, there are no prece-

dence relations and no resource constraints.
In addition, the following assumptions are implicitly made:
e AS5: No task can suspend itself, for example on I/O operations.
e A6: All tasks are released as soon as they arrive.
e A7: All overheads in the CPU are assumed to be zero.

Before introducing the scheduling algorithms, we would like to introduce the princi-
ple of “preemption” and “non-preemption” [3]. With priority-based scheduling, a high
priority task may be released during the execution of a lower-priority task. In a preemp-
tive scheme, there will be an immediate switch to the higher-priority task. While with
non-preemption, the lower-priority task will be allowed to complete before the other exe-
cutions. In general, preemptive schemes enable higher-priority tasks to be more reactive,
and hence they are preferred. Between the extremes of preemption and non-preemption,
there are alternative strategies that allow a lower-priority task to continue to execute for a
bounded time (but not necessarily to completion). These schemes are known as deferred

preemption or cooperative dispatching.

2.1.1 Earliest Deadline First Scheduling

The Earliest Deadline First (EDF) [2][4] algorithm is a dynamic scheduling rule that
selects tasks according to their absolute deadlines. EDF forms a priority queue where the
tasks with earlier deadline will be executed at higher priorities. Although it is usual to
know the relative deadlines of each task in some applications (for example 100ms after
release), the absolute deadline are computed at run-time, and hence EDF is described as

a dynamic scheduling.

Table 2.1: A periodic task set

Task | Computation time C | Period T
Tl 1 5
(%) 2 7
3 4 8

In [5], Liu and Layland showed that by considering only the utilization of the task set,
a test for schedulability can be obtained. Thus, the schedulability test of EDF is defined

as:

| O

1

'S]

-

U=

=

1

~

where the C; are the worst-case computation-times of the n tasks and the 7; are their

respective inter-arrival periods which were assumed to be equal to the relative deadlines.
For example, considering a periodic task set shown in Table. 2.1. The utilization is

U—1+2

507

4
5 8

+-~0.99

This means that 99% of the processor time is used to execute the periodic tasks, whereas
the CPU is idle in the remaining 1%. Since the utilization is less than 1, the task set is
schedulable by using EDFE.

2.1.2 Rate Monotonic Scheduling

The Rate Monotonic (RM) scheduling algorithm [2][4] is a simple scheduling rule that
assigns priorities to tasks according to their request rate. In RM scheduling algorithm,
tasks with higher request rate will have higher priorities. Since the periods of tasks are
constant, RM scheduling is a fixed-priority assignment that priorities are assigned to tasks
before execution and do not change over time. Moreover, RM scheduling is intrinsically
preemptive, the currently executing task is preemptive by a newly arrived task with shorter
period. Liu and Layland [5] showed that RM scheduling is optimal among all fixed-
priority assignment in the sense that no other fixed-priority scheduling algorithms can
schedule a task set that cannot be scheduled by RM scheduling algorithm.
The schedulability test defined for RM scheduling algorithm is:

C‘
i< (2 — 1)

M=

~.

U =
1

~.

where the C; are the worst-case computation-times of the n tasks and the 7; are their

t35k1illl |I| |||i||| |I| llli_l_ll |I|‘||
0 5 10 15 20 25 30 35 40
ta3k2ll|| .Ill |l|| |.|1 |.|1 JI._AJ

0 T 14 21 28 35 42
t33k3rl-l-ll._AJ_-:l-ll‘ll
0 8 16 24 32 40
(a) EDF

taSk1i |i||| |liilll
0 5 5

10 1 20 3 40
t85k2 l ; i N | i L 11 1 111 1
0 7 35 42
time overﬂow
WA | mﬁﬁlL
0 8 32 40
(b) RM

Figure 2.1: Schedule produced by EDF and RM on the same set of periodic tasks

task1 task2

o 1 2 3 4 6 6 7 8

Figure 2.2: CPU utilizations before scheduling task 3

respective inter-arrival periods. We show a schedulability test of RM scheduling algorithm
by using Table. 2.1. The utilization is

1 2 4
= = -+ -=0.
U 5+7 2 99

However,
n(21 — 1) ~0.78

which is smaller than the utilization when three tasks exist in a task set. Hence, the
schedulability of the task set can not be guaranteed under RM scheduling algorithm,
whereas it is guaranteed under EDF. As shown in Fig. 2.1, EDF completed all tasks
within their deadlines (Fig. 2.1(a)), whereas RM generates three time-overflows at time
9, 25 and 32 (Fig. 2.1(b)). The reason why RM may generates time-overflows in task 3 is
that since task 1 and task 2 has higher priorities than task 3, there is not enough time slots
for scheduling task 3 in one period after scheduling task 1 and task 2. As shown in Fig.
2.2, the CPU has been utilized 5 time-slots after scheduling task 1 and task 2 in a time of
8 period (one period in task 3), however, the period only remains 3 time-slots which is not
enough for executing task 3 in this period. Therefore, task 3 will be executed 3 time-slots
in this period, and hence generate one time-overflow in next period since task 3 occupies

four time-slots. Generally, since

lim n(2n — 1) = In2 ~ 0.693

n—soo
a rough estimate for RM scheduling algorithm in the general case that a task set can meet

all the deadlines if CPU utilization is less or equals to 69.3%.

2.2 Energy-Efficient Approaches

Generally, battery power is dissipated in two ways: dynamic dissipation, in which power
is consumed by CPU and devices, and static dissipation, which is leakage power. Since
most of the power is consumed by the dynamic power dissipation, a lot of research has
focused on how to reduce it from circuit and hardware level to system software to applica-
tion level (eg. [6]). In this section, we will introduce some typical approaches in reducing

power dissipations in a system level design.

2.2.1 Dynamic Voltage Scaling

In [7], Burd and Brodersen pointed out that Scaling clock frequency coupled with supply
voltage is the most beneficial for energy-efficiency in microprocessor design. The authors
devised an algorithm called Dynamic Voltage Scaling (DVS) that reduces the supply volt-
age by enabling the CPU to operate at a lower frequency. In nowadays, Dynamic voltage
scaling (DVS) becomes a commonly-used technique to save power on a wide range of

computing systems, from embedded, laptop and desktop systems to high-performance

10

server-class systems.

In CMOS technology, the maximum operating frequency increases with increased op-
erating voltage, the faster the processor, the higher the energy costs. Therefore, when
the processor runs lower, a reduced operating voltage suffices, and low power consump-
tion can be obtained. In [7], the authors defined a metric for energy consumption in the
CMOS:

Power = VI%D * ferk * CEFF

where Vpp 1s the supply voltage in a circuit, fcrx is clock frequency and Cerr is the
effective switched capacitance. The formula shows that the power dissipated per cycle
with CMOS circuitry scales quadratically to the supply voltage (E o V?). It means even
a small change in voltage can have a significant impact on energy consumption. By
dynamically scaling both supply voltage and frequency of the processor, DVS can provide

the reduction of power consumption.

2.2.2 Real-Time Dynamic Voltage Scaling

We illustrated Dynamic Voltage Scaling (DVS) in the last subsection. However, for a
large class of applications in embedded real-time systems such as digital cameras and
smart phones where tasks must be accomplished by some specified deadlines, the vari-
able operating frequency interferes with their deadline guarantee mechanisms, and DVS
despites this important mechanism. Okuma et al. [8] formulated minimizing of power
consumption in real-time systems as an integer liner programming and proposed schedul-
ing algorithms in cases of known and unknown task arrival times. Moreover, Real-Time
Dynamic Voltage Scaling (RT-DVS) [9] is presented as a appropriate solution that modify
the OS’s real-time scheduler and task management service to provide significant energy
savings while maintaining real-time deadline guarantees.

In RT-DVS [9], the authors developed three algorithms to integrate DVS mechanisms
into Earliest-Deadline-First (EDF) and Rate Monotonic (RM) schedulers.

Static Voltage Scaling

The authors first proposed a very simple mechanism for providing voltage scaling while
maintaining real-time schedulability called “static voltage scaling.” In this mechanism,
the authors pick the lowest possible operating frequency that will allow the RM of EDF
scheduler to meet all the deadlines for a given task set. This frequency is set statically, and
will not be changed unless the task set is changed. For selecting the appropriate frequency,

the aothors observed that scaling the operating frequency by a factor o (0 < a < 1) may

11

results in the worst case computation time by a task scaled by a factor 1/, while the

desired period and deadline remains unaffected. And

a:fl/ﬁnv wherefie{fl,---,fm},i:l,---,m

The “static voltage scaling” uses the schedulability test to test if a task set can be sched-
uled by using the scaled values for worst-case computation needs of the tasks. Moreover,
the authors assumed that the operating frequencies and the corresponding voltage set-
tings available on the particular hardware platform are specified in a table provided to the
software. Therefore, if the EDF schedulability test satisfies:

C/T+---+G/T, <«

the task set can be scheduled by EDF by using a lowest frequency f;. Moreover, if the
RM schedulability test satisfies:

[T;/Ti|«Ci+-+ [T;)T] *C; < o x T;
the task set can be scheduled by RM by using a lowest frequency f;.

Cycle-Conserving RT-DVS

Although real-time tasks are specified with the worst-case computation requirements, they
generally use much less than the worst case on most invocations. Thus, a DVS mechanism
could reduce the operating frequency and voltage when tasks use less than their worst-case
time allotment, and increase frequency to meet the worst-case needs. However, under a
worst-case computation assumption, the tasks may complete earlier by comparing the
actual processor time used to the worst-case specification. Thus, instead of idling for
extra processor cycles, the authors devised their second algorithm “cycle-conserving RT-
DVS” that avoid wasting cycles (hence “cycle-conserving”) by reducing the operating
frequency.

For EDF scheduling, if a task completes earlier than its worst-case computation time,
“cycle-conserving RT-DVS” reclaim the excess time by recomputing utilization using the
actual computing time consumed by the task. This reduced value is used until the task
is released again for its next invocation. Therefore, “cycle-conserving RT-DVS” select

frequency by using the EDF schedulability test:

Ui+ +Un< o

12

and set U; to C;/T; upon the task releases, whereas set U; to cc;/T; upon the task comletes,
where cc; is the actual cycles used in this invocation.

However, to form a “cycle-conserving RT-DVS” for RM scheduling, the schedula-
bility test is more complex, and the complexity is n> where n is the number of tasks to
be scheduled. The authors showed a different approach in RM scheduling as in below.
Firstly, “cycle-conserving RT-DVS” initially start with worst-case schedule base on static
scaling, in this step, the algorithm uses the maximum frequency in the discrete frequency
set. Secondly, the algorithm determines minimum frequency so as to complete the same
task by the first deadline in order to spread out the work that should be accomplished
before this deadline. Thirdly, after executing the first task, the algorithm repeat the ex-
ercise of spreading out the remain work over the remaining time until the next deadline,
which results in a lower operating frequency since the first task completed earlier than its
worst-case specified computing time. This procedure repeating at each scheduling point
until the last task is scheduled.

Look-Ahead RT-DVS

The final RT-DVS algorithm that the authors proposed attempts to achieve even better
energy saving using a look-ahead technique to determine future computation need and
defer task execution, hence, it is called “look-ahead RT-DVS.” The look-ahead scheme
tries to defer as much work as possible, and sets the operating frequency to meet the
minimum work that must be done immediately to ensure all future deadlines are met.
Although this may forces tasks run at high frequencies later in order to complete all of
the deferred work in time, the authors notice that if tasks tend to use much less than their
worst-case computing time allocations, the peak execution rates for deferred work may
never be needed. Therefore, the algorithm will allow the system to continue operating at
a low frequency and voltage while completing all tasks by their deadlines.

The authors explained how a look-ahead RT-DVS EDF algorithms works. The goal
is to defer work beyond the earliest deadline in the system so that tasks can operate at a
low frequency now. Firstly, the algorithm allocates time in the schedule for the worst-
case execution of each task, starting with the task with the latest deadline. Secondly, the
algorithm spread out the work of the task with latest deadline between the first deadline
and the latest deadline, subject to a constraint reserving capacity for future invocations
of the other tasks. Thirdly, repeat the second step for the tasks with the latest deadline
except the tasks which have been dealt. The algorithm use the work allocated before the
first deadline to determine the operating frequency. Once the first task has completed,
using less than its specified worst-case execution cycles, the algorithm repeat this and

find a lower operating frequency. Continuing this method of trying to defer work beyond

13

the next deadline in the system, the final results in the execution trace will be obtained.

2.2.3 Quasi-Static Voltage Scaling

In [10] and [11], the authors mentioned that although DVS and body-biasing can signifi-
cantly reduce the dynamic and static energy dissipation of systems, DVS is computation-
ally expensive, and hence significantly hampers the possible energy savings. In order to
take full advantage of slack that arises from variations in the execution time, it is impor-
tant to recalculate the voltage setting during run-time, i.e. on-line. Therefore, the authors
proposed a Quasi-Static Voltage Scaling (QSVS) [10] [11] algorithm with a constant on-
line time complexity of O(1), which allows to increase the exploitable slack as well as
to avoid the energy dissipated due to on-line recalculation of the voltage settings. QSVS
selects optimal voltage setting by solving the linear problem proposed in their paper [12].
Moreover, O. Jovanovic [13] proposed an off-line and on-line technique to readjust the
voltage settings at run-time for multi-processor real-time systems.

The basic idea of QSVS is divided into two phases. In the first phase, which is per-
formed before the actual execution (i.e., off-line), voltage settings for all tasks are pre-
computed based on possible task start times. The resulting voltage/frequency settings are
stored in look-up tables (LUTs) that are specific to each task. It is important to note that
this phase performs the time intensive optimization of the voltage settings. The second
phase is performed on-line. Each time new voltage settings for a task need to be calcu-
lated, the on-line scheme looks up the voltage/frequency settings from the LUT based on
the actual task start time. If there is no exact entry in the LUT that corresponds to the ac-
tual start time, then the voltage settings are estimated using a linear interpolation between

the two entries that surround the actual start time.

Off-line Algorithm

Consider a set of NT tasks, 7 = {7;} such that the execution order is fixed according to

an EDF policy. Each task 7; is characterized by a six-tuple,

T; =< BNC;, ENC;, WNGC;, Ceffi, D; >

where BNC;, ENC; and WNC; denote the best-case, the expected-case and the worst-case
number of clock cycles, respectively, that task 7; requires for its execution. Furthermore,
Cef f; and D; represent the effective switched capacitance and the deadline.

The off-line algorithm is shown in Table 2.2. Upon initialization, the algorithm com-

putes the earliest and latest start times for each task (lines 01-06). The algorithm proceeds

14

Table 2.2: Off-line Algorithm [11]

Algorithm: QUASI STATIC_VS_OFFLINE
Input: - execution order of tasks T € T
- for all tasks 7; € T":
BNC[,ENC,‘,WNC,‘,Ceffi,D,‘
-NL
Output: - Lookup tables LU T;
01 fori=1toNT {
02 EST; «+ calc_earliest _starttime
03 } //end for
04 for i= NT downto 1 {
05 LST; < calc_latest _starttime
06 } // end for
07 T,«<T
08 forallt,e T {/i=1.NT
09 I; < LIST,— EIST;
10 j<0
11 nj < comp_interpolation_points(t;, LST;, EST;)
12 for (t; < EST;; ty < LST;; ty«—ty+ I;/n) {

13 Iy, < Iy

14 (Vdd;, Vbsi, f;) < volt_scaling(T,,ts,)
15 LUT;[j] <+ store_QS_lookup(ty,, Vdd;, f)
16 jejtl

17}

18 T,+ T, —7;
19} // end for all
20 forall 7; € T return LUT;

by initializing the set of remaining tasks 7, with the set of all tasks 7" (line 07). In the fol-
lowing (lines 08-18), the voltage and frequency settings for the start time intervals of each
task are calculated. The voltage scaling algorithm used in line 14 can be formulated as a

convex nonlinear optimization as follows:

Minimize
|7
Z Edynk + Eleakk
k=i
where
Edynk = ENCk * Ceffk * dedk
and

K4%V, Ks+V)
Ejleak, = Lo (K3 % Vg, €4 4 5 ™50k Iy 5 Vipg) 5ty

15

subject to

(t = ENCy % (K6 * Lg% Vddk)
((1+Kqp) % Via, + Kz * Vi, — Vthl)a
sk+ 1 < spp
! sk+1; < Dy VT that have a deadline
sk+ty < LSTj
s >0
| Vadyin < Vad, < Vidye @ Vs, < Vad, < Vosyay

The variables that need to be optimized are the task execution times #;, the task start
time s; as well as the supply voltage V44 and body bias voltage Vj,, . With our best
knowledge, this formulation can be solved by polynomial-time. This on-line algorithm

returns the quasi-static scaling table LU T; for all tasks.

On-line Algorithm

Table 2.3: On-line Algorithm [11]

Algorithm: QUASI STATIC_VS_OFFLINE
Input: - start time £, of next task 7,
- Quasi-Static Scaling Table LU T,
number of start time interval steps n
- frequency and voltage settings for task 7,
Output: - Lookup tables LUT;
01 (x,y) < calc_st_interval (LU Ty,1y,)
02 f, < inter_freq(LUT,,x,y,1;,)
03 Vdd, < inter Vdd(LUT,x,y,ty,)
04 Vbs, < calc Vbs(f,,Vdd,)
05 return (f,,Vdd,,Vbs,)

The on-line algorithm is shown in Table 2.3. This algorithm is called each time after
a task finishes its execution, in order to calculate the voltage settings for the next task
T,. In the first step, the algorithm calculates the two entries x and y from the quasi-static
scaling table LU T,, that contain the start times which surround the actual time 7, (line 01).
According to the identified entries, the frequency setting f, for the execution of task 7, is
linearly interpolated using the two frequency settings from the quasi-static scaling table
LUT,[x] and LUT,y| (line 02). Similarly, in line 03 the supply voltage Vdd, is linearly
interpolated from the two surround voltage entries in LU T,,. Line 04 calculates the body-

bias voltage directly for the interpolated frequency and supply voltage values, using the

16

following equation:

(14 K1) * Vyg, + K2 % Vig, — Vig,) *
(K6 * Lg% Vddk)

f=

Finally, the algorithm terminates and returns the settings for the frequency, supply and

body-bias voltage (line 05).

2.3 Sensor Scheduling

In Section 2.1 and 2.2, we introduced some task scheduling algorithms and three volt-
age/frequency scaling algorithms in order to reduce energy dissipation in embedded sys-
tems. However, all those algorithms were concentrated on how to minimizing the power
consumption of processors, there has been little research on reducing the power consump-
tion of devises, such as sensor nodes.

In [14], A. Krause et al. mentioned that when deploying sensor networks for monitor-
ing tasks, both placing and scheduling the sensors are important in order to ensure infor-
mative measurement and long deployment life. Therefore, they proposed a near-optimal
approach that simultaneously optimized the placement and scheduling of sensor nodes in
a wireless sensor network. In their approach of scheduling sensors, they separated sen-
sors into several “buckets,” with each “bucket” having a certain number of sensors that
compose a big element or a small element. They defined a function to judge whether the
bucket conditions are satisfied by the sensing quality or not. If the bucket conditions are
not satisfied, the sensors composing the big element will be reallocated to other buckets
until all bucket conditions are satisfied. A. Krause et al. did not consider a deadline,
and they assumed the sensors are simultaneously activated. Due to our best knowledge,
simultaneous sensor activation is significantly power consuming. Thus, we will make a

effort to solve the sensor scheduling problem in the following sections.

2.4 Battery Recovery Effect

In the above sections, we introduced some energy efficient approaches in embedded sys-
tems which use batteries to provide energies. In battery-powered systems, battery behav-
iors also can influence the system life since the rate capacity effect and recovery effect
of batteries exist. Therefore, we will introduce some basic knowledges about battery and
some battery model in this section.

The battery lifetime mainly depends on the rate of power consumption of the device.

In the ideal case, the battery supply voltage stays constant during discharge and the battery

17

=
=
o
o \ Q
& \‘*-——————1_““5 Cuvel O
§ \ 8
Curve 2 =275
=
=]
o 1 1 | Il
0.1C 02C 05C IC 2C 5C 10C
(@) Time of discharge (b) Discharge rate

Figure 2.3: Rate capacity effect [15]

S0 intermittent
discharge
continuous
discharge

Voltage

Time of discharge
Figure 2.4: Recovery effect [15][16]

capacity would be constant for all discharge current; all energy stored in the battery would
be used with the battery voltage drops to zero. However, for a real battery, the behaviors of
the capacity and voltage drop are non-linear because some chemical and physical factors.
These behaviors were termed rate capacity effect and recovery effect [15][16]. We use
Fig. 2.3 to illustrate the rate capacity effect. Fig. 2.3(a) shows the evolution of the voltage
over time for a low and high discharge current, curve 1 and 2, respectively. The voltage
drops faster for high discharge currents. Fig. 2.3(b) shows the capacity as a function of
the discharge rate, and effective capacity drops for high discharge rate. The discharge
rate is given in terms of “C rate,” a C rate of nC means that the battery is discharged in
1/n hours. Moreover, Fig. 2.4 shows the recovery effect. When a battery stands idle
after a discharge (intermittent discharge), some chemical and physical reactions happen
which result in a recovery of the battery voltage. Thus the voltage of a battery, which has
dropped during a heavy discharge, will rise after a rest period, giving a sawtooth shaped
discharge, and this will result in an increase of battery life. Since in addition to current
drain, the extent of recovery is dependent on many other factors such as the particular

battery system and constructional features, discharge temperature, operation voltage, and

18

Table 2.4: Battery models overview [15]

model rate capacity effect | recovery effect accuracy
Dualfoil [17] + + very high
Peukert [18] + - medium, 10% error
Rakhmatov [18] + + high, 5% error
Chiasserini [19] - + high, 1% error

length of recovery period, the recovered voltage is very complicate to be calculated.
Moreover, in [15], the authors summarized some well-known battery models. Since
the battery used in the sensor nodes in this thesis is a Li-ion type battery, thus, we only
show some battery model which can deal Li-ion type batteries in Table. 2.4. By using
these battery models, it will be possible to model the power consumption of battery-

powered devices, and predict battery lifetimes for different usage patterns.

19

Chapter 3

Problem Definition Of Sensor

Scheduling

3.1 Experimental Results with General Sensor Execution
Schedule

As we indicated the problem in chapter 1, the problem is that the battery charge still
remains when the battery voltage reaches the operation voltage. Before beginning this
study, we had developed a prototype energy management platform called “Green Tap”
[20][21] (see Fig. 3.1), which consists of a wireless station and wireless sensor nodes
comprised of a CPU, a button battery, ZigBee device, and various environment sensors
such as a motion sensor, an illumination sensor, a temperature sensor, and a humidity
sensor. To investigate its aspects, we measured the voltage drop, battery voltage, and
battery charge of sensors in a node in experiments where sensors operated according to
two schedules. The sensor node we used is CP04 (only used in experiments, not for
sale) made by NEC, and the button battery we used is CR2450 made by Panasonic. The
specifications of the battery and the sensor node are shown in Table 3.1 and Table 3.2,

respectively.

Schedule A: Sensors run for as short a time as possible, and the CPU is kept asleep for
as long as possible (Fig. 3.2(a)). In this case, the sensors are activated at the same

time.

Schedule B: Sensors run with as much delay as possible, and the CPU sleeps for as short

a time as possible (Fig. 3.2(b)). In this case, the sensors are sequentially activated.

The results are shown in Fig. 3.3. When the sensor ran according to schedule A, the

battery voltage reached the operation voltage (2.5 V) after 5000 hours, but this was before

20

Figure 3.1: GreenTap

Table 3.1: Battery specification

Nominal voltage (V) 3
Nominal capacity (mAh) 620
Continuous standard load (mA) 0.2
Operating temperature (°C) -30~+60

the battery charge fell to zero. When the sensor ran according to schedule B, the battery
voltage did not reach the operation voltage when the battery charge reached zero (7500
hours). This means that since the peak power consumption of sensors is large during
simultaneous sensor data acquisition, battery voltage falls faster than battery charge and
hence reaches the operation voltage before battery is fully discharged. Generally, this
tendency is described in [16]. In [16], the authors show that the voltage drops faster
for high discharge current, i.e., high peak power consumption. Moreover, in [22], the
authors mentioned that peak power consumption should be reduced wherever possible,
which means operations that consume a battery should be performed serially rather than
concurrently. Serial operation is better than concurrent operation when each consumes
roughly the same energy.

To solve this problem, we can lower the peak power consumption by controlling sen-

sor activations. One way to control sensor activation is to sequentially activate it. How-

Table 3.2: Sensor node specification

Measurement Measurement
Sensor frequency range Resolution | Accuracy
distance: 2.5m
motion second view angle: 100° None None
temperature minute -10~50°C 1°C +1°C
humidity minute 20~80%RH 1%RH +3%RH

21

8 5
_________________________________ S

8 Sensor C R
E (g0}
> 8
2 Sensor B ’nco
S sleep =

Sensor A
time
period
(a) Schedule A

)

o 2

2 o

o

= E

2 a

: Geep| 3

2 Sensor A Sensor B Sensor C i}

o
© time
period
(b) Schedule B

Figure 3.2: Two sensor execution schedules

ever, sensors cannot always be sequentially activated in circumstances when they have
finish data acquisition before a deadline. This means we need a solution such as, ideally,
the battery will run out of charge when it reaches the operation voltage with real-time
constraints. As a first step toward this goal, we devised a way to decrease the peak power

consumption.

3.2 Sensor Scheduling Techniques and Strategies

Supposing N sensors exist in a node, we assume that a sensor has a deadline because the
sensor data is obtained within a certain time and consumes power during the activation
time. One of such application that requires sensor data deadline is a power management
system in consumer electronics at home using GreenTap [23]. In this system, the au-
thors observed that sampling voltages and frequencies of electronics should be required
at S0OMHz and 60MHz, respectively. Another application is a health monitoring systems
gathering human pulse. Therefore, sensors that belongs to a node is characterized by a
relative deadline L;, data acquisition time k;, and power consumption constant d; (Fig.

3.4). A sensor o; is periodically activated at time 7' and deactivated at time Tdci in one

22

w
HIN

. Battery charge —
< 600 i
£ &
© 500 29 =
0 S
©
>
< 400 28 5
]
£ 300 / s
g o
B 2.7
= .
o 200
Battery voltage
100 2.6
0 — 25
0 Operation Time (hour) 5000
(a) Schedule A
200 3.1
. Battery voltage .
£ 600 >0 =
é [sTo)
o 500 29 £
= o
@©
2 400 28 £
]
Z 300 g
[aa}
% 2.7
o 200

Battery charge

I
)}

100

N
"

0 Operation Time (hour) 7500
(b) Schedule B

Figure 3.3: Experiment results of the two sensor schedules

time period. All of these time value are relative to the start of the time period as mention
later.

The following is an example to show how to solve the problem using Fig. 3.5. We
assume that three sensors are activated simultaneously, as shown in Fig. 3.5(a). Although
this schedule can meet the deadline, its peak power consumption of dy + dy + d, causes
a problem wherein the battery voltage reaches the operation voltage before the battery
charge falls to zero. However, if the sensors are activated sequentially, some sensors will
miss the deadline. Therefore, we devised a method that sometimes activates sensors si-
multaneously and sometimes activates them sequentially in order to meet each sensor’s
deadline (see Fig. 3.5(b)). This method can efficiently reduce the peak power consump-
tion to dy +d,. We show how to generate this kind of schedule to reduce the peak power
consumption in Chapter 4.

Generally, in each sensing data period Tp, after the sensor schedule execution time Tsg
that sensors are executed to obtain the sensing data, the sensing data should be collectively
sent to a base station periodically. In typical applications using sensing data, it is sufficient
that data from sensors can be obtained within some period (e.g. [24]). We assume the
duration required for data transmission is Tpr. There are many ways to transmit the

sensing data, and we will talk about that in the second part of this thesis. Moreover, a

23

C
iel
= L
S
>
(%]
g A
@]
- O—
GEJ i di
& v
< > time
ki
O T
T, T
Figure 3.4: Sensor Model
c Lx Ly Lz
S
g8 dctd+d,
E [
]
2 v oF
8 3 .
g 6 y 1
(%] 1
£s « Lo
/1 T T
! L time
bz di
(a)
S
[
S ot
c @ K-
8 2 [dxd, o, |0
T T K---
g “‘g d .'O-x y o
[a W 1
1 IY 1 I, /I’\tlme
T, I T, 7 1

Figure 3.5: Motivation example of sensor schedule

certain sleep time Ty, after all sensors were activated, is required to replenish the battery,
this can result in a recovery of the battery voltage caused by intermittent discharges which
is called recovery effect. This can result in an increase in battery life. However, the
recovery model is quite complicated because of it depends on battery types [16, p. 3.13].
We simplify the time usage model without taking consideration of 7pr and T,), and our

algorithms and simulations focus on power consumption by sensor activation.

24

Chapter 4
Sensor and Task Scheduling Algorithms

We devised three off-line algorithms for the purpose of reducing the peak power consump-
tion as much as possible. The first one uses the idea of EDF (Earliest Deadline First), and
hence, we call it the EDF Based Scheduling Algorithm (EDF-BSA). The second schedule
sensors dispersedly and try to schedule sensors below an average peak power consump-
tion, it is named the Uniform Distribution Scheduling Algorithm (UDSA). The last one
1s also based on EDF, and for the reason that its feature is “fill the blanks”, we called it
the Blank Filling Scheduling Algorithm (BFSA). This algorithm turns out to be the most
efficient for solving the problem. All three algorithms can be calculated off-line.

In chapter 3, we described the sensor scheduling problem for maximum utilization of

a battery used in a sensor node. To solve it, we make the following assumptions.

e Al: The sensor’s deadline L;, data acquisition time k;, and power consumption

constant d; are known a priori.

e A2: Each sensor must be able to operate continuously; once activated, it does not
take breaks until it has finished its task.

Moreover, we make the following assumptions for simplicity.

e A3: Power consumption which consumed by CPU can be ignored.

e A4: Each sensor is independent; there is no precedence relations and no resource

constrains.

Let #, be a discrete time series where ;.1 —ty = At(k=0,1,...), and Az is a unit time, say
10 ms. Consider the time within a period. A period starts at time ¢, and the deadline and
the other times are relative to the start time. S(¢) is a set of sensors activated at time ¢, a
sensor o; is characterized by < L;, d;, k; > (i=0,1...N—1). We assume that a sensor o is

activated and deactivated at discrete times of 7' = t,, and Tdci = t,, respectively. The three

25

algorithms require the same input parameters, i.e., the sensors’ character set < L;,d;, k; >
and the number of sensors N, and they return the same output, i.e., the sensors’ activation
time 7,0 and deactivation time Tdo". Moreover, each period, a certain sleep time when all
of the sensors are inactive, is required to replenish the battery. For simplicity, this sleep

time will be ignored in the following algorithms.

4.1 EDF Based Scheduling Algorithm

In this algorithm, we intend to schedule sensor activation in a way such that each sensor

can meet its deadline based on EDF.

Algorithm 1: EDF Based Scheduling Algorithm
01 sort sensors by L; in increasing order

02 T = 1o TdGO =ty+ko

03 TN ' =Ly_y; T,V =TV —ky_y
04 fori=1toN-2

05 ifL-T)"'>k

06 T =T T) =T, +k
07 else
08 T =Li; I, =T — ki

On line 01, we sort sensors by L; in order to use EDF. We activate the first sensor at 7,
and the last sensor deactivates at its deadline on lines 02 and 03. From line 04 to line 08,
we activate the other sensors at or before the deadline of the previous sensor and deactivate
the sensors at or before their deadline. Figure 4.1 illustrates the procedure. In Fig. 4.1(a),
after setting sensor 0; 1, we set 0; between Tda"‘1 and L; if L; — Tdd"‘1 > k;; that is, there
is enough time to accommodate activation of o;. Since L; — Tdc"‘1 is longer than o;’s data
acquisition time k;, we can activate o; at the deactivation time of 0;_; to save more of the
time slot after sensor ;s deactivates for accommodating other sensors. However, in Fig.
4.1(b), the time L; — Tda"‘1 is not long enough to activate o; at 0; 1’s deactivation time

since o0;’s deadline is earlier than in case (a). Therefore, we must activate o; at L; — k; to

Table 4.1: Parameters of sensor schedule example

Op | O1 | O2
L|5]|6]8
k| 41313
d| 1|2 | 4

26

c
S L,
S
&
>
(%]
o
o
(&)
& i
= O,
O .
0 le p >le 7 » time
7,;.) i-1 Tda"l];{7, i Tdo'z
(a) case of L, —T;" >k,
c
o L,
t
%
&
2
c (o
o 1
o
> O
o
B le 2 > time
i-1 [>
TU 1 TJ TG,, ki Ta
a a d d

(b)caseof L, —T" <k,

Figure 4.1: Sensor activation of EDF-BSA

meet its deadline. The complexity of EDF-BSA is O(N) since the procedure is done once
for each sensor.

The following example illustrates how this algorithm works. We assume there are
three sensors to be scheduled (Table 4.1). Figure 4.2 shows that using the EDF-BSA,
we activate oq at 7y and deactivate o, at its deadline. Since L; — Tda0 < k1, o7 should be

deactivated at its deadline; therefore, it is activated at L; — ky, that is #3.

4.2 Uniform Distribution Scheduling Algorithm

We devise another algorithm UDSA (Uniform Distribution Scheduling Algorithm) which
attempt to schedule sensors below an average peak power consumption.

In UDSA, we calculate the average peak power consumption under the assumption
that sensor activations are uniformly distributed during one period, and UDSA schedules
sensor activation in a way sum of power consumption try to be below the average peak
power consumption. First, we sort sensors in an increasing order of L;. On lines 02 and
03, we calculate N,yer_ave as the allowed average number of sensors which are overlapped
if sensors are assumed to be executed in the uniformly distributed execution. dyyer_ave

is the average allowed value of d where sensors are overlapped. We introduce dyer_ave

27

d L0 L1 L2

5 1 ©r

1

f_ % o 7
o 1
0 | IO | |

to 6L [5 L s s (7 s]

t

Figure 4.2: Sensor activation by EDF-BSA

i Lo L1 L2
8 -
X
6 -
S Peak power over_ave

8 O .o | o/ e i

o b L L L e I

Figure 4.3: Sensor activation by UDSA

for the purpose of keeping sensors under this value as much as possible. Line 04 sets
the first sensor’s activation time at 79. For the remaining sensors, UDSA activates them
immediately preceding the sensor’s deactivation time (line 06). Line 08 and line 09 show
that if 0;’s execution cannot meet its deadline, that is Tdoi > L;. This algorithm attempt
to activates o; at time when power consumption sum of ¢; and 0; is not over dyyer_aves
where o; are all of sensors simultaneously activated at the time 70", m=i—1, m > 0,
in order to meet o;’s deadline (line 10). If line 10 cannot be satisfied, m decrease 1 in
line 12 for moving forward o;’s activation time to meet its deadline until the deadline can
be met. Although sometimes line 10 cannot be satisfied, i.e. it may cause d to exceed
dyver_ave> UDSA ensures the sensor meets its deadline. Thus, this “ border crossing” can
be allowed. Since UDSA loops N times twice, the complexity of UDSA is O(N?).

We shall use Table 4.1 and Fig. 4.3 to illustrate UDSA. dyyer_ave 18 calculated as a
boundary line that the overlap value of d in a time period should not go beyond. UDSA

activates sensor Oy at #y. If oy is activated at the immediately preceding sensor’s deadline,

28

Algorithm 2: Uniform Distribution Scheduling Algorithm
Variables: - Nyyer_ave: the average number of sensors allowed
to be active simultaneously
- dyver_ave: the average allowed overlap of d
01 sort sensors by L; in increasing order
02 Nover_ave — [Zki/LNfl—l
03 dover_ave - Zdl / (N / Nover_ave)
04 T =1 ; Tdco =19+ ko
05 fori=1toN—1
06 T, =T T) =T,"+k;
where Tdo“ is the latest sensor deactivation time in Op, ...0; |

07 m=i—1;

08 while T, > L,

09 T =T0m; Ty =T +k ;

10 if Yo cs(nom) di+di < dover ave and T < L;; wherem>0
11 break;

12 else m — —

it will miss its deadline. From line 07 to line 11, since the do+d1 < dyver_ave, 01 sShould be
activated at the activation time of oy. After locating oy, line 06 indicates that ¢, should
be activated at the latest deactivation time of the prior sensors, that is, Tdco. Moreover, 6
will not miss its deadline. This is the well-behaved case. We will show some simulation

results of more general cases later.

4.3 Blank Filling Scheduling Algorithm

BFSA is divided into two steps. The first step is to schedule sensors based on the proposed
algorithm EDF-BSA. This step yields ‘blank’ durations, where some sensors are allowed
to be simultaneously executed. The second step is to re-schedule the sensors’ active peri-
ods by shifting their activation times to the blank durations in order to reduce peak power
consumption. The blank duration is called LPCT (Lower Power Consumption Time). We
shift the activation time of a sensor to an LPCT to reduce peak power consumption.

The first step on line 01 calls the EDF-BSA function. The second step is from line
02 to line 15. Lines 03 and 04 indicate that for each time u,, where u,, is an activation or
deactivation time of a sensor in the revised time set U = {u, u1, ...}, BFSA calls a method
dy, = D(ug). D(t) = Lges() di calculates the overlap value of d in every T, and T,;
therefore, d,,, is the overlap value of d at a sensor’s activation or deactivation time u,.
Lines 05 and 06 select the maximum value of d,,, and pass the value of the maximum d,,

to djay. To reduce peak power consumption as much as possible, line 07 finds the sensor

29

Algorithm 3: Blank Filling Scheduling Algorithm
Variables: - flag : a flag for recording whether a sensor’s
activation time can be shifted or not
- U :aset of all sensor activations and deactivation time
in increasing order. U = {ug,uy,...}
- uq . the activation or deactivation time of a sensor,
where each u, € U
- dyygy - maximum overlap of d; the initial value is zero.
- C : the set of sensor shift candidates which is composed of
the peak power consumption
- ¢’ : a time point belonging to 7;
- t"": an optional time point
Functions: - EDF-BSA(): first step schedule provided by EDF-BSA
- D(t) = Ls,es() di: sum of sensors’ d values at time
01 EDF-BSA(T)",T,"); flag = true
02 while flag is true
03 for each u, c U

04 dy, = D(uy)
05 ifdy > dua
06 e = d,

decreasing order of d,,
08 for o, € C

09 find ¢’ such that V" € [¢',¢' + k;]: D(t") + d; < dyax
10 if ¢/ exist

11 T =1 TdG’ = T! + k; ; break;

12 else

13 do nothing

14 if all D(t”) +d; > dypax

15 flag = false

shift candidates C that consumed d,,,,.. However, C does not include the first and the last
sensor since shifting these two sensors would not result in an reduction in peak power
consumption. Furthermore, the sensor shift candidates are sorted in decreasing order of d
for the purpose of reducing the peak power consumption as much as possible at the earlier
shit procedure; that is, it shifts the sensor which has the largest value of d belonging to C
first. Line 08 and 09 find out if LPCT exists by checking whether a shift in sensors can
be accommodated, provided that the total power consumption is not beyond d,;,,,. Note
that due to a sensor’s continuity, one sensor cannot be shifted separately. Lines 10 to line
13 mean that if LPCTs exist, a sensor is shifted, but if there are none, a sensor will not be
shifted. The re-scheduling procedure on lines 14 and 15 stops if no more sensor shifting

candidates can be accommodated by the LPCT, provided that the total power consumption

30

d LO L1 L2

LPCT

S Peak power

2

1

o
0 I | I I >
to 6L [5 L s s (7 s

t

Figure 4.4: Sensor activation by BFSA

is under d,,,. Since BESA loops from O to N approximately three times, the complexity
of BFSA is O(N?).

Figure 4.4 shows an example of BESA using the parameters of Table 4.1. We use the
first step schedule of EDF-BSA as the input of BESA. In the second step from line 03 to
line 07, we calculate d,,,,, = 6 continues from time 5 to ts, and the candidate sensor that
needs to be shifted is sensor o7. On line 09, we find that o7 can be shifted to a position
between 7 and #5 as indicated by LPCT in Fig.4.2. Without loss of the sensor’s continuity
and aiming to decrease the second peak power consumption as much as possible, ¢/, as an
optimal activation time of sensor o7, is fixed at #,. Therefore, we can shift o7’s activation
time at #. After this shift, we cannot find new blanks to reduce the new peak power

consumption; hence, the scheduling procedure finishes.

4.4 Task Execution Scheduling Algorithm

As we mentioned before, a task is required to activate or deactivate sensors. In traditional
ways of task execution, a task 7 is executed continuously to activates and deactivates a
sensor ¢ as shown in Fig. 4.5(a). In order to reduce the power consumed by the tasks,
we assume that a task 7 executed within a certain time 7. is periodically executed, thereby
enabling us to activate or deactivate sensors as shown in Fig. 4.5(b). If the role of the tasks
is only to activate or deactivate sensors, the tasks do not need to be executed continuously
during the sensor execution since the task would cost more time and power if it is executed
continuously. Therefore, we assume that a task 7 to activate or deactivate one sensor
periodically is executed within a certain time 7. (Fig. 4.5(b)) and that a timer controls the
task execution frequency. However, the task should be able to handle a situation in which

several sensors are simultaneously activated or deactivated at the same time. We consider

31

5 E f
g I
g % A
2 2
S o § d, o,
g | | | | | | % v | | | |
£ t, 3 4 ts Ly 1 Igtime Tty t, ettt f, time
7 ki 7
t
2 _
2 g
- | 1 1 1 1 1 1 | \jL_) | | | |
by ty t, 4 t, L5 tg 1 f UMe by t, t, t; t, t5 1, 1, 1 tme
(a) (b)

Figure 4.5: Sensor and task execution model

two methods to solve this problem. The first method is to scale the clock frequency to
several times larger when the activation and deactivation times of several different sensors
are the same at a time point. Moreover, the supply voltage should be scaled together with
the clock frequency due to a specific DVES ratio. In the second method, instead of clock
frequency scaling, the task execution time scales to several times larger. For example, if
a sensor is activated at the activation or deactivation time of another sensor at time ¢, then
the clock frequency and the task execution time should be scaled two times larger in the
first and second method at time ¢, respectively. Both methods are considered to be more
energy efficient than continuous task execution.

Since tasks should have the capability to activate or deactivate sensors simultaneously
when they are to be executed periodically, we devised two task execution scheduling al-
gorithms to solve the problem. The first algorithm is named the DVFS-enabled periodical
task execution algorithm (DVFS-PTEA); it selects the clock frequency and supply voltage
and finds the scaling time point to schedule the task executions. In the DVFS concept,
the supply voltages are proportioned to the corresponding clock frequencies. The sec-
ond algorithm is called the execution time scaling periodical task execution algorithm
(ETS-PTEA); it scales the task execution time when task scheduling problems occur.
Both DVFS-PTEA and ETS-PTEA require a sensor activation and deactivation time set
U = {up,uy,...} as input. In DVFS-PTEA, the output is the scaling time point and the
supply voltage and clock frequency set, which can be looked up by using a look up table
based on the specific DVES ratio. In ETS-PTEA, the output is the scaling time point and
the task execution time at the scaling time point.

In DVFS-PTEA, a task is periodically executed within a certain time #,. to activate or

deactivate a sensor. We assume the clock frequency f is required to execute the task. In

32

d LO L1 L2 d L0 L1 L2

81 81 81

;: (75: Z: LPCT

51 5{__Peakpower | 9owerave 5] Peak power
3] 4 I 317 / s

f‘ % o, o, %/ v o,

0 S ‘ to SECI. to : .l 1
Lt Lttt t s L L Lt Gt s 1 tz t; 1y ts s t7 ts
(a1) EDF-BSA (b1) UDSA (c1) BFSA

frequency frequency frequency
2f]
RHARAAHNE, HHHHHHHH HHHHHHHH

ZLO tl t2 t3 t4 tS t6 t7 t8 tO tl t2 t3 t4 tS t() Z7 ZS tO tl t2 t3 t4 tS ZO Z‘7 t8
(a2) DVFS-PTEA with EDF-BSA (b2) DVFS-PTEA with UDSA (c2) DVFS-PTEA with BFSA

frequency frequency frequency

2f] 2f

1WHHHHHHHH JHH R0 E "RARRAIARA

lo t] tz t3 t4 15 te t7 tx to t1 tz t3 t4 ts t6 t7 ZS to tl tz ts t4 ts te t7 ts
(a3) ETS-PTEA with EDF-BSA (b3) ETS-PTEA with UDSA (c3) ETS-PTEA with BFSA

Figure 4.6: Sensor schedule and task schedule of proposed method

the task execution scheduling, DVFS-PTEA finds the time point at which w sensors were
activated or deactivated simultaneously; then it scales the clock frequency to w f and
scales the supply voltage due to a specific DVES ratio. During the rest of the execution
time, the task keeps on executing at the clock frequency f. In ETS-PTEA, instead of
scaling the clock frequency and supply voltage, the execution time of the task scales to
w *t., where w sensors were activated or deactivated simultaneously.

Let us show an example to illustrate the task execution scheduling together with the
sensor scheduling. The example uses the sensor parameter set shown in Table 4.1 in
section 4.1. Figure 4.6 shows the sensor schedules and the task schedules of our methods.
Figures 4.6(al), (bl), and (c1) show the sensor schedule produced by the three sensor
scheduling algorithms. Figures 4.6(a2), (b2), and (c2) show the task execution schedule
of DVFS-PTEA. In Fig. 4.6(a2), clock frequency does not need to be scaled to a higher
frequency since there are no simultaneous sensor activations or deactivations in EDF-
BSA. However, In UDSA (Fig. 4.6(b2)), the clock frequency scales to 2f at 7o and 24
since 0y and o7 are activated simultaneously and oy deactivates at the activation time of
0>. Likewise, in BFSA (Fig. 4.6(c2)), the clock frequency scales to 2f at t5. Compared
with scaling the clock frequency in DVES-PTEA, ETS-PTEA scales the task execution
time at the same scaling time point of that in DVFS-PTEA in Figs. 4.6(a3), (b3), and (c3).

33

Table 4.2: Evaluation of task scheduling algorithms in the case of three sensor scheduling
algorithms

EDF-BSA(d) | UDSA(e) | BFSA() d:e:f
Continuous(a) 20Cf? 29aCf? 20Cf? 1:1.32:1
DVFS-PTEA(b) | 0.8aCf> | 0.94aCf’ | 0.87aCf> | 1:1.75:1.09
ETS-PTEA(c) 0.8aCf? 0.82aCf> | 0.81aCf> | 1:1.03:1.01

a:b:c 27.5:1:1 35.4:1.15:1 | 27.2:1.07:1 NULL

Moreover, the sensor scheduling algorithm that needs to scale the clock frequency or task
execution time most often is UDSA, the second most often is BFSA, and the least often
is EDF-BSA.

We compare the energy consumed by task executions using DVFS-PTEA(b) and
ETS-PTEA(c) with that consumed by continuous task execution(a) in the cases of EDF-
BSA(d), UDSA(e) and BFSA(f), and show the ratio of the energy consumption of each
case in table 4.2. We calculate the consumed energy by using the formula E = P«t, where
E, P and t represent the consumed energy, consumed power, and task execution time, re-
spectively. Moreover, we use the formula P = C « V2 x f [7] to calculate the consumed
power. Here, C is the efficient switch capacitance, V is supply voltage, and f is clock fre-
quency. Since the clock frequency varies along with the supply voltage linearly, f = oV
holds, where « is a constant. Therefore, E = C * f3 xt* @ holds, we can calculate and
compare the energies consumed by the task in EDF-BSA, UDSA, and BFSA by using
this formula. In the evaluation, since the data acquisition frequency of environmental sen-
sors in our system is around 1 second to 1 minute, we assumed in At = 10s, the tasks are
periodically invoked 100 times. In each period, a task is executed in 1ms and in sleep in
99ms. Moreover, when the clock frequency is scaled to n* f or the task execution time
is scaled to n = t., the current frequency or task execution time should last for 10 rounds
and after that scale to f or 7. to make sure there is enough time to activate or deactivate
n sensors at the same time. Table 3.2 shows the results of the evaluation of DVFS-PTEA
and ETS-PTEA (the measurement time is in second). It is clear that ETS-PTEA is the
most energy efficient solution for scheduling tasks and continuous task execution is the

least efficient.

34

Chapter 5
Simulations

We developed a simulator to evaluate the battery life managed with each of the three
algorithms. First, we give a description of our simulator. Then, we show simulation

results about the three algorithms.

5.1 Characteristics of the Simulator

The simulator was made to compare battery lives with SA, where SA stands for simulta-
neous activation and activates all of sensors at the same time. As we mentioned in chapter
3, the time usage of Tpr and Tg,,,, were not taken into consideration in the simulations.
The input includes the sensors’ character set < L;,d;, k; >, number of sensors N, and the
discharge current of each sensor. The output returns the remaining battery charge and
remaining battery voltage for each algorithm over time. In the simulation, we measured
the battery charge and voltage in order to see how long we can extend battery life. We
assumed a button battery with an initial battery charge of 620 mAh and battery voltage of
3 V. The operation voltage of the battery was 2.5 V.

When a sensor is chosen, the power consumed by the sensor is fixed. For example,
suppose three sensors have been scheduled. The total power consumption is the same in
one period, no matter how the sensors were scheduled.

Therefore, we calculated the power consumption in one period by using

Cdrop = Zliki

where /; is the operating current of sensor 0; and k; is the sensor’s data acquisition time.

The remaining battery charge at time ¢ can be calculated in

C(1) = Co(t =Tp) = Carop

35

where T}, is the time of one period and C,(t — Tp) is the remaining battery charge one pe-
riod before. This formulation means that the remaining battery charge at time ¢ is equiv-
alent to the battery charge one period before minus the power consumed by all sensors in

one period. Moreover, we approximated

Udmp = Zdtzk/w

to calculate the voltage drop in one period, where w is a constant obtained by the experi-
ment described in chapter 3. We explain why we use this formula. Since the voltage drop
is difficult to formulate for it depends on many chemical and physical factors and there is
no standard for calculating the voltage drops of different systems. Instead, we used the
voltage drop rules obtained in the experiment described in chapter 3 where voltage drop is
in proportion to the square of d. Thus, the formula of voltage drop used in the simulator
is a approximate formula. Using the above Uyy,),, we calculated the remaining battery
voltage by using
Us(t) = Uplt = Ty) ~ Usrop

where U, (1) and U,(r — Tp) are the remaining battery voltage at time ¢ and the remaining

battery voltage one period before, respectively.

5.2 Simulation Results

We will show some simulation results of three kinds of d value in order to evaluate the
effectiveness of our three algorithms on SA. In SA, the power consumption is the largest.
The three kinds of d include the increasing order of d, decreasing order of d and random
order of d. Since the operating current of sensors scales from less than 1uA to near
100uA, we took I to be the operating current shown in Table 5.1 through Table 5.7.

We show six simulation results with the same sensor parameter set but different d

which is different in orders.

36

Table 5.1: Sensor parameter set in simulation 1

Op | O1 | O2

L 5|17 |10

k 4 15]5

d 1123
IwA) [555

—=-SA —e—EDF-BSA —=¥—UDSA —&—BFSA

battery voltage (V)

600
1200
1800
2400
3000
3600
4200
4800
5400
6000
6600
7200
7800
8400

operation time (hour)
Figure 5.1: Sensor scheduling simulation 1

In the first simulation, we use the sensor parameter set shown in Table 5.1. Figure
5.1shows simulation results of the three algorithms, where 4 is in an increasing order. In
this case, when the battery voltage dropped to the operating voltage, EDF-BSA, UDSA
and BFSA can extend battery life by about 1.7 times, 2.1 times and 2.1 times, respectively
by comparing the 4200 hours sensor lives of SA. Moreover, we observed UDSA has the
same effectiveness as BFSA in this increasing order d case, and EDF-BSA has a worse

effectiveness comparing with UDSA and BFSA.

37

Table 5.2: Sensor parameter set in simulation 2

Op | O1 | O2

L 5|17 |10

k 515 | 4

d 3121
IwA) [555

—=-SA ——EDF-BSA —UDSA —&—BFSA

RN
R

AN
X

N
©

N
00

battery voltage (V)
N
3

N
o)l

N
U

600
1200
1800
2400
3000
3600
4200
5400
6000
6600

4800

operation time (hour)

Figure 5.2: Sensor scheduling simulation 2

In the second simulation, d has a decreasing order shown in Table 5.2. A simulation
result (Fig. 5.2) shows that EDF-BSA, UDSA and BFSA can extend battery life by about
1.6 times, 1.4 times and 1.6 times, respectively by comparing with the 4200 hours sensor
lives of SA. In this simulation, BESA has the same effectiveness as EDF-BSA since d
is in decreasing order and there is no LPCT to be filled in, thus, line 02 through line 15
in BESA are not executed. In this case, BFSA is the same as EDF-BSA. Moreover, In
UDSA, it causes a “border-crossing” phenomenon in order to meet each sensor’s deadline,

therefore, UDSA has a worse effectiveness than BFSA and EDF-BSA.

38

Table 5.3: Sensor parameter set in simulation 3

Op | O1 | O2

L 5|17 |10

k 4 15]5

d 1|32
IwA) [555

——=-SA —@—EDF-BSA —«UDSA —4—BFSA

N
©

N
o

battery voltage (V)
N
3

N

2.6

2.5 1
o o o o o o o o o o o o o o
(@] o o o o (@] o o o o (@] o o
© (@\] 0] (e} (o] 0] o O ~N o0
— — o~ ™ on < < LN (o) \o] M~ M~
operation time (hour)

Figure 5.3: Sensor scheduling simulation 3

From the third to the sixth simulation, we conduct simulations with random order of
d. In the third simulation, the sensor parameter set with a random order of d is shown in
Table. 5.3, and simulation result is shown in Fig. 5.3. It shows that EDF-BSA, UDSA
and BFSA can extend battery life by about 1.6 times, 1.9 times and 1.9 times, respectively
by comparing with the battery life of SA. UDSA has the same effect as BFSA in this
simulation, this is because UDSA has the same schedule as BESA, and we say this is the
best case of UDSA.

39

Table 5.4: Sensor parameter set in simulation 4

Op | O1 | O2

L 5|17 |10

k 51415

d 21113
IwA) [555

—-=-SA —e—EDF-BSA —=%UDSA ——BFSA

battery voltage (V)

600
1200
1800

400

00

600

00
4800
5400
6000
6600
7200
7800
8400

operation time (hour)

Figure 5.4: Sensor scheduling simulation 4

The fourth simulation uses the sensor parameter set shown in Table. 5.4. The sim-
ulation result (Fig. 5.4) shows that the battery life can be extended in about 1.9 times,
2.1 times and 2.1 times in EDF-BSA, UDSA and BFSA, respectively. UDSA has its best
case, and EDF-BSA performs well since its effect is close to BESA.

40

Table 5.5: Sensor parameter set in simulation 5

Op | O1 | O2

L 5|17 |10

k 51415

d 311 (2
IwA) [555

—-=-SA —e—EDF-BSA —%UDSA =4—BFSA

N
©

N
0

battery voltage (V)
X

2.6

25 T o B]|
o
o
<
LN

900
1800
2700
3600
4500
6300
7200
8100

operation time (hour)

Figure 5.5: Sensor scheduling simulation 5

The fifth simulation uses the sensor parameter set shown in Table. 5.5. The simulation
result (Fig. 5.5) shows that the battery life can be extended in about 1.9 times, 1.8 times
and 1.9 times in EDF-BSA, UDSA and BFSA, respectively. BFSA performs as good as
EDF-BSA, and UDSA performs worse than EDF-BSA and BFSA in this simulation since
the value of d in oy is large enough that there is no LPCT can be filled in for o7 and o5.

41

Table 5.6: Sensor parameter set in simulation 6

Op | O1 | O2

L 5|17 |10

k 515 | 4
d 2131
IwA) [555

—+=+SA —e—EDF-BSA —=¥UDSA =—4—BFSA

N
©

N
o0

battery voltage (V)
3

2.6

2.5

600
1200
1800
2400
3000
3600
4200
5400
6000
6600

4800

operation time (hour)
Figure 5.6: Sensor scheduling simulation 6

In the sixth simulation, we use the sensor parameter set shown in Table. 5.6. Fig. 5.6
shows the simulation result that the battery life can be extended in about 1.6 times, 1.4
times and 1.6 times in EDF-BSA, UDSA and BFSA, respectively. Since the same reason
in simulation five, BFSA has the same effect as EDF-BSA.

The above simulations show the results of all the proper sensor parameter set of differ-
ent order of d in a sensor node with three sensors. We show the overall simulation results
in Fig. 5.7, and we describe our observations.

Firstly, we observed that when d is in the random order, the effectiveness of UDSA is
between the effectiveness of which d is in the increasing order and the decreasing order.
When d is in the decreasing order and the random order, the value of }.; S(Tm) d; (line
10 in UDSA) tends to be larger than which d is in the increasing order since the earlier

sensors have larger d than the later. This causes a “border-crossing” more often than the

42

Operation time (hour) \A BFSA x UDSA @EDF-BSA

9000 |-

8500 |- '

8000 |- .
7500 |-

7000

6500 [~
6000 |-
5500 |-

5000 d's order
increasing random1 random2 random3 random4 decreasing

Figure 5.7: Overall simulation results

Table 5.7: Sensor parameter set in simulation 7

Op| O1 | O | O3 Oy

L 517|810 | 12

k 4151315 5

d 1 1 |2 125]25
IwA) [2 [3[7]6]38

case of the increasing order of d because) G ES(Tom) d; +d; < dyyerave holds in few cases
at line 10 in UDSA. The more “border-crossing” UDSA has, the worse its effectiveness is.
Secondly, we observed that in the random order of d, BFSA’s effectiveness has the same
tendency as UDSA has, because LPCT in BFSA is smaller in the case of the random order
of d than the case of the increasing order of d. Lastly, we observed that the effectiveness
of EDF-BSA has no rules in accordance to d’s order since EDF-BSA depends on each
sensor’s deadline not values of d.

Moreover, in others simulations, we observed that our algorithms can effectively ex-
tend battery lives more than 3 times at most. For example, by using the sensor parameter
set shown in Table 5.7, Fig. 5.8 shows that BFSA can extend battery life about 3.27 times.

43

battery voltage (V)

2.9

2.8

2.7

2.6

2.5

—=-SA —8—EDF-BSA —%—UDSA —&—BFSA

I e Y M N 7 N Y I I N | J

o o o o o o o o o o o o o

o o o o o o o o o o o o

(V] o~ o] < o O o 0 < o \e) o~

— i o~ m (e8] < < ¥p) (o] Vo] N~
operation time (hour)

Figure 5.8: Sensor scheduling simulation 7

44

Part 11

Energy Efficient Wireless

Communication

Chapter 6

Related Works

In this chapter, we introduce several issues related to wireless communications, and show
some of the related works which attempted to solve those issues. As we mentioned in
section 1, in a battery powered WSNs, electric power is mainly consumed by wireless
communications through sensors in the nodes and by CPUs running programs to control
the sensor nodes. Since wireless communication is the dominant power consumer [25] in
sensor nodes, consuming up to approximately 80% of their power [26], the wireless com-
munication power should be minimized to improve their energy efficiency. In this thesis,
we focused on three topics which need to be solve in order to reduce energy consumed by
wireless communications in a collaborative manner.

As soon as a sensor node obtains sensing data, it should transmit these data to the base
station directly or via other nodes by using a specific wireless communication technology
such as ZigBee. In wireless communications, energy consumption is mainly affected
by communication distance and the size of transmitted data, especially, communication

distance is the crucial component since the energy consumption equation refers to
E;=ad*+b (6.1)

where d is communication distance, a and b are positive constants, and 2 < o < 6 due to
different path loss model a WSN utilized [27][28]. For example, o = 2 in free space
model, o = 4 in two-ray model, and o = 2 to 6 in shadowing model. Therefore, it
is essential to utilize an energy aware data transmission routing in order to avoid the
extra energy consumption caused by long communication distance. Generally, direct data
transmission may consume more energy if the distances between sensor nodes and base
station are too long [29]. Therefore, if the communication distance is long, a solution for
avoiding high energy consumption by applying a short communication distance route is

required.

46

Another problem existing in WSNs is the energy hole phenomenon [27], in which
it is known that a node terminates quicker than the other nodes if it relays data more
often than the others. This is because multi-hop data transmission is usually used in a
data communication route in order to reduce communication distance. And nodes which
play the role of internal nodes (data-relaying nodes) consume more energy than the others
since they relays data from more nodes than child nodes in the topology. Therefore, the
energy hole problem may produce non-uniform energy consumptions in the WSN, as a
result, internal nodes terminate quicker than other child nodes, and the child nodes have
to find another internal node to relay their data, which bring a short lifetime for the entire
network. In view of extending the lifetime by judicious communication route selection, it
is desirable to solve the energy hole problem.

Moreover, a fault tolerance problem that do not directly affect the energy consumption
of wireless communications but can truly affect the entire network lifetime exists in a
WSN. In many applications, a WSN is deployed in harsh environments such as in a forest
or around a volcano, where sensor nodes may be damaged. In addition, sensor nodes may
also fail due to permanently interrupted wireless communication or hardware crash down,
such as breakdown in on-board electronics. In this situation, network connectivity will be
damaged, and left part of the network uncovered. Therefore, it is important that a WSN
is able to tolerate such faults.

In the following of this chapter, we introduce some related works which attempted to

solve these problems respectively.

6.1 Energy Efficient Routing Approaches

6.1.1 Energy Efficient Routing Algorithms

Energy consumed in wireless communication is affected by two main factors; the first
is the amount of data and the second is the communication distance. Apparently from
equation 6.1, a communication route which can shorten the communication distance is
preferred. Generally, there are two ways to relay data from a source node to a destination
node or a base station, they are direct data transmission and multi-hop data transmission.
Since direct data transmission consumes more energy due to a longer communication
distance, multi-hop data transmission is usually used in wireless communications. In an
energy aware multi-hop WSN which all the data of sensor nodes are required to be sent
to a base station, sensor nodes should be selected to a route by an energy efficient method
according to equation 6.1. In this section, we introduce some famous energy efficient

routing algorithms.

47

Some work on minimizing the amount of data has had to focus on how to gather data
effectively such as the sensor protocol for information via negotiation (SPIN) [30], which
takes into consideration the data negotiation between nodes to eliminate redundant data
and COUGAR [31], which uses declarative queries to abstract query processing from
the network layer functions and utilizes in-network data aggregation to conserve energy.
However, this thesis focuses on reducing the communication distance based on network
architecture to achieve energy efficiency, and we introduce some energy-efficient commu-
nication protocols that focus on shortening the communication distance.

LEACH [29] is known as a famous energy-efficient protocol for forming clusters that
minimizes the transmission routes and amounts of data. A small number of sensor nodes
in the sensor network in LEACH are divided into clusters where individual sensor nodes
are selected as cluster heads in a self-organizing manner. The cluster heads collect the
sensing data from each node in the cluster and aggregate them into one single data group;
after the data are aggregated, they are sent from the cluster heads to the base station.
However, Heinzelman et al. found that the nodes that were selected as cluster heads
quickly expired, which terminated the lifetimes of their clusters. Thus, LEACH used
randomization to rotate the cluster heads to prevent cluster heads from quickly terminating
and its wireless communication cost could be reduced as much as eight times compared
with direct transmission.

Lindsay and Raghavendra proposed further improvements to LEACH in [32] by taking
advantage of each sensor node only communicating with its closest neighbors, and only
one designated sensor node sending aggregated data to the base station in each round. This
approach could be used to distribute power consumption evenly among sensor nodes in a
WSN. First, PEGASIS constructed a chain to determine which node should be transmit-
ting or receiving data from which node. Since nodes on the chain could not be revisited,
the distance to their neighbors increased. Moreover, the chain should be reconstructed in
the same manner when a node terminates. PEGASIS gathers data in each round after the
chain has been constructed. Each node receives data from one neighboring node, aggre-
gates these with its own sensing data, and transmits the sensing data to other neighboring
nodes on the chain. Finally, a leader node receives all the sensing data from the others,
aggregates these data with its own data, and transmits one message to the base station.
The simulation results indicated that PEGASIS outperformed LEACH by about one to

three times.

48

6.1.2 Minimum Spanning Tree Routing

Another branch of researches attempted to minimize communication distance by using
graph-theoretic structures. Considering a WSN as a graph G = (V,E), where V and E
are vertex set and edge set, respectively; hence, sensor nodes and communication link be-
tween nodes can be considered as vertexes and edges, respectively. Therefore, forming a
data communication route has the same meaning of generating a spanning tree in a graph
since a spanning tree may include all vertexes in a graph. Moreover, a minimum spanning
tree (MST), which contains all the nodes and whose sum of edge lengths is minimized,
is beneficial for wireless communication routes requiring minimized communication dis-
tance. It can be constructed using the algorithms made by Prim, Kruskal and Dijkstra
[33].

MST-PRIM(G,w,r)

01 foreachuc Q

02 do key[u] <— o

03 m[u] < NIL

04 key[r]+ O

05 Q<+« V(G)

06 while Q=#£0

07 dou <+ EXTRACT-MIN(Q)

08 for each v € Ad j[u]

09 doif v € Q and w(v,u) < key|v]
10 then 7[v] < u

11 key[v] < w(v,u)

In Prim’s algorithm [33], the spanning tree starts from an arbitrary root vertex r and
grows until the tree spans all the vertexes in V. At each tree growing step, a light edge is
added to tree A that connects A to an isolated vertex of G4 = (V,A). This rule adds only
edges that are safe for A (a safe edge for A is an edge (u,v) not in A). Prim’s algorithm is
shown in MST — PRIM(G,w,r). In the pseudo code, the connected graph G and the root r
of a minimum spanning tree to be grown are inputs to the algorithm. During execution of
the algorithm, all vertexes that are not in the tree reside in a min-priority queue Q based
on a key field. For each vertex v, key[v] is the minimum weight of any edge connecting
v to a vertex in the tree. key[v] = oo means there is no such edge. Field 7[v] names the
parent of v in the tree. During the algorithm, the setAisA = {(v,x[v]:ve V —{r} — 0}.
When the algorithm terminates, queue Q is empty, the minimum spanning tree A for G
isA={(vx[v]:veV—{r}}. We show how Prim’s algorithm works. Lines 1-5 set the
key of each vertex to oo (except for the root, whose key is set to 0 so that it will be the

first vertex processed), set the parent of each vertex to NIL, and initialize the min-priority

49

© ®

(1) An weighted (2) Loop 1: A={a, d} (3) Loop 2: A={a, d, f}
undirected graph G, r=a

(@ @
®© @ ©
© W © W

(4) Loop 3: A={a, d, f, c} (5) Loop 4: A={a, d, f, c, b} (6) Loop 5: A={a, d, f, c, b, e}

Figure 6.1: Execution of Prim’s algorithm

queue Q to contain all the vertexes. The algorithm maintains the following three-part loop
invariant:

Prior to each iteration of the while loop of lines 6-11,
. A={(vzv]:veV—-{r} -0}
2. The vertexes already placed into the minimum spanning tree are those in V — Q

3. For all vertexes v € Q, if m[v] # NIL, then key[v] < oo and key[v] is the weight of a
light edge (v, [v]) connecting v to some vertex already placed into the minimum

spanning tree.

Line 7 identifies a vertex u € Q incident on a light edge crossing the cut (V — Q, Q) (with
the exception of the first iteration, in which u = r due to line 4). Removing u from the
set Q adds it to the set V — Q of vertexes in the tree, thus adding (u, [u]) to A. The for
loop of lines 8-11 updates the key and 7 fields of every vertex v adjacent to u but not in
the tree. The updating maintains the third part of the invariant. The complexity of Prim’s
algorithm is O(|E|1g|V]).

Figure 6.1 shows the execution of Prim’s algorithm for a six-vertex graph G. Figure
6.1(1) shows an weighted undirected graph, we assume the root of minimum spanning tree
A is node a. According to Prim’s algorithm, the lightest edge crossing the cut (V — Q, Q)

50

should be selected to the tree. So in loop 1 in Fig. 6.1(2), the light edge crossing the cut
are edges (a,b), (a,c) and (a,d), and the lightest edge among them is (a,d), hence, (a,d)
is selected to tree A. Same procedures are applied in loop 2 to loop 5 in Fig. 6.1(3)-(6)
until the minimum spanning tree is formed in Fig. 6.1(6).

Other minimum spanning tree algorithms include Kruskal’s algorithm and Dijkstra’s
algorithm. Kruskal’s algorithm [33] finds a safe edge to add to the growing tree by finding
all edges that connect any two subtrees in the tree: an edge (u,v) of least weight. Tt is
different from Prim’s algorithm in that its tree growing procedure starts from an edge with
least weight in the graph, contrarily, an arbitrary root in prim’s algorithm. The complexity
of Kruskal’s algorithm is O(|E|1g|V|). Dijkstra’s algorithm [33] solves the single-source
shortest-paths problem on a weighted directed graph. Dijkstra’s algorithm maintains a
set S of vertexes whose final shortest-path weights from the source s have already been
determined. The algorithm repeatedly selects the vertex u € V — § with the minimum
shortest-path estimate, adds u to S, and relaxes all edges leaving u. The complexity of
Dijkstra’s algorithm is O(|E|+ |V]|1g|V]).

6.2 Energy Hole Aware Approaches

As we mentioned before in this chapter, energy hole problem is known as the uneven
energy depletion phenomenon in WSNs, and it is critical to be solved. In [27], the authors
investigated theoretical aspects of the energy hole problem. The author assume an energy
consumption model of E = d% + ¢, where d (d < t,) is the transmission distance, o >
2 is the power attenuation, c is a technology-dependent positive constant, and 7, is the
minimum transmission range of sensors. The authors found that, in a sink based WSN, for
o > 2, all sensors whose distance to the sink is min{t,, (%) é} should transmit directly
to the sink. Moreover, when o > 2, non-uniform energy consumption can be prevented by
judicious system designs, such as placing data sinks at strategic locations and adjusting the
network radius around the sinks. The authors also stated that in such a system the energy
expenditure is balanced across the network, which means that judicious system design
can result in uniform energy consumption among the sensor nodes. Another solution,
reported in [34], was to attempt to mandate the sinks to move around in such a way that
some load balancing is obtained across the deployment area. In [35], the authors proposed
another solution in which the number of nodes in each corona is regulated and the ratio
between the node densities in two adjacent coronas is derived to mitigate the energy hole
problem.

Several recent studies investigated energy efficient routing and proposed methods for

solving the energy hole problem [36] [37] [38]. Liu surveyed various problems in WSNs

51

including the energy hole problem and routing problems and introduced representative
methods for solving them [36]. Tanessakulwattana et al. proposed improving energy ef-
ficiency and solving the energy hole problem by enabling each node to send packets to
neighbor nodes in different proportions so as to more evenly distribute energy consump-
tion among the nodes [37]. In [38], Jun et al. proposed solving the energy hole problem
by enabling the nodes with more residual energy to directly communicate with the sink
by utilizing cooperative transmission (CT) for range extension. Our work is different in
that we propose methods not only to solve the energy hole problem but also to reduce
total energy consumption and to adapt the WSN with random node distribution which are

not mentioned in the above studies.

6.3 Fault Tolerance Approaches

Some researchers focused on enhancing the fault tolerance of data communications. There
are two methods for handling the fault tolerance problem [39]: (1) proactive approaches
that attempt to provision resources in the network topology to tolerate node failures, and
(2) reactive approaches that attempt to tolerate node failures through real time restoration
of lost connectivity. In this thesis, we focused on the proactive approach. There are two
variants to the proactive approach. In the first, fault tolerant topologies are formed at the
time of deployment. We did not consider this approach because WSN nodes in infras-
tructures such as bridges should be deployed at fixed positions. In the second, we form
a k-vertex connected (referred to as k-connectivity) WSN, or designate backup nodes for
critical nodes in the network. A k-connectivity network has a k — 1 fault tolerance, which
means it can tolerate the failure of up to kK — 1 nodes [40].

An algorithm aimed at reducing communication energy while preserving network con-
nectivity was proposed by Li and Hou [41]. They presented a centralized algorithm called
the fault-tolerant global spanning subgraph (FGSSy), which was based on Kruskal’s al-
gorithm. Different components are iteratively merged until only one k-connected com-
ponent remains. A localized algorithm called the fault-tolerant local spanning subgraph
(FLSSy) was based on FGSSy, and proposed to control the topology. The authors showed
that FGSSy and FLSSy can preserve k-connectivity and minimize the maximum trans-
mission power of the network. Moreover, F'LSS; maintains bi-directionality for all links
in the topology. Li et al. investigated the minimum transmission range that guarantees
k-connectivity with a high probability [42]. They also presented a localized method for
controlling the network topology that was based on the Yao structure and preserves k-
connectivity. Jorgic et al. proposed an alternative fault tolerance method that uses local-

ized algorithms to detect the critical nodes and links [43]. Other works have attempted to

52

generate k-connectivity, including [44, 45, 46].

Other proactive approaches designate spares for critical nodes, which act as cut ver-
texes in the network topology. The simplest way to achieve this is to place redundant
nodes that accompany the critical nodes. However, if all the nodes serve the application,
the spare nodes must be selected from the active nodes. In [47], Vaidya and Younis pro-
posed NORAS to select spare nodes within the 2-hop neighborhood of a failed critical
node. If non exist, the search widens to include more distant nodes. When a critical node
fails and is detected, the designated spare nodes travel to replace the critical node, or a
series of cascaded relocations on the shortest route between the critical and selected spare
nodes are triggered to split the travelling distance. In [48], the authors proposed PADRA,
which identifies a connected dominating set for the WSN. PADRA designates a failure
handler to each critical node in case it fails. An ideal handler will be a dominatee neigh-
bor of the critical node that can simply replace the critical node. In our approach, we
balanced the energy efficiency, energy hole problem, and fault tolerance to obtain reliable

energy efficient wireless communications.

53

Chapter 7

Energy Hole Aware Energy Efficient
Routing Algorithms

7.1 Preliminaries and problem Definitions

In this thesis, we assume that in a 100 meter radius circular network, a random number of
homogeneous sensor nodes were uniformly distributed in random positions and the base
station is located in the center of the circular network as shown in Fig. 7.1. Moreover,
the node positions and the distances between nodes are known to the base station by a
direct message sending from nodes after they are distributed. Since the maximum com-
munication distance of sensor nodes that use ZigBee device is 100 m [49], this topology
ensures that each node in the WSN can reach the base station. Furthermore, we assume
that the base station is always powered by a stable power source and therefore the energy
consumed by the base station is not included in the wireless communication. We use a
free space radio propagation model to calculate the transmitting and receiving costs for a
k-bit message at a distance of d as:
Transmitting:
Er, (k,d) = Eyjoc k+ Eamp* kx d* (7.1)

Receiving:
Eg (k) = Ecec ¥k (7.2)

which are the same as those for LEACH [29], where E,;.. = 50nJ /bit to run the transmit-
ter or receiver circuitry and &,,,, = 100pJ /bit / m? to run the transmit amplifier. Since we
only focus on extending the lifetime of WSNs by making efficient routing algorithms in
wireless communications, we ignore other energy consumptions such as those in CPUs
and sensors. Additionally, we assume that each node has 2000 bits of data to send, as in

[29] and [32], and that the sending data size is always the same in each node. Therefore,

54

Figure 7.1: Wireless sensor network topology.

Line 4

Line 3
Line 2

Line 1

1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Node termination percentage

Network lifetime (communication rounds)

Figure 7.2: Algorithms’ performance for different WSN lifetime definitions.

the total energy consumption of node x is E(x) = E,(k,d) + Eg, (k) if x is an internal node
and E(x) = E7,(k,d) if x is a leaf node. The energy consumption of the entire network is
Egm =Y E(x).

In this section we will show two problems needing to be solved. First, we define net-
work lifetime and node lifetime before showing the two problems. In a battery powered
WSN, the network lifetime is defined as the number of communication rounds till o%
of sensor nodes terminate, where « is specified by the system designer [50]. The node
lifetime is defined as the number of communication rounds from the first sensing to the
last sensing until the initial battery energy of the node is completely consumed. To ex-
tend the lifetime of networks, we should consider cases with different values of « in the

network lifetime definition and choose different strategies based on the network lifetime

55

definition. If a high sensor node termination percentage is acceptable in the definition, it
means that the WSN can work even if only a small amount of sensor nodes remain work-
ing. On the other hand, if a low node termination percentage is required, it means that
most of the sensor nodes must remain working to provide the WSN functions. Figure 7.2
shows the network lifetime images of four different wireless communication algorithms
as depicted by four different lines. These were obtained in our preliminary simulation
experiences, where the x and y axes show the node termination percentage and network
lifetime, respectively. Line 1 shows the lifetime image of direct data transmission where
data are directly transmitted from each node to the base station. Line 2 shows the life-
time image obtained by using a better algorithm, which could be LEACH, PEGASIS, or
PRIM. It can be seen that most of the time, the performance shown by line 2 is better than
that shown by line 1. This indicates that when attempts are made to increase the lifetime
of the short lifetime nodes, the lifetime of the long lifetime nodes decreases. This is due
to new data communication relations between nodes being established as a result of the
network routing reconstruction required for increasing the lifetime of the short lifetime
nodes. Network routing reconstruction is defined as altering the data transmission path
of the nodes in the network for the purpose of extending the node lifetime and network
lifetime. We attempt to create new wireless communication routing algorithms that can
obtain network lifetime images like those shown by line 3 and line 4 to meet the require-
ments of different network lifetime definitions. However, network routing reconstruction
is required to create a uniform WSN lifetime such as that shown by line 4, i.e., to solve
the energy hole problem. This is because a lifetime image like line 4 can only be obtained
by network routing reconstruction since, as demonstrated in [27], there is no way to avoid
all energy holes by using only one route when applying a wireless communication model
such as the one we use here (equations 7.1 and 7.2). On the other hand, network routing
reconstruction is not required in creating a lifetime image like line 3 since such an image
can be obtained by judicious communication route design.

First, we consider how to create line 3 to adapt to a situation where network lifetime is
defined by a high node termination percentage without network routing reconstruction. In
order to extend the lifetime of networks, we should minimize the energy consumption of
sensor nodes and avoid energy holes by using only one energy efficient route. The method
is to uniformly distribute the energy consumption of sensor nodes as much as possible by
minimizing the node energy consumed not only by sending but also by relaying data.
Taking the reduction of energy consumption for relaying data into account can reduce the
receiving energy of the energy hole nodes to solve the energy hole problem. Furthermore,
it can ensure that new energy holes will not be produced by the rise in energy consumption

of other nodes.

56

Second, we consider how to create line 4 to adapt to a situation where the network life-
time is defined by a low node termination percentage with network routing reconstruction.
In such WSNs, the node lifetimes are required to be almost the same (i.e., energy holes
must be avoided to obtain network lifetime as in line 4) so that the energy of long lifetime
nodes will not be wasted and the lifetime of short lifetime nodes will be increased by
sacrificing the long lifetime nodes. This solution requires a number of switching routes
that can be alternatively utilized with the efficient route to rest the energy hole nodes.

Consequently, we define the problems as follows:

1. A problem of finding an efficient communication route that can minimize the energy

consumption of sending and relaying data without network routing reconstruction.

2. A problem of finding switching routes that can uniformly distribute the energy con-
sumption of sensor nodes to avoid energy holes with network routing reconstruc-

tion.

Next, we present conditions for avoiding energy holes in a WSN. As the energy holes
are caused by unbalanced energy consumption among nodes, we focus on the energy
holes caused by data communications. Note that conditions at the application program
level, such as avoiding large energy consumption by application programs, are beyond

the scope of this thesis. Two conditions for avoiding energy holes are given here.

1. Routing construction viewpoint: Energy consumption should be balanced in relay-
ing data. This condition requires that every data-relaying node' relays the same
number of nodes as much as possible to balance the energy consumed by nodes in

relaying data.

2. Node lifetime viewpoint: The unbalanced remaining amount of energy in a node is
balanced if the amount of energy is unbalanced. This condition requires to equalize

the node lifetimes as much as possible.

7.2 Wireless Communication Route Construction

In this section, we explain how to construct an efficient wireless communication route
to solve the first problem. We first introduce a wireless communication graph and then

explain the algorithm and its properties.

In a tree route, the data-relaying nodes are referred to as internal nodes, and the nodes from which data
are relayed by the data-relaying nodes are referred to as child nodes.

57

7.2.1 Wireless Communication Graph

In this thesis the initial wireless sensor network, the number of which is N, can be de-
scribed as an undirected weighted graph G =< V,E >. Here, V ={0,...,N—1} is a
vertex set indicated by the sensor nodes and E is an edge set showing the data commu-
nication of two nodes. An edge in the graph is indicated by (i, j) € V. Since the data
sending between two nodes determines the direction of an edge, the wireless sensor net-
work graph becomes a directed graph. We let dir(i, j) denote that the direction of edge
(i,) is from i to j. In order to calculate the energy consumption of data communication
between two nodes i and j, we use the energy consumption metrics shown in equations
7.1 and 7.2 to define a nonnegative weight w(i, j) = E7, ; + ER,, ; associated with each
edge (i, j) € V with dir(i, j). Note that the notation E7;, ; is the transmitting energy of
node i and ER(W‘) is the receiving energy of node j. w(i,j) represents the total energy
consumed by the wireless communication between nodes i and j. Actually, the value of
w(i, j) is determined if the network topology is determined since its value only depends

on the distance between nodes i and j.

7.2.2 Energy Hole Aware Energy Efficient Communication Routing
Algorithm

In this subsection, we propose an energy hole aware energy efficient communication
(EHAEQC) routing algorithm to solve the first problem mentioned in Sec. 7.1.

Generally, EHAEC is based on the PRIM algorithm [33], which is an optimal algo-
rithm to find the “minimum spanning tree” for an undirected connected weighted graph.
What is different in EHAEC is that we involve a concept of “phony weight” in order to
avoid energy holes as much as possible in a tree route. Suppose that edges (y;,») with
direction of dir(y;,b) exist in a “minimum spanning tree” 7, y; € T and i € N. A phony
weight P(x,b) for b € T and x € V\T is defined as:

P(x,b) = y; Eg, (7.3)
The direction of edge (x,b) is dir(x,b). The phony weight P(x,b) is added to the w(x,b),
where edge (x,b) may connect an unconnected node x to a node b in the tree that has
already relayed data from other nodes. The idea of phony weight is to avoid a situation
in which one node relays data from a lot of nodes, in order to uniformly distribute the
energy consumed by sending and relaying data of all the nodes in the network. However,
the phony weight P(x,b) is not actually consumed in edge (x,) since it has already been

consumed by edges (y;,b). Next, we show an example of the effect of phony weight.

58

R
(@) TreeT (b) Tree T’

Figure 7.3: Phony weight.

Figure 7.3 shows a procedure of forming 7’ from T by adding a node c. In Fig. 7.3(a),
nodes a, b, and d were added to the tree 7. Since we next try to add node c to 7', we should
choose either route R1 or R2 to add it 2. According to the definition of phony weight, since
node b has already relayed data from node a, the other edges that may relay data to node
b should add the phony weight to themselves. In Fig. 7.3(b), assuming the phony weight
is 2, we have P(c,b) = Eg,,, =2 and P(c,d) = 0; therefore, w(c,b) =7 and w(c,d) = 6.
Due to the updated weight of the edge, route R2 is selected since w(c,d) < w(c,b); thus,

tree T’ is formed.

Algorithm 1: EHAEC(G,w,r)

01 Q< V(G)

02 foreachuc Q

03 key[u] < oo

04 m[u] < NIL

05 key[r] + 0

06 while Q # 0

07 u+ EXTRACT-MIN(Q)
08 A<« {(u,m[u)):veV—-r—0Q}
09 edge direction: dir(u, m[u])
10 for each v € Ad j[u]

11 for each s € Ad j[m[u]] —uand s € V\A,s # r,u # r,t[u] # r

12 P(s,m[u]) = Y ea Er(x, w[x]), where 7[x] = 7[u]

13 w(s, w[u]) = w(s, w[u]) + P(s, w[u])

14 if s € O and 7[s] = m[u] and key[s] is w(s, 7[u]) that in last round
15 key[s] <— w(s, m[u))

16 ifve Qand w(v,u) < key[v]

17 T[] < u

18 key[v] < w(v,u)

19 return A

EHAEC works in the following way. The required inputs are graph G of the WSN,

2 Actually, there are other routes to send node ¢’s data to BS, such as edges (c, BS) and (c,a). However,
since these edges have large weight, we ignored the two routes in Fig. 7.3

59

© ©

Figure 7.4: Explanation of EXTRACT-MIN(Q).

and root r (the base station) of G. The output returns spanning tree A, which avoids energy
holes as much as possible without reconfiguring the network. In EHAEC, all vertexes not
in the tree are stored in a priority queue, Q. The weight of each edge are calculated a prior.
Weight of an edge (v, u) is defined as w(v,u) = Er,, , + Er,,,, . For each vertex v, key[v] is
the minimum weight of any edge connecting v to a vertex in the tree. Field 7[v] indicates
the parent of v in the tree. Lines 1-5 of the algorithm are the initializations. While Q is not
empty, Line 7 extracts a vertex u € Q incident on a light edge crossing the cut (V — Q, Q)
(with the exception of the first iteration, in which u = r due to line 5)3, which means
it extracts a node u which should be add to the tree in the current loop. Line 8 stores
the parent-child vertex set in tree A. Line 09 defines the direction of edge (u, 7[u]). For
every vertex v that is adjacent to u but not in the tree (line 10), line 12 defines the phony
weight P(s, 7[u]) and line 13 updates the edge weight w(s, 7[u]) if vertex s is adjacent to
Adj[r[u]] — u, and vertexes s, u and 7[u] are not the root (line 11). Except for root r, if a
parent [u] is already connected to a child x, phony weight P(s, 7[u]) is defined to avoid
connecting another vertex s to 7[u| because this may cause an energy hole in vertex 7[u].
Lines 14 and 15 determine if key[s| should be updated. In Lines 16-18, for every vertex
v that is adjacent to u but not in the tree (line 10), if edge (v,u) has the smallest weight,
the key and 7 fields of every vertex v are updated. The updated key contains the vertex
which has the minimum weight edge that may be extract in the next loop. Finally, in
Line 19, EHAEC returns the spanning tree A. EHAEC has the same complexity as Prim’s
algorithm, which is O(|E|1g|V]).

Theorem 1 EHAEC constructs a communication route that has the least energy con-

sumption in sending and relaying data * in WSNs.

3We use Fig. 7.4 to explain EXTRACT-MIN(Q). Supposing vertexes a and b are in the tree. Hence,
0 ={c,d} and V — Q = {a,b}. The black curve indicates the idea of cut (V — Q,Q). Since EXTRACT-
MIN(Q) extracts a light edge crossing the cut, vertex c is extracted because edge (a,c) is the light edge
among edges (a,c), (a,d), (b,c) and (b,d).

“Nodes that can send and relay data are limited to the internal nodes since a leaf node can only send
data.

60

Proof: The theorem means the following: assuming that tree 7 with n(n > 1) nodes
constructed by EHAEC exists, x € T is an internal node and y € T is a leaf or internal
node. In the procedure of forming tree 7’ from 7' by adding a leaf node a € V\T (since a
is a leaf node, only the energy it consumes for sending is taken into consideration), on the
assumption that edge (a,x) has the minimum weight in the current step of forming 7”, if
the initial weight

w(a,x) < w(a,y)

and
w(a,x)+ P(a,x) > w(a,y) + P(a,y)

where phony weight P > 0, then node x has the least energy consumption in sending and
relaying data in 7' compared with node x in other trees. Since the other internal nodes
have the same property as node x without loss of generality, we can prove the theorem by
only proving the property of node x.
In fact, if
w(a,x) < w(a,y)

and
w(a,x)+ P(a,x) > w(a,y)+ P(a,y)

then node a will be a child of node y instead of being the child of x by taking advantage
of the phony weight, ER(M), which is the energy consumed by receiving data from node a
and will be consumed by edge (a,y) but not edge (a,x). Note that under this condition,
adding an edge (a,x) to tree T is equivalent to constructing the minimum spanning tree in
PRIM. We prove the theorem by induction.

Base step: For n = 2, there are two nodes x and y in tree 7. The relation of nodes x

and y is dir(y,x) since node x is an internal node, hence,

E (x) = ER(y,x)
and

E(y) = ET(\ X)
If node a is added to y in T’, then

E(x) = ER(J:X)

and

61

The theorem holds since E(x) is not increased; its smallest value is

which is a constant due to equation 7.2.

Inductive step: We assume that the theorem holds in tree T for n = k, where k > 2.
We prove the theorem holds for n = k+ 1. From the assumption, all the internal nodes
in T have the least energy consumption in sending and relaying data since they all have
the same property as node x in the previous procedures. At n = k+ 1, since node x is
an internal node, x has the least energy consumption in sending and relaying data in 7.

When adding node a to 7', since
w(a,x) <w(a,y)

and
w(a,x)+ P(a,x) > w(a,y) + P(a,y)

node a will be a child of node y instead of be the child of x in 7”. Therefore, the energy
consumption of node x is not increased in T"; x still has the least energy consumption in
sending and relaying data in 7”. Thus, the theorem holds. I

Examples of applying the EHAEC are shown in Figs. 7.5(1-7). Figure 7.5(1) shows
a unit weighted graph G =< V,E >, where V = {BS.a,b,c,d,e, f}, vertex BS is the
root of the tree, and the other vertexes are sensor nodes that must be connected to the
tree. Note that there are other edges in graph G, for example, (BS, f), (b,c), and (d, f).
However, these edges have large weights, so we have ignored them. The weight is shown
for each edge, for example, w(a,b) = 240 means that the weight of edge (a,b) is 240uJ.
These values are calculated using Equations 7.1 and 7.2. We can now show how EHAEC
forms a route. In the first step shown in Fig. 7.5(1), u = r = BS because of Lines 5
and 7, hence the starting vertex of the tree forming procedure is BS. Therefore, BS is
on the tree. Since u = r = BS in line 11, lines 12 to 15 are not executed. For every
vertex v € Adj[BS] = {a,b,c}, line 16 judges whether w(a,BS), w(b,BS) and w(c,BS)
are less than keylal, key[b] and key|c], respectively. Line 16 is true since the key fields are
infinities, hence, n[a] = BS, n[b] = BS and n|[c] = BS in line 17; key|a] = w(a, BS) = 213,
key|b] = w(b, BS) = 220 and key|c] = w(c,BS) = 325 in line 18. In step 2 shown in Fig.
7.5(2), u = a in line 7 since key|a] = w(a,BS) = 213 is minimum in step 1. Line 8 stores
edge (a,BS) to tree A and line 9 decides the direction of edge (a,BS) is dir(a, BS) since
m[a] = BS in step 1. Since m[u] = r = BS in line 11, lines 12 to 15 are not executed.

line 16 judges whether w(b,a), w(c,a) and w(d,a) are less than key[b], key|c| and key|d],

62

(7) EHAEC step 7 (8) PRIM route

Figure 7.5: EHAEC and Prim Routing.

respectively. Line 16 is only true for vertexes ¢ and d. Hence, ©[b] = BS which is not
change, 7[c] = a and w[d] = a in line 17; key[b] = w(b, BS) = 213 which is not change,
key|c] = w(c,a) = 224 and key[d] = w(d,a) = 240 in line 18. The same procedure repeats
until step 3 shown in Fig. 7.5(3). In step 4 shown in Fig. 7.5(4), after u = e is extracted
inline 7, s € Ad j[x[u]] —u = Ad j|rt[e]] — e = Ad j[b] —e = {d, f} in line 11. Therefore,
P(d.,b) = Eg(e,b) = 100 and P(f.b) = Eg(e,b) = 100 in line 12. w(d,b) and w(f,b)
are updated in line 13. Line 14 judges whether key[d] is w(d,a), and key[f] is w(f,b),
where w(d,a) and w(f,b) are values in the previous step. Since it is true that key[f] is
w(f,b) which in the previous step, key[f] = w(f,b) in line 15, the w(f,b) here is the
value calculated in line 13, hence the key field is updated. The rest part of step 4 is similar
with that in step 1 and 2. The same procedure repeats in step 5, 6 and 7. In step 7 shown
in Fig. 7.5(7), since all the nodes are connected by the EHAEC, a spanning tree has been
formed. Compared with the route generated by Prim’s algorithm in Fig. 7.5(8), EHAEC
avoided the energy holes in nodes a and b.

The PRIM algorithm is optimal since it minimizes total energy consumption for data

communications in a WSN by producing a minimum spanning tree route. In contrast,

63

EHAEC is not optimal because it does not always minimize total energy consumption
for the entire network. However, EHAEC does minimize energy consumption for all the
internal nodes. In tree 7" constructed by EHAEC, except for the base station, let I/ C T
and L C T be the sets of all internal nodes and all leaf nodes in 7', respectively. Due to
Theorem 1, since all the internal nodes consume the least energy needed for sending and
relaying data, the total energy consumption of nodes in set / is minimum, hence, EHAEC
is optimal in set /. Note that EHAEC is not optimal in set L since some leaf nodes may use
phony weights to select a longer route for data communications in order to make EHAEC
optimal in set /. This increases the energy consumptions of the leaf nodes. To compare
EHAEC and PRIM we prove the following two theorems, one showing the condition
of that EHAEC outperforms PRIM in avoiding energy holes and the other showing the
energy loss in EHAEC.

Theorem 2 For G=<V,E >, Vu,vwe V. Ifd,,, < \/(nu — nw)f:—’fp‘ + d(zv’u), then edge
(v,w) with dir(v,w) will be selected by EHAEC to avoid the energy hole that might exist
in node u if edge (v,u) with dir(v,u) is selected by using the PRIM algorithm without
phony weight. Here, d is the distance between two nodes and n, and n,, are the number

of child nodes of nodes u and w, respectively.

Proof: Since

Ee ec
d(Vyw) < \/(n“ — 1) l +d(2v,u)

amp

holds, we have

—+d,,-

2
i) < (=)

Because Egjec * k and &, * k are constants,
2 2
Eelec % k+ Eqmp * k * a’(v’w) < Eeglee * k+ €qmp * k d(v,u) + (ny —ny) % Egpee ¥k

holds by multiplying &4, * k and adding E,;,. * k to both sides of the inequation. More-
over, due to equation 7.1, we have

Egjec *k+ Eamp * k d(zv,w) - ET(‘%W)

and

Eelec* k4 €amp * k d(zv,u) - ET(W)

and due to equation 7.2, we have

ER = ER(W) = ER = E¢jec ¥k

(vow)

64

Therefore,
Egloc * k+ €amp * k * d(2V7W) < Eppoe ¥ k4 Eqmp * k * d(zv’u) + (ny —ny) * Egppe %k

becomes
ET(W) + ER(W) +nyx Eg < ET(‘,,,,) + ER(v,u) +n, *ER

Due to equation 7.3,

ny* Eg = P(v,w)

and

n"‘*ER :P(V,M)
Therefore,

ET(V*W) +ER(VM’) +P(V’ W) < ET(v,u) +ER(V,M) +P(V7 I/t)

Moreover,

w(v,w) < w(v,u)
since

Er,, +ERrg,, +Pw) = w(v,w)

and

ET(v,u) + ER(v,u) + P(V, u) = W(V, u)

Therefore, due to EHAEC, edge (v, w) is selected to avoid the energy hole in node u, i.e.,
the theorem holds. B

Theorem 3 [f routes Rp and Rg are created by PRIM and EHAEC, respectively, then Rg
consumes more energy of Eqmp * k *):,(d(zv W)~ d(2V M)) than Rp, where edges (v,w) and (v,u)

have the same definition as that in Theorem 2.

Proof: Since regardless of the routing methods, the value of }_ E in a route is a constant
because the transmit data of every node can only be received once in a WSN. Compared

— E7, . is consumed by EHAEC

with the PRIM algorithm an additional energy of ET(V y ()

)
in one changed edge. Evoking equation 7.1,

Er,., —Er,, = Eeck+Eamp ¥k dl,) = Ectoc ¥k—Eamp ks d(,) = xkx (df,) —d(,)

(vw)

For all the edges changed in EHAEC, the total additional energy is

Eamp * k¥ Z(d(zw) — d(zw))

65

1.e., the theorem holds. W

7.3 Route Switching Algorithms

In this section, we propose another two route switching algorithms called TINORESA

and COMSA to solve the problem of finding switching routes.

7.3.1 Tired Node Resting Switching Algorithm

In this subsection we propose a tired node resting switching algorithm (TINORESA) to
update the route obtained by EHAEC. TINORESA can find several routes to be alterna-
tively applied with EHAEC until the lifetimes of nodes are balanced. In TINORESA, the
concept of “tired nodes” is defined as the nodes that had larger than average energy con-
sumption in the previous route. The “tired nodes” of the previous route are not allowed to
relay data from child nodes in the current route in order to rest themselves. Accordingly,
TINORESA applies EHAEC to form a spanning tree where the “tired nodes” do not con-
sume spare energy. The input of TINORESA is the graph obtained by the previous route,
and the output returns the new spanning tree A where the “tired nodes” are rested. Note
that the first input is the route created by EHAEC. Algorithm 2 shows the procedure of
TINORESA.

Algorithm 2: TINORESA(G,r)

01 Q « PREV(G, 1), where first PREV(G, r)=EHAEC(G,r)

02 for eachu € Q

03 E(u) = E7,+nEg, where n is the number of child of u
04 Ege=YN,E(i)/N

05 for eachv e Q

06 if E(v) > Ege

07 tired[v] < v

08 if T[] =0

09 w(v,c) = oo, where c is the child candidate of v

10 EHAEC(G.r)

We show how TINORESA works. In line 01, all the vertexes that have the network
connection information obtained by the previous route PREV(G, r) are stored in a priority
queue Q. Lines 02~04 calculate the average energy consumption of nodes in EHAEC.
Lines 05~09 show that, if the energy consumption E(v) of a node v is bigger than the
average energy consumption E,,., the node u is defined as a “tired node,” and the weight

between node v and other nodes ¢, which are the child candidates of v, is set to infinity

66

Figure 7.6: Route switching by TINORESA: rhombic nodes are tired nodes.

if node v is selected for the tree. Finally, using the updated information where “tired
nodes” are rested, TINORESA calls EHAEC to create a new route. Since TINORESA
goes through all the vertexes twice and applies EHAEC, the complexity of TINORESA is
O(2|V|+ |E|1g|V|). Moreover, since 2|V| is much smaller than |E|1g|V|, the complexity
is O(|E|1g|V]).

Figure 7.6 shows an example of TINORESA. We assume that there are five nodes
and a base station in a network. In Fig. 7.6(1), after several rounds of communication,
nodes a and b are found to be “tired nodes”. Therefore, TINORESA forms a new route
in Fig. 7.6(2) where nodes a and b are not the parents for any nodes and thus do not relay
the data, i.e., energy is saved. Similarly, after another several rounds of communication,
other nodes are found to be “tired”, and thus the route in Fig. 7.6(3~5) is formed by
TINORESA to avoid energy holes until all nodes run out of energy.

However, a problem came to light: how often should TINORESA switch the route? A
trade-off should be considered in answering this question. Generally, more frequent route
switching can reduce the difference in the remaining energy between the “tired nodes” and
the other nodes; however, the route switching overhead is high. In contrast, less frequent
route switching may increase the difference in remaining energy but the overhead is low.
As the timing of the route switching, we use a threshold of the average remaining energy

capacity such as route switching occurs at the time of 80%, 50% or 30% of the average

67

energy capacity remains. Moreover, each node periodically sends information with the

sensing data informing the base station how much energy remains in the node.

7.3.2 Complementary Switching Algorithm

In this subsection we propose a complementary switching algorithm (COMSA), which at-
tempts to find only one switching route that can be alternately used with the route created
by EHAEC, where the energy consumption of each node in COMSA is the complemen-
tary value of that in EHAEC. We define a complementary spanning tree T¢ as follows. In
the graph G =<V, E >, E(v) denotes the energy consumed by nodeve V. Tg =<V, Eg >
is a spanning tree for the G obtained by EHAEC. The complementary tree 7o =< V, E¢c >
is defined as a spanning tree for G, where E(v) +E’(v) = C(v). We call C(v) the complete
value and E’(v) the complementary value of E(v). Moreover, max C(v) —min C(v) < A
for a constant A. If A =0, we call T a complete complementary spanning tree. We
present COMSA to build 7¢ from Tg as follows.

Algorithm 3: COMSA(G,r)

01 Q<+ V(G)

02 C=E(EHAECyax)+ Enin(EHAECy4x)
03 A < TradeoffValue

04 foreachuc Q

05 E(u) oo

06 m[u] < NIL

07 E(r)«0

08 while Q #0

09 u < EXTRACT-MIN-E(Q)
10 for each v € Ad j[u]

11 if 3 v, that if w[v] = u then E(u) € (C— Egpapc(u) £A)
12 v < u

13 Te < {(v,z[v]) :veV—-r—0Q}

14 edge direction: dir(v,u)

15 return 7¢

Next we explain how COMSA works in accordance with Algorithm 3. Lines 1-7
show the initializations, which differ from those in EHAEC in lines 2, 3, 5, and 7. Line 2
defines the complete value C, which is the sum value of the energy consumed by the most
energy consuming node in EHAEC and the achievable minimum energy consumption for
the same node. Line 3 defines a trade-off value for C, since it is hard to ensure C is always
the same due to the different power consumption of each node. Lines 5 and 7 initialize
the energy consumption of vertex u and r, where r is the base station (which is the root of

the tree). Lines 8-15 show the procedure for finding the switching route. Line 9 extracts

68

(a) EHAEC (b) COMSA

Figure 7.7: Routes of EHAEC and COMSA.

50 e—EHAEC
o 45 |——EHAEC+COMSA //
£ —8— [deal !
E 35 T A———F"P I ¢
(@]
2 30
4+
14}
< o5 Vy‘/ — A—0

- =» A—2(maxE(v)-minE(v))
20 '
a b C d ©

Node in increasing order of node lifetime

Figure 7.8: The use of theoretical bound of A of example in Fig.7.7.

a vertex u € Q where the energy consumption of u is the smallest. Lines 10-14 show
that for every vertex v adjacent to u but not in the tree, if v is the child of u, the energy
consumption of # should be the complementary value of that in EHAEC:; thus the 7 field
is updated as u is the parent of each vertex v. Line 13 updates the tree T and line 14
defines the direction of the edges. Finally, after the iteration, COMSA returns the tree T¢.
The complexity of COMSA is the same as that of EHAEC, i.e., O(|E|1g|V|).

Figure 7.7 shows the routes made by EHAEC and COMSA for a 6-node WSN, where
the base station is the root of a tree. The two routes are applied in the same communication
rounds alternately to obtain uniform energy consumption. However, a problem is that if
the value of A is too large, the meaning of complementary value does not exist anymore
since it would not balance the energy consumption of nodes by utilizing EHAEC and

COMSA alternatively. We next prove the following theorem for a bound of A.

69

Theorem 4 In COMSA, A is bounded as 0 < A < 2(max E(v) —min E(v)) to maintain the
meaning of complementary value. Where v € V, max E(v) and min E(v) are the energy

consumption of the most and least energy consuming node in EHAEC, respectively.

Proof: Since
0 <A< 2(max E(v) —min E(v))
we have

A
0< 5 < max E(v) —min E(v)

Due to the explanation of complementary value in the first paragraph of this subsection,
if we let
max C(v) —min C(v) = A

the inequation becomes

o < Max C(v) —min C(v)

< 7 < max E(v) —min E(v)

Since
Cv)=E(v)+E'(v)

holds, where E(v) and E’(v) are the energy consumptions of node v in EHAEC and

COMSA, respectively, ™% C(V);mm €M) means the energy consumption difference be-
tween the most and least energy consuming node where EHAEC and COMSA are uti-
lized alternatively (we express this condition by using the notation EHAEC+COMSA).
Moreover, max E(v) —min E(v) means the energy consumption difference between the
most and least energy consuming node in EHAEC.

The meaning of complementary value is maintained if and only if the energy con-
sumption difference of EHAEC+COMSA is less than that of EHAEC. This is because the
energy consumption of nodes becomes more uniform as the energy consumption differ-

ence becomes smaller. Since

o < Max C(v) —min C(v)

< 5 < max E(v) —min E(v)

holds, the meaning of complementary value is maintained; thus, the theorem holds. B
We show how the theoretical bound of A affects the network lifetime. Figure 7.8 shows
the network lifetimes of the WSNs in Fig. 7.7 by using EHAEC, EHAEC+COMSA,
and the estimated ideal network lifetime (“Ideal” in Fig. 7.8) when there are no en-
ergy holes. Generally, the network lifetime of EHAEC+COMSA is between those of
EHAEC and Ideal. As A approaches 0, the network lifetime of EHAEC+COMSA ap-

proaches that of the Ideal since the energy consumptions of nodes in COMSA are closer

70

to the complementary energy consumptions of nodes in EHAEC. In contrast, as A ap-
proaches 2(max E(v) —min E(v)), the network lifetime of EHAEC+COMSA approaches
that of EHAEC since the energy consumptions of nodes in COMSA are closer to those in
EHAEC. This is because COMSA balances the remaining energy of the nodes.

7.3.3 Route Switching Overheads

In this subsection, we will discuss the route switching overhead in the TINORESA and
COMSA algorithms. Generally, two kinds of overheads exist in route switching algo-
rithms: cost incurred by sending route switching information and cost incurred by updat-
ing the routing table.

More specifically, the first type of overhead is the energy consumed by sending route
switching information from the base station to all the nodes in the network. The base
station should generate reverse data communication based on the previous route to tell
every node their new parent node’s address information before the route switching since
the base station is the only node that knows the global address information. Generally,
the overhead is less than the energy consumed in the previous data communication since
the energy consumed at base station is not included.

The second type of overhead is the energy consumed by switching the communication
route for each node, i.e., the energy consumption of updating the routing table. The
routing table will be updated if the data transmitting relation between nodes has been
changed by route switching. The energy consumed by changing nodes’ connections is
difficult to calculate since it depends on the energy consumed by program instructions.
Therefore, we assume that it consumes energy of x for one connection change, so the
overhead can be calculated by using x. Overall, TINORESA has higher overheads than

COMSA since it performs more route switching operations.

7.3.4 Node leaving and joining the network

Next we describe what happens for the proposed algorithms when a node leaves or joins
the network. First, if a node leaves the network, the base station can no longer receive its
data or that of its child nodes. The base station thus considers the node to be terminated
and rebuilds the route to eliminate the terminated node by using one of the proposed
algorithms. The energy consumption of each node changes due to changes in the route.
However, route rebuilding is necessary only for an internal node termination since the
termination of a leaf node does not affect the data communications of the other nodes
in the network. Second, if a node joins the network, the base station adds it to the data

communication route. The procedure for doing this comprises three steps. (1) The new

71

X31

k). kK K G
1)« 2)e 3 32
O—0——0 - 2 3
dy d; d, e d,
(1) 3-node communication pattern (2) 3-node communication
of the proposed algorithms pattern of the algorithm in [43]

Figure 7.9: Communication patterns of the proposed algorithms and the algorithm in [37].

node sends a trigger message to the base station informing the network of its entry into the
network. (2) Upon receiving the message, the base station terminates usage of the current
data communication route in the network and re-executes one of the proposed algorithms
to generate a new route that includes the new node. (A more efficient approach would
be to rebuild only part of the route instead of generating a new route. This remains for
future work due to its complexity.) (3) The network begins using the new route for data

communications.

7.3.5 Comparison with previous work

We compare the proposed algorithms with another algorithm proposed in [37] since it
can solve the energy hole problem in an energy efficient manner and it uses the same
energy consumption model used in this thesis. The authors of [37] assumed that all sen-
sor nodes are uniformly distributed in a plane and that nodes are located at the center
of imaginary hexagons, so the distances between neighbor nodes are the same. Their
proposed algorithm enables every node in that network topology to send its data to inter-
mediate nodes by dividing the data into fractions so that the node energy consumptions
are fairly evenly distributed. Figure 7.9 shows the communication patterns of our algo-
rithms and the algorithm in [37] for a three-node network. The characters above and
beneath the lines represent the amount of data transmitted and the transmission distance,
respectively. Figure 7.9(2) shows that node 3 transmits its data by transmitting x3; and
x3p separately using two routes, 3 —+ 2 — 1 and 3 — 1. Since we and the authors of
[37] assume that every node generates the same amount of data to send, kK = x33 + x31 in
Fig. 7.9. Moreover, in spite of data aggregation energy consumption in [18] to match
the assumption of this thesis, the energy consumption difference of data communications
which use the algorithms proposed in [37] and this thesis is the energy consumption that
depends on the communication distance, which is represented by &g, * k * d? in equation
7.1. Comparison of &g, * k * d? in Fig. 7.9(2) with that in Fig. 7.9(1) shows that the
route OVer-consumes €y * X31 * [(d1 + d2)2] for transmitting x3; over distance di + d»

and under-consumes £, * X31 * d% for transmitting x3; over distance dp. Therefore, an

72

extra amount of energy, €ump *x31 * [(d1 + d2)2 — d%], is consumed by the route shown
in Fig. 7.9(2). Generally, for an N-node network, the algorithm in [37] consumes ex-
tra energy Eevra = L €amp * Xnon—one—tran * [Ayon—one—ran — done—iran) cOMpared with the
algorithms proposed in this thesis. The X,,o,—one—1ran rEPrEsents the sizes of the data frac-
tions sent to nodes other than the nearest neighbor node, for example x31 in Fig. 7.9(2),
the don—one—iran 18 the distance between the two nodes between which X,.0n—one—iran 1S
transmitted, and the d,,e—;rqan 1S the distance between the nearest neighbor nodes be-
tween which the data fractions are transmitted, for example x3»> in Fig. 7.9(2). Since
dnon—one—iran 18 always greater than dyne—ran, Eexirq 1S always positive, our proposed al-
gorithms have better performance than the algorithm in [37] regardless of whether the

distances between neighbor nodes are the same or not.

73

Chapter 8
Fault Tolerant Algorithms

In this chapter, we present two kinds of proactive fault tolerant algorithms to tolerate node
failures in WSNs. The first algorithm attempts to maintain k-connectivity of a network,
whereas the second designates backup nodes for only critical nodes which are easy to fail

in the network.

8.1 EHAEC for One-Fault Tolerance

Our proposed algorithm EHAEC for one-fault tolerance (EHAEC-1FT) maintains two-
connectivity of the network, because it can tolerate the failure of one node in the WSN.
When the requirement is more than two-connectivity, it can be extended to X-nFT, which

can be used by any spanning tree routing algorithm X for n-fault tolerance.

Algorithm 4: EHAEC-1FT(A,w,r)

01 foreachuecA

02 key[u] <— oo

03 for each y € A\{x}, where x € A and 7[y] = x
04 for each z € Ad j[x] —y

05 for each s € Adj[n|y|]| —yand s € A\IFTSG,s #r,y# r,nly| #r
06 P(s, x[y]) = Lac1rrr Er(a, [a]), where mt[a] = w[y]

07 w(s, [y]) = w(s, z[y]) + P(s, 7[y])

08 if s € Q and #[s] = w[y] and key[s] is w(s, z[y]) that in last round
09 key|s] < w(s, m]y])

10 if z € A\{x,y} and w(z,x) < key[z]

11 mlz] < x

12 key|z] < w(z,x)

13 IFTSG < {(z,7[z]) :z€ A\{r.x,y}}
14 edge direction: dir(z, 7[z])
15 return |FTT =AUI1FTSG

74

(2)

Figure 8.1: EHAEC-1FT example.

Table 8.1: 1FTSG lookup table

Failed node | Affected nodes | Added edge
a c.d (¢,BS)
b e,f (e,d)
c d (d,a)
d NIL NIL
e f (f.b)
f NIL NIL

EHAEC-1FT uses EHAEC to find a subgraph of G that, in union with the graph of set
A obtained by EHAEC, can maintain two-connectivity and one-fault tolerance. We call
this subgraph a “one-fault tolerant subgraph (1FTSG)” and the union graph a “one-fault
tolerant tree (1FTT)”. The input to EHAEC-1FT is graph A of EHAEC, and the output is
the union graph 1FTT. The basic idea of EHAEC-1FT is to first suppose that every node in
A has failed, and then find new parent nodes for the child nodes that belonged to the failed
nodes. Note that if a node fails, all the edges were connected to the failed node are deleted
from the tree. In EHAEC-1FT, Lines 1 and 2 initiate the edge weights. Line 3 identifies
the child nodes of the failed nodes, and Lines 4-14 use EHAEC to find new parent nodes
for only these child nodes. Note that Lines 4-12 and 13-14 in EHAEC-1FT have the same
function as Lines 10-18 and 8-9 in EHAEC, only the parameters are different. Finally,
Line 15 returns tree 1FTT. Because Lines 3-4 are executed O(|V|) times, and Lines 5-15
are executed O(|E|1g|V|) times, the complexity of EHAEC-1FT is O(|V||E|1g|V|).

The EHAEC-1FT example in Fig. 8.1 uses the output A of EHAEC that is shown in
Fig. 7.5(7). Figure 8.1(1) shows the graph when node a has failed. The edges connected
to a are deleted because of this failure. The failure of node a means that ¢ and d are
removed from the communication tree. Therefore, node ¢ takes BS as its new parent node
and maintains the connectivity of the communication tree (Lines 4-14). Therefore, edge
(¢, BS) with dir(c,BS) is added to subgraph 1-FTSG in Fig. 8.1(2). Similarly, if nodes

75

(1) 1FTSG (2) 1FTT
Figure 8.2: Graph of 1FTSG and 1FTT.

b,c.d,e,and f failed in turn, new edges would be added to 1-FTSG, as shown in Table
8.1. Consequently, 1FTSG is constructed as in Fig. 8.2(1). Moreover, the combination of
IFTSG with the tree formed by EHAEC constructs a 1FTT (Line 15), as shown in Fig.
8.2(2).

Algorithm 5: X-nFT(A,r)

01 fori=1ton

02 for all y; € A\{x;}, where x; € A and n[y;] = x;
03 do TreeRoutingAlgorithm(A,r)

04 return i(FTSG

05 return nFTT =AU1IFTSGU2FTSGU...UnFTSG

As mentioned above, EHAEC-1FT can be extended to X-nFT to maintain n-fault tol-
erance for any tree routing algorithm X. EHAEC-IFT can be extended to satisfy the
requirement of tolerating an n-node failure, as shown in Algorithm 5. X-nFT finds all
the child nodes of n failed nodes (Lines 1 and 2), and then uses a particular tree routing
algorithm (Line 3) to build new connections between these child nodes and other nodes
in the tree, resulting in n-fault tolerance. For every i = 1...n, X-nFT returns an i-fault
tolerant subgraph, iFT'SG (Line 4). Finally, X-nFT returns the union graph nF'7TT, which
is n-fault tolerant.

Different systems have different fault tolerant redundancy requirements. There are
two ways to make a system fault tolerant: create a fault tolerant redundancy when or
before a failure (standby fault tolerance, STB), or constantly have a fault tolerant redun-
dancy (active fault tolerance, ACT). With STB, the WSN uses tree A of EHAEC for data
communication. If n nodes fail, only the parts of subgraphs 1FTSG...nFTSG that can
tolerate the failed nodes are used with tree A. ACT uses tree nFTT, which is a complete

combination of tree A and the fault-tolerant subgraphs.

76

8.2 Active Spare Selecting Algorithm

We considered another provisioned tolerance scheme that finds spare nodes for the failed
node, which serve as cut vertexes. In this situation, the spare node takes the responsibility
of the failed node. In most related works, spare nodes are additional nodes that placed
at right positions accompany with the failed nodes. However, in WSN systems for in-
frastructures such as bridges and tunnels, it is difficult to place additional nodes because
we do not know which node is likely to fail. Placing spares around some critical node
is risky. Moreover, additional spare nodes increase costs. Therefore, in this section, we
present the active spare selection algorithm (ASSA), which attempts to select appropriate
nodes in the network to be used as active spare nodes. The spare nodes only substitute the
failed critical nodes. Here, critical nodes are nodes that act as cut-vertexes in the network,
i.e., the internal nodes. When a critical node fails, the ASSA selects an active spare node

to take on its responsibilities.

Algorithm 6: ASSA(A,a,3)

01 input impact factor o and 3, where a+ f3 = 1
02 foreachuc A\L

03 CL(u) = NumO fSuccessor(u)

04 for each y € A\L, where n[y] =z

05 for each x € Adj|y]

06 CL.TEMP[x] = CL(x) + CL(y) + 1

07 w(x,y) = Er,, +Eg,,

08 calculate NCL = m
09 for each x € Adj[y]

10 NEC(x,y) = o0x NCL(x) + B * Nw(x,y)
11 for each z € A\L, where n[y] = z, and 7[z] # x
12 if 7 failed

_ 1
andNW—WS[W]

13 for each y € A\ L, where 7[y] = z, start the loop with CL(y)
in decreasing order

14 if 3x € A\L, where NEC(x,y) is minimum

15 [y =x

16 CL(x) = CL_TEMP(x)

17 PRCT « {(y,m[y])}

18 return PRCT

In the ASSA, we use the concept of a sensor node’s critical level CL(x), which is the
number of successor nodes to x (CL(x) = NumO fSuccessor(x)). Generally, a node is
more critical if it transmits data from more child or successor nodes. Therefore, it has a
higher critical level if it has more successors. Moreover, because the ASSA is designed to

select active spares using a combined weight of the node’s critical level and edge weight,

7

we also use an evaluation criterion EC(x,y) = & * CL(x) + B *w(x,y). Suppose that node
z fails and y is a child node of z. For a spare node candidate x, the evaluate criterion

considers the weight of the critical level of node x and the edge weight w(x,y). Because

CL(x) and w(x,y) are different metrics, we normalize the values using N = W so that
they are comparable. RMS[x| = Ji\,):ﬁ\; 1 (x;)? indicates the root mean square, which is

a common normalization method. Hence, CL(x) and w(x,y) are normalized to NCL(x)
and Nw(x, y), respectively, and the normalized EC(x,y) is NEC(x,y) = oo« NCL(x) + 3 %
Nw(x,y). Moreover, we set & + 3 = 1. System designers can set the values of o and f3 to
express their inclination towards fault tolerance or energy efficiency.

We can now explain how the ASSA works. First, in Line 1, the values of o and 8
are chosen by the system designer. Line 3 initializes the critical levels of all nodes u in
tree A (except the leaf node set L). Lines 4 to 7 define a temporary critical level value
(CL_.TEMPIx)) for each node x that is a neighbor to node y such that y’s current parent
node is z. We set CL_T EMP[x] in this way so that, if node y’s parent node z fails and node
y takes node x as its new parent, then the critical level of x is updated. Line 7 sets the edge
weight w(x,y), which indicates the energy consumption for data communication between
nodes x and y. Note that w(x,y) does not include the phony weight, because the ASSA
uses the critical level. Line 8 calculates the normalized CL.TEMP and w(x,y). Lines
9 and 10 calculate the normalized evaluation criterion, NEC(x,y), which determines if x
should be selected as be the active spare node of z. In Lines 11 to 17, if any node z has
failed, all its child nodes (y) will find the new proper parent node x that has the minimum
NEC(x,y). This procedure starts with node y in descending order of CL(y). Line 15 sets
x as the new parent node of y, and Line 16 updates CL(x). Line 17 stores the new link
relation of {(y,7[y])} to PRCT, where PRCT is defined as the partition route changed
tree. Finally, Line 18 returns PRCT. We calculated the complexity of ASSA in three
parts. First, Lines 2 and 3 are executed O(|A — L|) times. Next, for Lines 4-10, Line 4 is
executed O(|A — L|) times, and Lines 5-7 and 9-10 are executed O(|E|) times. Therefore,
the second part is executed O(|E||A — L|) times. In the third part, Line 11 is executed
O(JA — L|) times, and Lines 13-17 are executed O(|]A — L|) times. Therefore, the third
part is executed O(JA — L|?) times. Overall, the complexity of ASSA is O(|A — L|?).

We now give an example that uses ASSA, as in shown in Fig. 8.3. Figure 8.3(1)
shows a tree route generated by a spanning tree algorithm. In Fig. 8.3(2), an internal
node b has failed. Because active spares should be selected so that node ¢ can tolerate
the failure of node b, the normalized evaluate criterion NEC(x,y) for each possible link
between the child nodes and their neighbors are calculated in Line 10. By comparing the
values of NEC(x,y) for different o and f3, the appropriate spare nodes are found using
lines 14-17. Figures 8.3(3-5) show the new routes built by adapting active spares when

78

(2 O,

(b) A

© @ et ® @

© ® ® (e O, ® (®

(1) A tree route (2) NEC of each spare candidate when (3) Node g is found as the spare when
node b is considered to be failed a=1,B=0; a=0.75, B=0.25

O, O,

© O, © O,

© ® (® O, ® ®

(4) Node f is found as the spare (5) Node d is found as the spare

when a=0.5, =0.5; a=0.25, =0.75 when a=0, =1

Figure 8.3: ASSA example.

a=land B =0,a=0.75and B =0.25, ¢ =0.5and B = 0.5, « =0.25 and 8 = 0.75,
and o = 0 and 3 = 1, respectively.

The ASSA considers both fault tolerance and energy efficiency, and can be adapted to
different applications. First, we must consider the situations when either fault tolerance or
energy efficiency is more important. Energy efficiency is considered more important when
the WSN environment is stable. For instance, when there are no or very few signal inter-
ferences, sensor nodes are rarely damaged, or there are short communication distances.
Fault tolerance is considered more important in the opposite case, when the environment
is not stable, or when sensor nodes are not independent of each other. For instance, if
an internal node only can send its data when it has already received its child nodes’ data.
Secondly, we also considered some concrete situations of ASSA, for example, when the
number of nodes is large, or a high density of nodes in a WSN. If the number of nodes
is large, it is easier to find child nodes, and NCL(x) is relatively large. On the contrary,
the communication distance is short if the number of nodes is large or the WSN is dense,
so Nw(x,y) is small. Therefore, NCL(x) is the dominant factor that affects the value of
NEC(x,y) if a # 0, in this case. Hence, if the energy efficiency is more important than
fault tolerance, o = 0 and § = 1 are effective. Alternatively, we may have a low density
or small WSN. In this case, NCL(x) is small and Nw(x,y) is large. Consequently, we can

set @ = 1 and B = 0 if a WSN requires fault tolerance more than energy efficiency.

79

Chapter 9
Simulations

In this chapter, we evaluate the effectiveness of the proposed algorithms by simulating the
lifetime of an entire WSN, and compare it with the lifetime of each node when using other
algorithms. The input of the simulations is the graph G =< V,E > of the network. In the
simulations, we assumed each node has 0.5/ of energy capacity. We calculated the life-
time of sensor nodes by first calculating the energy consumption of each node in different
routes by using equations (1) and (2), and then calculate a node’s data communication

rounds (lifetime) as: (node energy capacity) /(node energy consumption).

9.1 Simulations of Energy Hole Aware Energy Efficient
Routing Algorithms

In this section, we compare the lifetime of each node in routes generated by the direct data
transmission, the PRIM algorithm and our proposed EHAEC, TINIRESA and COMSA.
In TINORESA and COMSA, we ignored the route switching overhead since the overhead
value is not accurate because the second type overhead is hard to calculate. We show two
simulation results for a 20-node WSN and a 50-node WSN. In the WSNs, the sensor
nodes are randomly distributed such as Fig.9.1 shows.

Figure 9.2 shows the simulation results for a 20-node WSN and a 50-node WSN ob-
tained by routes generated by the direct data transmission, the PRIM algorithm, EHAEC,
TINIRESA and COMSA. Table 9.1 and table 9.2 show the algorithms’ efficiency by the
direct data transmission when 1%, 50% and 100% of nodes terminated in the two simula-
tions. The simulation results show the same tendency as that in Fig. 7.2. Figure 9.2 shows
that except for the last few nodes, PRIM, EHAEC, TINORESA, and COMSA perform
much better than direct transmission in extending the communication rounds. EHAEC is

more efficient than the PRIM algorithm in balancing the lifetime of each node. The re-

80

(1) A 20-node WSN

(2) A 50-node WSN

Figure 9.1: A 20-node and a 50-node WSN.

Table 9.1: Algorithms’ efficiency by DIRECT in the 20-node network

DIRECT | PRIM | EHAEC | TINORESA | COMSA
1% 1 2.7 3.2 3.8 3.8
50% 1 2.8 2.8 2.5 2.5
100% 1 0.9 0.9 0.6 0.5

sults also show that TINORESA and COMSA can balance the lifetime of each node, and
that TINORESA is more efficient than COMSA. Notice that TINORESA could be less
efficient than COMSA if the route switching overhead is considered into the simulation
since TINORESA has a larger overhead than COMSA. From the standpoint of avoiding
energy holes, our proposed EHAEC, TINORESA, and COMSA can extend the lifetime
to about 3.2, 3.8, and 3.8 times, respectively, that for direct data transmission when 1%
of the nodes are terminated in the 20-node network. And they can extend the lifetime to
about 4.8, 6.5, and 6 times, respectively, that for direct data transmission when 1% of the
nodes are terminated in the 50-node network.

Comparing the lifetime of the 50-node WSN with the 20-node WSN, we can see that
our algorithms are more efficient in extending WSNs’ lifetime and avoiding energy holes
in the dense network. This is because the edge weights and the edge weight differences
become smaller in the dense network. The lighter the edge, the less energy would a node
consumes. The less the edge weight differences, the more efficient of avoiding energy
holes. Thus, the longer lifetime a node could have.

We next show that the proposed algorithms can meet the conditions for avoiding en-

81

3500

§ —— DIRECT — PRIM
3 38000 f-—-— EHAEC —— COMSA
S 2500 ||—*— TINORESA
8
‘= 2000
£
£ 1500
Q
S
o 1000
£
@ 500
g U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
@ TEPRAS B ITILELIBIBRERND®S RS
< Node termination percentage
(a) Simulation result of a 20-node WSN
- 3500
é —— DIRECT —— PRIM ?
3 3000 {{—=—EHEAC —=— COMSA
c —— TINORESA %
© 2500
§ 4’——[—15
'c 2000 e
g o
£ 1500
Q
CJ
< 1000
S
E 500
g 0) S I N Y N O Y [N [O S [N N S Y S N N N N S N I N I v }
S FPEEBELEEBESEEBLLGE
© i TRERESEITEBESEETE B S X
zZ

Node termination percentage
(b) Simulation result of a 50-node WSN

Figure 9.2: Simulation results.

ergy holes, as mentioned in Sec. 7.1. First, we show that EHAEC meets the routing
construction viewpoint condition. Since lines 10-16 in Algorithm 1 define the child nodes
for an internal node by using phony weights, EHAEC can balance the number of child
nodes between internal nodes in tree A. As an example, Figure 9.3 shows the data com-
munication routes for 50-node WSN simulation using the PRIM algorithm and EHAEC.
It shows that EHAEC forms a route that results in the internal nodes having the same
number of child nodes as much as possible compared with the PRIM algorithm. Next, we
show that TINORESA and COMSA meet the node lifetime viewpoint condition. Since
lines 5-10 in Algorithm 2 select the tired nodes and disable their abilities to relay child
nodes in order to balance the energy consumption of the tired nodes, TINORESA can find

82

Table 9.2: Algorithms’ efficiency by DIRECT in the 50-node network

DIRECT | PRIM | EHAEC | TINORESA | COMSA
1% 1 3.7 4.8 6.5 6.0
50% 1 33 34 32 3.1
100% 1 0.6 0.6 0.5 0.5

(a) Route of PRIM for the 50-node WSN (b) Route of EHAEC for the 50-node WSN

Figure 9.3: Topology comparison of PRIM and EHAEC in the 50-node WSN.

several switching routes to balance the node lifetimes. Lines 11-14 of Algorithm 3 com-
pute the complementary energy consumption tree of EHAEC, thereby enabling COMSA
to balance the node lifetimes. For example, the simulation results in Fig. 9.2 show that
TINORESA and COMSA both equalize the node lifetimes as much as possible.

9.2 Simulations of Fault Tolerant Algorithms

In the simulations for evaluate fault tolerant algorithms, we consider fault tolerance is
more important than energy efficiency. We simulated the 50-node WSN configured as
shown in Fig. 9.1(2). The lifetime of a battery-powered WSN is defined as the number of
communication rounds till A% of the sensor nodes stop operating, where A is specified
by the system designer [50]. For the consideration of fault tolerance, we assumed that the

WSN remained functional as long 50% of the nodes were operating.

83

2000
1800
1600
1400
1200
1000

800

600 ’ydﬁli

400
00— FGSS, ——EHAEC ——EHAEC-1FT-STB
o, EHAECLFT-ACT ——ASSA(a=0, p=1)

SEES8FS885555885888
SHAANANNOOONMI IS IS D
€ Y

Lifetime(communication rounds)

55555

termination percentage

Figure 9.4: Simulated lifetime for the second situation (fault tolerance is more important
than energy efficiency).

Table 9.3: Efficiency when fault tolerance is more important than energy efficiency.

EHAEC | EHAEC-IFT-STB | EHAEC-1FT-ACT | ASSA | FGSS»
1% 1 1 041 1 0.38
25% 1 1.17 0.53 1.25 0.51
50% 1 1.23 0.55 1.32 0.37

9.2.1 Fault-Tolerance-First Evaluation

Considering fault tolerance is more important than energy efficiency, we assumed that a
node had stopped operating when there were no possible edges for it to transmit its data
to the base station, even if the node had not run out of energy. Consider the example in
Fig. 8.2(2). Although the route guarantees 2-connectivity, if nodes b and d have stopped,
nodes e and f are also considered to have stopped because they cannot transmit data to the
base station. For the route generated by EHAEC, we compared the ASSA and EHAEC-
1FT with the standby and active fault tolerances using EHAEC (which does not consider
fault tolerance). We used o = 0 and 8 = 1 in this simulation, considering that we wanted
the best performance in terms of energy efficiency. We also compared these results with
FGSSy. Although FGSSy can find a k-connected spanning subgraph, we assumed that it
maintained 2-connectivity in the simulations so that we could compare it with our algo-
rithms. Therefore, FGSSy is FGSS, in these simulations. Figure 9.4 shows the simulation

results. Table 9.3 shows the corresponding energy efficiencies. With standby fault toler-

84

3
FGSS2 B EHAEC F EHAEC-1FT-STB m EHAEC-1FT-ACT 1 ASSA(a=0, B=1)

g
tn

N

=
(5

Speed of WSN termination
[y

o
n

25%
WSN lifetime defined by node termination percentage

Figure 9.5: Simulated fault tolerant effect when fault tolerance is more important than
energy efficiency.

ance, EHAEC-1FT was more efficient than EHAEC, and with active fault tolerance it
was less efficient. This is because the communication tree used with the active fault tol-
erance was larger than that used with the standby fault tolerance. Therefore, it consumed
more energy. From the fault tolerance perspective, EHAEC cannot tolerate node failure
whereas EHAEC-1FT can tolerate one node failure using standby and active fault toler-
ance. Moreover, the ASSA was more efficient than the other three methods, because the
batteries of all the nodes were used and because it can tolerate all node failures at any time.
EHAEC-1FT and ASSA are more efficient than FGSS,. However, the results of FGSS»
and EHAEC-1FT in active mode are almost the same. This is because FGSS; generates
a 2-connected spanning tree based on Kruskal’s algorithm, and the redundant routes are
always applied during wireless communications. Next, we investigated the fault tolerant

effects of the algorithms by comparing the WSN termination speeds in Fig. 9.5. The

lifet imelongcsl
lifetimege)

the longest lifetime of the five simulated algorithms under the current WSN lifetime defi-

speed of the WSN termination is defined as speed = , Where lifetimenges 18
nition (i.e., the length of time until A% of sensor nodes stop operating), and [ifetime,; s
is the lifetime of a WSN using one of the algorithms. A quicker speed corresponds to a
worse fault tolerance. Therefore, Fig. 9.5 shows that the ASSA performed the best and
FGSS»> was the worst.

We also compared the energy efficiency and failure times using different values of
aand B: a=1and =0, =0.5and B =0.5, and o =0 and B = 1. Figures 9.6
and 9.7 show the results. In Fig. 9.6, there were no significant differences when using

different values of o and 3 (because the ASSA finds spare nodes for the route generated

85

1850

1750

1650

1550

1450

1350

Lifetime (communication rounds)

1250

—a—ASSA(a=1, B=0) —e—ASSA(a=0.5, B=0.5) —e—ASSA(a=0, B=1)

1150
1% 6% 10% 14% 18% 22% 26% 30% 34% 38% 42% 46% 50%

Node termination percentage

Figure 9.6: Simulated lifetime for the ASSA with different values of & and f3.

by EHAEC, which is originally energy efficient). However, the ASSA results appears to
be more energy efficient for larger f. There were less node failures when o was larger
(Fig. 9.7). The result agrees with idea behind the ASSA.

401
400
399
398
397
396

395

Number of times of node failure

394
ASSA(a=1, B=0) ASSA(a=0.5, B=0.5) ASSA{a=0, B=1)

Different Values of a and p

Figure 9.7: Simulated number of node failures for the ASSA with different values of o
and B.

86

Chapter 10
Summary and Conclusions

In this doctoral thesis, we raised a maintenance problem in wireless sensor networks that
battery powered sensor nodes in harsh environment should be operated in a prolong period
in order to avoid changing their batteries. Since battery energy is mainly consumed by
wireless communication, sensors in a node, and CPUs where tasks that are used to control
sensors in a WSN, we attempted to reduce energies consumed by those aspects. In the
way toward to the goal, we separately investigated the sensor and task scheduling problem

as well as the wireless communication problem, both impacting the lifetime of WSNss.

10.1 Sensor and Task Scheduling

From the perspective of sensor and task scheduling, We first presented an experiment
showing the most significant factor affecting the battery life in a sensor node is peak
power consumption, and when peak power consumption is high, battery voltage drops
quickly, and the sensor stops working even though some useful charge remains in the
battery. Our proposal extends battery life by scheduling sensors’ execution time that is
able to reduce peak power consumption as much as possible under a deadline constraint.
Furthermore, of the three algorithms we devised, we found BFESA to be the most efficient
for scheduling sensor 10 to extend battery life when we tested it in a simulator that we
designed. The simulations predict the battery life of each algorithm in order to evaluate its
effectiveness. The simulation results showed that by comparing with executing sensors si-
multaneously, the three algorithms dramatically can extend battery life, BESA can extend
battery life approximately three time as long as simultaneous sensor activation, thus, the
most effective algorithm is BFSA. Moreover, in order to reduce the energy consumed by
tasks, we proposed two task scheduling algorithms, DVFS-PTEA and ETS-PTEA, acti-
vate and deactivate sensors with dynamic voltage and frequency scaling or with execution

time scaling in order to avoid wasting energy in the CPU. We showed the effectiveness

87

of these two algorithms by comparing their energy consumptions with that of continuous
task execution in the cases of the three sensor scheduling algorithms. The evaluation re-
sults showed that ETS-PTEA is the most energy efficient solution for scheduling tasks,
DVEFS-PTEA is the second, and continuous task execution is the third.

10.2 Energy Efficient Wireless Communication

From the other perspective of wireless communication, we investigated the energy effi-
ciency and fault tolerance of WSNs, given that the communication distances and energy
hole problem are critical to the battery life of the sensor nodes, which affects the net-
work’s lifetime. We first presented a new routing algorithm EHAEC based on the PRIM
algorithm for achieving energy efficient wireless communications by minimizing the en-
ergy consumption of sending and relaying data. EHAEC can avoid energy holes to the
maximum extent possible without network routing reconstruction and is well suited for
WSNs for which the lifetime is defined by a high node termination percentage. How-
ever, for WSNs for which the lifetime is defined by a low node termination percentage,
the energy hole problem should be solved by network routing reconstruction to increase
the lifetime of short lifetime nodes and balance the lifetime of each node. For that pur-
pose, we also proposed two route switching algorithms TINORESA and COMSA to bal-
ance the energy consumption of each node in the network in order to solve the energy
hole problem. TINORESA finds several switching routes to solve the problem but has
high route switching overhead. In contrast, COMSA only finds one switching route and
has low route switching overhead. To evaluate the algorithms’ effectiveness, simula-
tions were performed to predict the lifetime of WSNs for each of them. The simulation
results showed that by avoiding energy holes, our proposed EHAEC, TINORESA, and
COMSA algorithms can extend the lifetime to more than 3 to 6 times that for direct data
transmission when 1% of the nodes are terminated in a 20-node network and a 50-node
network. Moreover, considering that a WSN may have unreliable sensor nodes, we de-
veloped two proactive fault tolerant routing algorithms. The EHAEC-1FT algorithm is
based on EHAEC, and constructs two-connectivity routes that achieve one-node failure
tolerance in WSNs. We also extended EHAEC-1FT to X-nFT for n-node failure tolerance
using an arbitrary spanning tree routing algorithm X. We developed the ASSA to select
active spare nodes in the network. By varying the impact factors, o and f3, the ASSA
can select active spare nodes that make the route more energy efficient or more fault tol-
erant. Further simulation results showed that the proposed fault tolerant algorithms were
more effective than FGSS;. EHAEC-1FT with standby fault tolerance more effectively
extended the WSN’s lifetime than EHAEC, and EHAEC-1FT with active fault tolerance

88

was less effective than EHAEC. EHAEC-1FT was more effective than EHAEC in terms
of the fault tolerance, because it can tolerate the failure of one node. Moreover, our sim-
ulation results showed that the ASSA was more efficient than EHAEC-1FT, that large
values of o produce a highly fault tolerant topology, and that large values of 3 increase

the energy efficiency.

10.3 WSN Applications Using Proposed Methods

In this section, we introduce some WSN applications that our proposed methods are suited
for. WSN systems have been applied in various aspects such as enhanced safety and
security, smart agriculture and intelligent buildings etc.. Since our methods were proposed
for general purpose, they can be utilized in many different WSN applications such as the
mentioned aspects.

From the viewpoint of safety and security of our society, recently, due to a number
of catastrophic failures, many countries have been focusing on the maintenance of their
infrastructures, such as bridges, tunnels, or even nuclear power plants. Taking bridges as
an example, in California of United States, 13% of the 23,000 bridges have been deemed
structurally deficient, while 12% of the US’s 600,000 bridges share the same rating. And
the situation is same in Japan. Japan has approximately 157,000 bridges of 15 m or more
in length, and the number of bridges that have been in use for 50 or more years was ap-
proximately 15,000 in 2011 and will be 44,000 and 84,000 in 2021 and 2013. Therefore,
structural health monitoring carried out by WSN applications is required for bridge in-
spections. Sensor nodes deployed in bridges require longer lifetime since maintain sensor
nodes in places such as bridges and tunnels is not a simple task. In bridge monitoring
sensor nodes, various sensors such as vibration sensors, pressure sensors and acceleration
sensors are embedded in a node, hence, sensor and task scheduling algorithms can help to
extend the battery life. Moreover, due to bridges should be covered by many sensor nodes
while monitoring, the proposed topology management algorithms can assist the WSN to
find an energy efficient route.

Moreover, in the applications of agricultures, it is important for farm owners to man-
age cultivation of plants in order to get the exact conditions in which plants are growing
in a comfort environment. Such a WSN application is required to control conditions in
the farmland and monitor high performance of plants. Taking advantage of sensing data
of best performance can help people to create proper climate and to use proper amount
of fertilizers, since a slight change in climate and inappropriate amount of fertilizers can
affect the final outcome. This kind of WSN applications utilized in farms usually contain

plenty of sensor nodes, and the sensor nodes contain sensors such as humidity, temper-

&9

ature, and light sensors in order to detect the risk of frost, plant diseases and watering
requirement based on the sensing data. Without a question, our proposed energy efficient
approaches are also effective for the agriculture monitoring application in extending the
WSN lifetime. Our proposed methods not only fit for the applications we raised, but also
fit other applications such as smart homes, intelligent buildings, earthquake monitoring,
radiation prevention, natural environment protection, since the methods are proposed for

general purpose.

90

Acknowledgments

First and foremost I would like to thank my adviser Professor Yukikazu Nakamoto. His
passion and thoroughness made this thesis possible, he always actively working to im-
prove my research. 1 will always remember Professor Nakamoto’s kindness not only did
Professor Nakamoto teach me a wealth of knowledge and help me to approach my goal
in academic and career, but also he gave me a great many advises in my studying abroad
life. His commitment will always inspire me.

I would like to extend my gratitude towards Professor Danny Fernandes for his En-
glish support to me, and also Professor Danny Fernandes gave me plenty advises in my
study and everyday life.

I would also like to thank Mr Masayoshi Kai, Makoto Iwata and Koutaro Yamamura
in NEC, who shared valuable information with me in the joint research, and gave me a lot
of supports and advice in my internship in NEC.

Special thanks to all Professors in Graduate School of Applied informatics and many
thanks to the Nakamoto Laboratory members for all advice, support and discussions.

Part of this work was supported by New Energy and Industrial Technology Develop-
ment Organization (NEDO), Japan. This work also is a joint research with NEC. I would
like to acknowledge the support of NEDO and NEC.

This thesis is based on [51] (©IEICE 2013) and [52] (©IEICE 2014). We would like
to thank IEICE for the usage.

Last but not least, I would like to thank my family members for all cares and supports

during my master and doctoral course in Japan.

91

Bibliography

[1] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie 4.0 scenarios:

A literature review,” 2015.

[2] G. C. Buttazzo, Hard real-time computing systems: predictable scheduling algo-
rithms and applications. 3rd ed., Springer, 2011.

[3] A. Burns and A. Wellings, Real-Time Systems and Programming Languages: Ada,
Real-Time Java and C/Real-Time POSIX, 4th ed. Addison-Wesley Educational
Publishers Inc, 2009.

[4] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems: A Cyber-Physical
Systems Approach, 1sted. Edward Ashford Lee & Sanjit Arunkumar Seshia, 2015.

[5] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a
hard-real-time environment,” Journal of the ACM, vol. 20, no. 1, pp. 46-61, January
1973.

[6] R.Graybill and R. Melhem, Power Aware Computing. Springer Science & Business
Media, 2013.

[7] T. D. Burd and R. W. Brodersen, “Energy efficient cmos microprocessor design,” in
Proceedings of the 28th IEEE Annual Hawaii International Conference on System
Sciences, vol. 1, pp. 288-297, January 1995.

[8] T. Okuma, H. Yasuura, and T. Ishihara, “Software energy reduction techniques for
variable voltage processors,” IEEE Design & Test of Computers, vol. 18, no. 2, pp.
31-41, March 2001.

[9] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-power embed-
ded operating systems,” in ACM SIGOPS Operating Systems Review, vol. 35, no. 5,
pp- 89-102, October 2001.

[10] A. Andrei, M. T. Schmitz, P. Eles, Z. Peng, and B. M. A. Hashimi, “Quasi-static

voltage scaling for energy minimization with time constraints,” in Proceedings of

92

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

the Design, Automation and Test in Europe Conference and Exhibition, pp. 514—
519, March 2005.

A. Andrei, “Energy efficient and predictable design of real-time embedded systems,”
Ph.D. dissertation, Dept. of Computer and Information Science, Linkoping Univer-
sity, October 2007.

A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M. Al-Hashimi, “Overhead-
conscious voltage selection for dynamic and leakage energy reduction of time-

constrained systems,” IET Computers and Digital Techniques, vol. 152, no. 1, pp.
28-38, January 2005.

O. Jovanovic, Low Power Software for Multiprocessor Systems. =~ VDM Verlag,
2008.

A. Krause, R. Rajagopal, A. Gupta, and C. Guestrin, “Simultaneous placement and
scheduling of sensors,” in Proceedings of the 2009 IEEE International Conference
on Information Processing in Sensor Networks, pp. 181-192, 2009.

M. R. Jongerden and B. R. Haverkort, “Battery modeling,” Centre for Telematics
and Information Technology, University of Twente, Tech. Rep., January 2008.

D. Linden and T. B. Reddy, Handbook of Batteries. McGraw-Hill, Inc, 2002.

M. Doyle, T. F. Fuller, and J. Newman, “Modeling of galvanostatic charge and dis-
charge of the lithium/polymer/insertion cell,” Journal of the Electrochemical Soci-
ety, vol. 140, no. 6, pp. 15261533, 1993.

D. N. Rakhmatov and S. B. Vrudhula, “An analytical high-level battery model for
use in energy management of portable electronic systems,” in Proceedings of the
2001 IEEE/ACM international conference on Computer-aided design, pp. 488—493,
2001.

C. FE Chiasserini and R. R. Rao, “Pulsed battery discharge in communication de-
vices,” in Proceedings of the 5th annual ACM/IEEE international conference on

Mobile computing and networking, pp. 88-95, 1999.

M. Iwata, M. Kai, and H. Shimazu, “Development of the energy management plat-

form “green tap (1)”,” in Proceedings of the 73rd annual conference of Information
Processing Society of Japan, pp. 4-381-4-382, March 2011, in Japanese.

93

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

K. Yamamura, K. Ishida, M. Iwata, M. Kai, and H. Shimazu, “Development of
the energy management platform “green tap (2)”,” development of long-lived wire-
less environmental sensor that can work in expert year,” in Proceedings of the 73rd
annual conference of Information Processing Society of Japan, pp. 4-383—-4-384,
March 2011, in Japanese.

T. L. Martin and D. P. Siewiorek, “Non-ideal battery properties and low power op-
eration in wearable computing,” in Proceedings of the 3rd IEEE International Sym-

posium on Wearable Computers, pp. 101-106, 1999.

A. Iwasa, M. Iwata, M. Kai, and H. Shimazu, “Development of energy management
platform “greentap” (3),” in Proceedings of the 73rd annual conference of Informa-

tion Processing Soceity of Japan, pp. 4-385—4-386, March 2011, in Japanese.

H. Kopetz, Real-time systems: design principles for distributed embedded applica-
tions, 2nd ed. Springer Science & Business Media, 2011.

M. Ding, X. Cheng, and G. Xue, “Aggregation tree construction in sensor networks,”
in Proceedings of the 58th IEEE Vehicular Technology Conference, vol. 4, pp. 2168—
2172, October 2003.

N. Kimura and S. Latifi, “A survey on data compression in wireless sensor net-
works,” in Proceedings of the International Conference on Information Technology:

Coding and Computing, vol. 2, pp. 8—13, April 2005.

S. Olariu and I. Stojmenovic, “Design guidelines for maximizing lifetime and avoid-
ing energy holes in sensor networks with uniform distribution and uniform report-
ing,” in Proceedings of the IEEE Conference on Computer Communications, pp.
1-12, April 2006.

H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks.
John Wiley & Sons, 2007.

W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient com-
munication protocol for wireless microsensor networks,” in Proceedings of the 33rd

Hawaii International Conference on System Sciences, vol. 2, 2000.

W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols for informa-
tion dissemination in wireless sensor networks,” in Proceedings of the 5th annual
ACM/IEEE international conference on Mobile computing and networking, pp. 174—
185, August 1999.

94

[31] Y. Yao and J. Gehrke, “The cougar approach to in-network query processing in sen-
sor networks,” ACM Sigmod Record, vol. 31, no. 3, pp. 9-18, September 2002.

[32] S. Lindsey and C. S. Raghavendra, “Pegasis: Power-efficient gathering in sensor
information systems,” in Proceedings of the IEEE Aerospace Conference, vol. 3, pp.
3-1125-3-1130, 2002.

[33] T. H. Cormen, C. E. Leiserson, R. L. Rovest, and S. C, Introduction to algorithms,
3rd ed. MIT press, 2009.

[34] J. Lian, L. Chen, K. Naik, T. Otzu, and G. Agnew, “Modeling and enhancing data
capacity in wireless sensor networks,” IEEE Monograph on Sensor Network Oper-
ations, pp. 91-138, 2004.

[35] X. Wu, G. Chen, and S. K. Das, “Avoiding energy holes in wireless sensor net-
works with nonuniform node distribution,” IEEE Trans on Parallel and Distributed
Systems, vol. 19, no. 5, pp. 710-720, May 2008.

[36] X. Liu, “A survey on clustering routing protocols in wireless sensor networks,” Sen-
sors, vol. 12, no. 8, pp. 11 11311153, 2012.

[37] S. Tanessakulwattana, C. Pornavalai, G. Chakraborty, and S. Naik, “Optimal multi-
path energy-aware routing protocol for wireless sensor networks,” in Proceedings
of the 9th IEEE International Conference on Electrical Engineering/Electronics,

Computer, Telecommunications and Information Technology, pp. 1-4, 2012.

[38] J. W. Jung and M. A. Ingram, “Residual-energy-activated cooperative transmission
(react) to aoid the energy hole,” in Proceedings of the IEEE International Confer-

ence on Communications Workshop, pp. 1-5, 2010.

[39] M. Younis, I. F. Senturk, K. Akkaya, S. Lee, and FE. Senel, “Topology management
techniques for tolerating node failures in wireless sensor networks: A surve,” Com-
puter Networks, vol. 58, pp. 254-283, 2014.

[40] J. C. Hou, N. Li, and 1. Stojmenovic, Topology Construction and Maintenance in

Wireless Sensor Networks, Handbook of sensor networks: algorithms and architec-
tures. John Wiley & Sons, 2005.

[41] N. Li and J. C. Hou, “Flss: a fault-tolerant topology control algorithm for wireless
networks,” in Proceedings of the 10th annual international conference on Mobile

computing and networking, pp. 275-286, 2004.

95

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

X.Y.Li, P. J. Wan, Y. Wang, and C. W. Yi, “Fault tolerant deployment and topology
control in wireless networks,” in Proceedings of the 4th ACM international sympo-

sium on Mobile ad hoc networking & computing, pp. 117-128, 2003.

M. Jorgic, M. Hauspie, D. Simplot-Ryl, and I. Stojmenovic, “Localized algorithms
for detection of critical nodes and links for connectivity in ad hoc networks,” in
Proceedings of the 3rd IFIP Mediterranean Ad Hoc Networking Workshop, pp. 360—
371, 2004.

A. Kashyap, S. Khuller, and M. A. Shayman, “Relay placement for higher order
connectivity in wireless sensor networks,” in Proceedings of the IEEE International

Conference on Computer Communications, vol. 1, 2006.

W. Zhang, G. Xue, and S. Misra, “Fault-tolerant node placement in wireless sen-
sor networks: problems and algorithms,” in Proceedings of the IEEE International

Conference on Computer Communications, pp. 1649-1657, 2007.

7. Yun, X. Bai, D. Xuan, T. H. Lai, and W. Jia, “Optimal deployment patterns for
full coverage and connectivity wireless sensor networks,” IEEE/ACM Transactions
on Networking, vol. 18, no. 3, pp. 934-947, 2010.

K. Vaidya and M. Younis, “Efficient failure recovery in wireless sensor networks
through active spare designation,” in Proceedings of the 6th IEEE International con-

ference on Distributed Computing in Sensor Systems Workshops, pp. 1-6, 2010.

K. Akkaya, A. Thimmapuram, F. Senel, and S. Uludag, “Distributed recovery of
actor failures in wireless sensor and actor networks,” in Proceedings of the IEEE
Wireless Communication and Networking Conference, pp. 2480-2485, 2008.

Zigbee and Alliance, ‘“Zigbee specification faq,” retrieved 4 April 2014. [Online].
Available: http://www.zigbee.org/Specifications/ZigBee/FAQ.aspx.

R. Rajagopalan and P. K. Varshney, “Data aggregation techniques in sensor net-
works: A survey,” IEEE Communications Surveys and Tutorials, vol. 8, no. 4, pp.
48-63, 2006.

96

Publications

[51] Q. Zhao, Y. Nakamoto, S. Yamada, K. Yamamura, M. Iwata, and M. Kai, “Sensor
scheduling algorithms for extending battery life in a sensor node,” IEICE Trans-

actions on Fundamentals of Electronics, Communications and Computer Sciences,
vol. E96-A, no. 6, pp. 1236—1244, June 2013.

[52] Q. Zhao and Y. Nakamoto, “Algorithms for reducing communication energy and
avoiding energy holes to extend lifetime of wsns,” IEICE Transactions on Informa-
tion and Systems, vol. E97-D, no. 12, pp. 2995-3006, December 2014.

[53] Q. Zhao and Y. Nakamoto, “Topology management for reducing energy consump-
tion and tolerating failures in wireless sensor networks,” International Journal of

Networking and Computing, vol. 6, no. 1, pp. 107-123, January 2016.

[54] Q. Zhao and Y. Nakamoto, “Energy-efficient sensor and task scheduling for extend-
ing battery life in a sensor node,” in Proceedings of the 1st IEEE International Con-
Jference on Cyber-Physical Systems, Networks and Applications, pp. 96—100, August
2013.

[55] Q. Zhao and N. Yukikazu, “Routing algorithms for preventing energy holes and
improving fault tolerance in wireless sensor networks,” in Proceedings of the 2nd
International Symposium on Computing and Networking, pp. 278-283, December
2014.

[56] Q. Zhao, “Extending the lifetime of wireless sensor networks from the perspective
of sensor scheduling and wireless communication,” in Proceedings of the IEEE In-
ternational Conference on Pervasive Computing and Communications Ph.D. Forum,
pp- 233-235, March 2015.

[57] Q. Zhao and Y. Nakamoto, “Estimating the battery consumption of data processing
in a wireless sensor node,” in Proceedings of the Ist International Symposium on

Computing and Networking, pp. 484-486, December 2013.

97

[58] Q. Zhao and Y. Nakamoto, “Energy-efficient protocol for extending battery life in
wireless sensor networks,” in Proceedings of the 33rd IEEE International Confer-
ence on Distributed System, pp. 268-273, July 2013.

[59] Q. Zhao, Y. Nakamoto, S. Yamada, K. Yamamura, M. Iwata, and M. Kai, “Sensor
scheduling methods for efficient battery usage,” in Proceedings of the Embedded
System Symposium 2012 Japan, pp. 216217, October 2012, in Japanese.

[60] Q. Zhao, Y. Nakamoto, S. Yamada, K. Yamamura, M. Iwata, and M. Kai, “Schedul-
ing sensor io for minimizing battery consumption and voltage drop in a sensor node,”

in Proceedings of the IEEE International Symposium on low-power and high-speed
chips, p. 22, April 2012,

98

