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Abstract

Wireless sensor networks (WSNs) can be flexibly deployed and used to collect data

from various environments. By analyzing the collected data, WSNs can be used for such

tasks as environment monitoring, disaster prevention, and event detection. However, col-

lected datasets sometimes contain outliers, which obviously reduce the accuracy of data

analysis and the performance of the WSN (e.g., the outliers may trigger a false alarm

that generates unnecessary fears). Therefore, removing such outliers before analyzing the

collected data is necessary to improve the performance of the WSNs. Outlier detection is

the process of data analysis. In WSNs, outlier detection involves two major approaches,

which are defined as centralized and distributed. Our proposed algorithms use the dis-

tributed approach, which enables every sensor node to detect outliers on its own and locally.

Therefore, in this doctoral thesis, we propose three algorithms for distributed detection

of outliers, all based on machine learning. The first and second algorithms are based on

supervised and unsupervised learning, respectively. The third is designed to improve the

performance of clustering algorithms categorized as unsupervised learning.

The first algorithm is based on supervised learning. It first uses training data to train

a classifier on a powerful base node and then distributes this classifier into every remote

sensor node. Moreover, this method is founded on a widely used assumption in WSNs in

which the entire deploying environment has the same condition. Using this assumption, we

can simply gather the training data by defining a normal situation in such an environment.

In this simple case, using a user-determined threshold is sufficient. For example, if a WSN

is deployed to monitor the temperature of a store, we can determine a threshold based

on the previously collected normal data. The threshold can be used to detect those data

that represent an outlier. However, when WSN-collected data points contain multiple

features, the method based on a threshold is not appropriate. Because a situation involving

a data point, such as a normal situation or outlier, is commonly determined by multiple

features, when data points have multiple features, a decision bound is used to detect the

outliers. In our study, with the help of training data, we used a logistic regression function

to calculate the decision bound for multiple-feature outlier detection. In simulations in

which the collected dataset contains a different ratio of outliers, this algorithm can provide

a believable decision bound. Moreover, the training of the algorithm is executed on the

sink node, whereas outlier detection is executed on the sensor nodes.

Although the support vector machine (SVM)-based method can provide an inspired

performance under the aforementioned assumption, this assumption is not reasonable

when the deploying environment is very large, as this type of situation is no longer normal.

For example, based on their different functions, all rooms in a building have their own

sub-environments. Therefore, the normal situation standard of the rooms is different. In

this case, preparing training data must involve labeling the situation of considerable data



in many sub-environments. Moreover, the sub-environment situation commonly changes

over time. For example, people regularly enter or leave a room, which makes the work of

preparing training data more difficult. All of these reasons make preparing training data

particularly difficult. As a consequence, unsupervised-learning-based methods, which are

free of training data, are sensible for solving such problems.

The first unsupervised machine learning algorithm we propose is based on the mean-

shift algorithm, which is a clustering algorithm, and we introduce two new distance and

anchor data points in our algorithm for outlier detection. In general, clustering algorithms

are usually used when data lack additional information or prior experience (e.g., data point

labels in the training data). Clustering algorithms are then used to divide a dataset into

clusters, where a cluster is defined as a set of data points having similar properties, such

as density, in many data analysis tasks. Moreover, we can create a criterion for outlier or

event detection by utilizing the results of clustering. In this study, we tested our algorithm

on a real dataset from Intel Lab, and it generated an ideal result. Specifically, it found

outliers with a low false positive rate and high recall. For generality, we also tested our

method on different synthetic datasets.

A clustering algorithm has a drawback in that the number of calculations is high and

clustering accuracy sometimes is poor. To enable the clustering algorithm to be faster and

more accurate, we propose a new algorithm called the peak searching algorithm (PSA).

Traditional clustering algorithms such as EM and k-means algorithms require extensive

iterations to form clusters, which result in slow processing speeds. In addition, clustering

results are less accurate because of the manner in which clusters are formed. To address

these problems, we first propose PSA, which uses Bayesian optimization to find the peaks

of the probability of the dataset to enable clustering algorithms to be faster and more

accurate, and we then adapt PSA to include the EM and k-means algorithms (PSEM

and PSk-means, respectively). Simulation results show that our proposed PSEM and

PSk-means algorithms considerably decreased the number of iterations of clustering to 6.3

times (a reduction of 1.99) and improved clustering accuracy to 1.71 times (an increase of

1.69) as compared to the traditional EM and enhanced version of k-means (k-means++) on

both synthetic datasets. Moreover, in a simulation of WSN application for outlier detection,

PSEM correctly found the outliers in the real dataset. In addition, it decreased iterations by

1.88 times and had a maximum accuracy gain of 1.29 times.
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Chapter 1

Introduction

Wireless sensor networks (WSNs) are widely used in various areas from traditional indus-

trial process monitor systems to individual wearable devices. The use of WSNs involves

various challenges, such as scalability, data transfer efficiency, and data processing capa-

bility. To clarify the nature of these challenges, I introduce the development of WSNs,

beginning with types of data communication, the key weakness of using sensor nodes, and

other challenges in dealing with big data. Among those challenges, outliers are the specific

focus, motivating proposals for methods of improved outlier detection.

1.1 Background

WSNs merge ideas from various fields, including computer science, ubiquitous comput-

ing, communication, and sensing techniques. Therefore, WSNs originally derive from

many motivations. Easy deployment is a significant feature, and traditional WSNs are

widely used in many areas, e.g., industrial process monitoring, intrusion monitoring, and

environmental monitoring. Such WSNs consist of many sensor nodes, which collect infor-

mation from a target environment and transfer the data to a base node. This is convenient

because information is transferred between the sensor nodes and base node by wireless

communication, and sensor nodes can thus be deployed anywhere the wireless signal can

reach. Compared to wired communication, this reduces the maintenance cost of a WSN, by

eliminating the cost of cable maintenance, for example. Recently, with the rapid progress

in development techniques for Internet-ready devices and WSNs, more and more everyday

devices, such as refrigerators, air-conditioning units, and even lights, are equipped with

sensor nodes to form huge WSNs. This has considerably extended the range of applications

for WSNs and made them more attractive.

Sensor nodes are important components of WSNs. A sensor node is a kind of ubiq-

uitous device that integrates sensing, control, computation, and wireless communication

capabilities. All these capabilities share the same CPU and memory, however, so a sensor
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node does not always have sufficient resources to accomplish a complex task by itself.

Therefore, the question of how to use resource-limited sensor nodes to cooperatively ac-

complish a specific, complex task is a major problem in WSNs, as in the example of many

sensor nodes distributed in a factory to monitor and control various process parameters

in industrial production. Configuring an efficient network to assist every sensor node in

accomplishing such tasks is thus a key challenge in improving the capability of WSNs.

This involves scalability and efficient data transfer.

On the other hand, the development of micro electro mechanical systems (MEMS)

has helped sensor nodes become more powerful and smaller, which also makes them a

better technology choice for improving the capability of WSNs. Because of the increasing

capability of sensor nodes, WSNs have also been widely used in various applications to

improve people’s lives, including securing property and ensuring safety. For example,

WSNs are used in smart houses and other buildings to monitor and regulate the living

environment, providing greater comfort and saving energy.

Together with the wide range of novel WSN applications, however, a significant

challenge has risen. Powerful sensor nodes can capture various kinds of large data, e.g.,

HD video streams and voice data have become very common in current WSNs. Hence,

traditional data handling and management cannot keep pace, and centralized data analysis

is no longer adequate. As a result, more time and cost is wasted on data transit, since a

powerful sink node and higher bandwidth are needed to transfer large amounts of complex

data. Recently, many researches ([78], [25], [26] and [126]) try to solve such problems by

cloud computation and edge computation.

1.2 Motivation

Although WSNs are widely used today and data collection is easier than before, an

important challenge remains, as described above: How can we process WSN data more

efficiently and improve the performance of WSN applications? Interestingly, the rich

quantity of data collected by WSNs facilitates application of new techniques to address

this challenge. For example, through machine learning, we can extract experience from

this abundant data and use it to improve performance.

Automatic improvement in the performance of a program from previous experience is

a remarkable capability of machine learning. Moreover, learning from previous experience

can provide a specific solution for a particular user’s behavior, which is difficult without

using machine learning. For example, sensor nodes deployed in vehicle systems are

designed to assist the driver. In this case, machine learning from historical information can

provide a model for stopping a car when its sensors detect danger.

There is much research on machine learning methods for automatic data processing
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in many different applications or types of WSNs. Examples include environmental moni-

toring, industrial safety and control, health monitoring, and disaster prediction ([4], [52],

[87], [117]). There are also some concrete machine learning methods used in WSNs, such

as Shareef, et al. [103] using neural networks to localize objects in WSNs. Bahrepour, et

al. [16] proposed a fire detection method based on a neural network, and Moustapha, et

al. in[84] used a neural network for faulty data detection. In addition to neural networks,

other types of machine learning methods have also been applied in WSNs; for example,

Bahrepour, et al. in [17] used a decision tree for event detection.

Although modern WSNs enable easy data collection, they also increase the probability

of encountering outliers, or abnormal data points that obviously differ greatly from other

data. Outliers mixed together with normal sensor data obviously reduce the performance

of WSNs. For example, an outlier might be considered as an event that triggers an alarm.

Outliers are an important concept in other areas such as the field of statistics, which

offers two famous definitions. The first one, by Hawkins [54], states that “an outlier is an

observation, which deviates so much from other observations as to arouse suspicions that it

was generated by a different mechanism.” According to the second definition, by Barnett

and Lewis [1], “an outlier is an observation (or subset of observations) which appears to

be inconsistent with the remainder of that set of data.” In addition, there are several other

definitions [3], which depend on the specific technique used for outlier detection.

We must pay attentions to outliers because they are very common in WSNs. Outliers

commonly appear in WSN data for two reasons: (i) Sensor nodes are easily fallible, as

WSNs are often deployed in harsh environments ([39], [19], [90], [9]); for example, sensors

might operate at extreme temperature or humidity and thus be susceptible to malfunction.

[91] and [50] show that harsh environments affect a WSN’s capability in that the collected

dataset contains outliers. (ii) Wireless signal noise and malicious attacks also lead to

outliers [63], [53] in WSNs.

We also have to pay attention to outliers because they obviously reduce the capability

of WSNs. For example, some WSN applications involve comparing the collected dataset

with the normal conditions of some particular scenario in order to predict or prevent an

event. If the dataset contains outliers, however, the event may not be correctly predicted

or prevented. Here, we briefly summarize several real-world applications of WSNs that

highlight the importance of outlier detection.

• Environmental monitoring: WSNs are deployed in harsh environments to monitor the

natural environment, e.g., they are used in monitoring volcanoes to prevent disasters

or deployed in forests to monitor forest fires. In such circumstances, however, high

temperature and humidity can obviously affect the performance of sensor nodes,

which may produce outliers. These outliers can trigger false alarms.

• Habitat monitoring: Taking advantage of their mobility, sensor nodes are deployed
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on endangered animals to collect information about their environments and behaviors.

Outliers can prevent correct analysis of such data.

• Health and medical monitoring: Patients are equipped with sensor nodes to monitor

their health status, e.g., sensor nodes are used to collect heart data, which can be used

to cure heart disease. Outlier detection can help distinguish whether an abnormal

record is a sign of potential disease or an outlier.

• Industrial production: WSNs are used in industrial production for monitoring and

controlling various process parameters. Outlier detection can establish whether an

abnormal data point indicates possible malfunction or a missed operation, or is just

an outlier.

• Parcel tracking: To quickly track the location of shipped goods in real time, they

are equipped with sensor nodes by online retailers such as Taobao, Jingdong, and

Amazon. Outlier detection can enhance the accuracy of location tracking.

• Surveillance monitoring: Sensor nodes are deployed in sensitive areas in terms of

security, e.g., airports, train stations, and public squares. For example, these sensor

nodes can be used to detect gases from explosive devices to improve public safety.

Outlier detection in such cases can filter out erroneous information that could lead to

a missed alert or false alarm.

Figure 1.1: Relationships between outlier detection and various applications

In addition, outlier detection can be used for other purposes, such as event detection

([8], [5] [6]), fault detection ([41], [72]), and detection of malware and network intrusions

([111], [35], [59]). Figure 1.1 illustrates the relationships of different applications with

outlier detection [127].

In summary, then, outlier detection is very important for guaranteeing the effectiveness

of WSN applications and can be used in many other applications, as well.
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1.3 Objective

The goal here is a method of automatically detecting outliers in a collected dataset. Specifi-

cally, I apply machine learning (ML) methods for outlier detection in WSNs. ML contains

three basic methods that are supervised leaning, unsupervised learning and reinforcement

learning. In WSNs for outlier detection, the supervised learning and unsupervised learning

are commonly used. ML algorithms are based on statistics and can be used to extract

features from a dataset, such as face features from an image. ML algorithms are not

restricted by fixed thresholds or parameters. Moreover, they can analyze data properties to

find differences between a given data value and its historical norm and then exploit the

differences for some concrete task, such as outlier detection.

On the other hand, we should consider using a distributed way or a centralized way

when we use ML-based outliers detection methods in WSNs. The method based on

supervised learning is much easy for distributed way. For example, a powerful sink node

can learn a model from the training dataset, and then it delivers the model to every sensor

node who use the model for outliers detection.

Much research on automatic outlier detection in WSNs requires a previous sensor

dataset for comparison. For example, methods based on supervised learning use a histori-

cal collected dataset to estimate a model providing an approximation for the underlying

distribution that generated the dataset. These methods then detect outliers by using the

estimated model. The estimated model may become invalid, however, when the environ-

ment changes, because the underlying distribution also changes with the environment.

Supervised learning have a similar weakness. We designed a preliminary experiment

(Chapter 3) that we distributed an algorithm based on supervised learning throughout the

WSN environment. In this experiment, we found several weak points when distributed the

algorithm based on supervised. For example, they require training data in which every data

point has previously been labeled as normal or outlier in order to estimate a model. Such

labels in training data may also become invalid when the environment changes. Moreover,

preparing training data is very time-consuming and expensive.

Therefore, automatic outlier detection in WSNs requires a method that can endure

environmental changes. Methods based on unsupervised learning use only raw data and

can estimate models without requiring a previously collected sensing dataset or prepared

training dataset. Hence, unsupervised learning is more adaptable to environmental changes.

Another challenge of automatic processing for outlier detection is that the collected

dataset can be considered to be generated by a Gaussian mixture model (GMM), consisting

of an unknown number of different Gaussian distributions. In addition, the collected data

points do not have any labels representing the nature of their information. For example,

consider a sensor node transmitting temperature data from the monitored environment to a

sink node. In this case, the sink node cannot judge the state of the environment, because the
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data points provide no additional information, such as their status as normal or abnormal.

Therefore, we need a method of detecting the status of collected data points.

The first method (Chapter 4) applies clustering to the collected WSN dataset and uses

the clustering result to detect outliers. This method uses the mean shift algorithm to cluster

the dataset because it can not only cluster the dataset but also find the mode of each cluster,

as well. Then, the mode of each cluster and the median value of the sensing dataset can be

used to detect which clusters are outliers. To the best of my knowledge, this work is the

first to use the mean shift algorithm to detect outliers in WSN data.

Since each Gaussian distribution in a GMM corresponds to a cluster, if we could know

the number of distributions, a clustering algorithm could appropriately divide a dataset into

different clusters. Moreover, with a correct clustering result, we could gather additional

information on data points in the same cluster according to their similar behaviors. For

example, normal data points might belong to a cluster, while outliers do not belong.

Therefore, the second method covered in this thesis (Chapter 5) involves an algorithm

to improve the capability of clustering algorithms. Given a collected dataset, the proposed

peak searching algorithm (PSA) is a Bayesian optimization strategy to search for the data

point with the maximum probability value in the dataset, called the peak of the dataset. For

example, the peak of a Gaussian distribution is the point corresponding to the mean, and a

GMM has several peaks. Thus, we can obtain the number of Gaussian distributions in a

GMM.

Chapter 2 introduces various related works on outlier detection and assumptions used in

outlier detection. It also examines the development of WSNs using ML methods. The first

novel approach in this thesis, described in Chapter 3, is a preliminary experiment of outlier

detection method based on supervised learning and distributed in a WSN. Simulation

results with that method indicated the need for an outlier detection method based on

unsupervised learning (i.e., a clustering method), given in Chapter 4. The benefit of this

method is that it does not require training data. In Chapter 5, to accelerate the processing

of clustering, Bayesian optimization is applied to obtain the peaks of a GMM. These peaks

enable a clustering method to quickly cluster a WSN dataset. Finally, Chapter 6 presents

the conclusion of this thesis. All these algorithm we proposed in this thesis are related to

outlier detection, although some algorithm may used for other purposes.

6



Chapter 2

An Overview of Outlier Detection
Methods and Machine Learning
Methods Used in Wireless Sensor
Networks (WSNs)

Machine learning (ML) methods can be categorized into supervised learning, unsupervised

learning, and reinforcement learning, depending on whether they require training data.

When a training dataset is used, each data instance has a label to facilitate the purpose

of the learning algorithm. For example, if a dataset containing images of dogs and cats

and the purpose of the learning algorithm is to recognize cats, the images will have labels

indicating whether they show cats or not.

Researchers have also applied ML algorithms for wireless sensor networks (WSNs).

The review by Abu, et al. [10] classifies ML algorithms for WSNs into two categories.

One category addresses functional issues such as routing, localization, clustering, data

aggregation query processing, and medium access control. The other category addresses

non-functional issues such as quality of service, security, and data integrity. According to

their research, ML algorithms can solve many problems and have great potential application

in WSNs.

The last part of this chapter reviews related research on using ML methods in WSNs,

and on outlier detection methods in WSNs, most of which are based on machine learning.

The challenges and assumptions involved in these methods are also considered. Finally,

the chapter reviews related work on clustering for outlier detection.
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2.1 A Brief Introduction to Machine Learning (ML)

An ML algorithm is a computer program that can improve its performance from previous

experience. Such algorithms are widely used in computer science for solving automatic

problems. A classic definition of machine learning was given by Tom Mitchell [81]:

“A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P if its performance at tasks in T , as measured by P ,

improves with experience E.”

2.1.1 Supervised Learning

Supervised learning is a family of ML methods, using the general idea shown in Fig. 2.1.

Appropriate labels are applied in a working dataset, and the labeled portion is divided into

three parts: training data, test data, and validation data. The learning model is applied with

the training dataset. The goal is to select a hypothesis from a hypothesis space containing

every possible model that can represent the relationship between the data and the labels.

Because this space is infinitely large, the training data helps find a probability correct

hypothesis. Finally, the hypothesis is applied with an unlabeled dataset to provide labeled

data instances. For example, given pictures of different fruits, the label of each picture

would indicate the kind of fruit in it.

Figure 2.1: Overview of supervised learning
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Supervised Learning Algorithms in WSNs

Supervised learning provides many algorithms for solving several issues in WSNs, such as

medium access control [18], [66], [106], localization and object targeting [69], [82], [76],

intrusion detection and security [68], [61], [28], [64], query processing and event detection

[104], [115], [62], [124], and data integrity, quality of service (QoS), and fault detection

[96], [108], [85]. Next, some well-known supervised learning algorithms are introduced.

Bayesian Algorithms

Bayesian theory is a very simple, powerful tool in ML because hypotheses can be assigned

weights based on prior probability. First, Bayesian methods calculate explicit probabilities

for hypotheses. For example, Michie, et al. [73] compared decision tree and neural

network methods with a naive Bayesian classifier found they have some similar features.

Second, Bayesian methods can provide an explicit perspective for understanding other

ML algorithms with implicit probabilities. Bishop, et al. in [24] provided a very explicit

explanation from a Bayesian perspective for many ML algorithms. Third, compared to

other ML algorithms, if a Bayesian algorithm fully uses the prior experience, then it require

less data [27]. The features of Bayesian methods as described in [81] may be summarized

as follows.

• Each training instance can incrementally improve or weaken the estimated proba-

bility indicating the correctness of a hypothesis. This is an advantage over other

methods that have to process all data at the same time. Therefore, Bayesian methods

can provide real-time data processing.

• The prior knowledge of a collected dataset is fully utilized, because each hypothesis

has a prior weight. Via calculation, we can update the weight of each hypothesis by

using posterior probability.

• The label of an unlabeled instance can be predicted simply by maximum likelihood

estimation (MLE).

• Even with a high number of dimensions, Bayesian approaches can provided simple,

quick prediction.

• Bayesian methods can provide probabilistic prediction.

K-Nearest Neighbors (k-NN ) Algorithm

This supervised learning algorithm classifies a data instance (called a query point) according

to the labels of neighboring data instances. A positive integer k indicates the number
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of neighbors. For example, if a feature of a data instance is missing, we can predict the

missing value from the similar features of the k nearest data instances. The usual measure

to determine the nearest data neighbors is the Euclidean distance. In a low-dimensional

space, e.g., 2-D or 3-D, the calculation is not very complex. Because of the curse of

dimensionality, however, the calculation is very complex and the results are not very

reliable in a high-dimensional space. Therefore, the k-NN algorithm can only be used

in a WSN in which sensor nodes capture few features for feature selection [23]. In [23],

results were shown for a high-dimensional space (i.e., with more than 10− 15 features).

Because the distance is invariant, the results had low accuracy. Other studies [115], [62]

have shown that the k-NN algorithm is acceptable in a query processing subsystem.

Decision Tree

In decision tree learning, data features are compared with decision conditions in order

to select a specific category. An example of using decision trees for classifying data is

discussed in [15]. A decision tree can provide both quantitative (prediction) and qualitative

(classification) results. Many decision-tree-based applications in WSNs are used to solve

different design challenges. For example, a decision tree can be used to verify link

reliability in a WSN. The drawback of decision tree learning is that it is only suitable for

processing datasets in which every data instance is linearly separable, as decision tree

optimization is NP-complete [100].

Support Vector Machine (SVM)

Support vector machines (SVMs) provide very powerful machine learning algorithms.

Unlike regression, an SVM determines a separation hyperplane with a margin so as to

maximize the gap between different classes, as illustrated in Fig. 2.2. The SVM divides

the dataset into different parts according to data instances called support vectors. The class

of a new data instance is determined by the area in which it falls. An SVM in conjunction

with a kernel function, which projects data to a higher-dimensional space, can efficiently

handle high-dimensional data. An example of an SVM-based application used in WSNs

is detection of malicious behavior by nodes. SVMs also provide an alternative to neural

networks [15] for solving some non-linear problems. WSN security applications based

on SVMs are discussed in [64], [96], [122], [33], and [128]. Sensor node localization is

discussed in[67], [113], and [120]. A more detailed discussion of SVMs is given in [109].

Neural Networks

A neural network consists of a large number of layers linked together. Each layer contains

a number of neurons, and an “active function” is equipped inside every neuron. Data are
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Figure 2.2: Illustration of a support vector machine (SVM)

input to an “input layer,” the first layer, and results are output from an “output layer,” the

last layer. Neural networks can also be used to solve nonlinear problems [21]. In WSNs,

however, it is difficult to deploy a neural network in a distributed fashion, because updating

each decision unit requires a backpropagation neural network (BPNN) [55], an algorithm

based on the chain rule. Moreover, the BPNN is so complex that a single sensor node might

not able to execute it because of data and resource limitations. Therefore, neural networks

are widely used in WSNs in a centralized way, so that they can learn from multiple inputs

at once [74]. Figure 2.3 shows an example of a neural network. A localization application

typically uses information such as the received signal strength indicator (RSSI), time of

arrival (TOA), and time difference of arrival (TDOA). After training the neural network, it

can predict the locations of sensor nodes. Other applications using neural networks include

self-organizing maps and learning vector quantization [65]. In high-dimensional space,

neural networks have an important application for tuning and dimensionality reduction in

big data analysis [56].

Supervised-Learning-Based Outlier Detection in WSNs

ML algorithms can be applied in two classes of problems: quantitative problems such as

using historical temperature to predict future temperature, and qualitative problems such as
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Figure 2.3: Example of a neural network

using credit card activity information to detect whether a credit card has been stolen. Next,

some methods based on supervised learning are considered for outlier detection in WSNs.

Many such methods have been applied. Miao, et al. [80] proposed a method using

sensor node status data (e.g., radio-on time and number of transmitted packets) to detect

potential function faults. Chen, et al. [32] detected faulty data by comparing measured

values with values from neighboring sensor nodes. Other faulty data detection methods are

proposed in [125], [71], [51], and [79]. Most such methods assume that sensor nodes are

deployed in a stable environment.

Another method based on supervised learning was presented by Rajasegarar, et al. [97],

and it provides anomaly detection in WSNs by using a one-class quarter-sphere SVM.

They use training data to fit a hyper-surface, which is then used to detect outliers.

Some previous works have applied very complex ML methods in WSNs, such as neural

networks and decision trees. The learning step is very complex in these ML algorithms, and

it is difficult to update single sensor nodes online. Because the learning step and updating

consume much battery power, these algorithms cannot be distributed in WSNs. They are

conceptually similar to the LR algorithm [94], however, which is not very complex and

relatively easy to distribute. The LR algorithm has not previously been applied for faulty

data detection in WSNs, so this is the focus of my research.
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2.1.2 Unsupervised Learning

As described previously, unsupervised learning does not require training data. Instead,

methods based on unsupervised learning extract underlaying distributions from a given

dataset, which are then assumed to generate the given dataset. This is similar to the

supervised learning depicted in Fig. 2.1, but without the training data. Put another way,

the main focus of unsupervised learning is to directly infer the properties of a dataset,

including the probability density, without the help of a supervisor (for labeling) providing

correct answers or a degree of error for each data instance [47]. Often, the dimension of

a data instance is higher in unsupervised learning than in supervised learning, making

computation more complex. This section introduces unsupervised leaning for clustering

problems. A clustering algorithm is an appropriate method for automatically processing a

dataset. The techniques used in clustering algorithm have been previously surveyed from

the viewpoint of data mining [31] and [102].

In particular, statistical and partitioning-based techniques are unsupervised learning

algorithms widely used in WSNs. Zhang, et al. [121] presented an online local outlier

detection method based on an unsupervised, centered quarter-sphere SVM for WSN

environmental monitoring applications. Other techniques based on unsupervised learning

include approaches based on k-means clustering [95] and principal component analysis

(PCA) [75].
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Figure 2.4: Example of PCA[60]

Regarding the latter, PCA is a popular approach for deriving a low-dimensional set of

features from a large set of variables [60]. It is sometimes used as a dimension reduction

method for regression problems. It can also find latent relationships among different

features, however, and it is thus used as a feature extraction method. Figure 2.4 shows an

example using a dataset called USArrests to represent the relationships between three

types of crimes and population. The original dataset has 50 features, but only four are

of interest for this analysis: Assault, Murder, Rape, and UrbanPop. The results are

apparent in the figure. The locations of the state names in blue indicate scores for the first

two principal components, while the orange arrows indicate loading vectors in terms of the

first two principal components [60].

Outlier Detection Based on Unsupervised Learning

There have been many surveys of outliers and abnormal data detection, by Beckman, et

al. [20], Hodge, et al. [57], Chandola, et al. [31], and Xie, et al. [119]. In these surveys,

unsupervised outlier detection methods can be divided into statistical and non-statistical
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methods. The statistical methods for outlier detection are similar to supervised learning

in ML, because both approaches estimate a model from a given dataset. In contrast, non-

statistical methods do not have to estimate a model. Therefore, related works can indeed

be classified as statistical or non-statistical methods, as discussed below.

Statistical Methods The goal of statistical methods is to build a probability model,

which is assumed to generate the given dataset. According to the concrete methods

for generating such a model, the statistical methods can be divided into parametric and

non-parametric model techniques.

• Parametric Model Techniques: All model-based methods assume that a given

dataset is generated by one or more statistical models, such as a Gaussian model.

Parametric model techniques thus focus on estimating a model and assuming it

generates measured data instances. If a data instance has a low probability by the

estimated model, then it is considered an outlier.

The following three parametric model techniques use statistics to estimate the model.

Usually, a Gaussian model is chosen as the default because it has a well-defined

property from the central limit theorem. Wu, et al. [118] presented a localized

algorithm to identify outlying sensors and events in sensor networks. They use the

spatial relationships of neighboring sensor nodes’ readings to detect the outliers.

Bettencourt, et al. [22] also proposed a local method for detecting outliers in WSNs,

which uses the spatio-temporal correlation of measurements between a sensor and

its neighbors to build a model. Palpanas, et al. [88] proposed using kernel density

estimators to estimate a sensing dataset model on the basis of distance for online

deviation detection in streaming data. Markus, et al. [29] estimated priors of the

assumed statistical model, such as the mean, median and variance, from the collected

dataset in order to fit statistical models.

• Non-Parametric Model Techniques: Non-parametric model techniques require

fewer assumptions because they do not estimate a prior, although they do make

certain assumptions such as smoothness of the probability density. Typical non-

parametric methods include those based on histograms, as in [44] and [45], and

kernel density estimators, as in [101], [89], and [70]. These techniques also use

relationships between data instances, such as the distances between them, and the

density of the dataset.

Subramaniam, et al. [110] enhanced the work of Palpanas, et al. [88] to detect

outliers online by approximating sensing data in a sliding window and using a local

metric-based algorithm to detect outliers in datasets that are hard to distinguish by

distance. Sheng, et al. [107] proposed a non-parametric method using histogram
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information to detect outliers in WSNs. The most significant contribution of their

method is that the use of histogram information reduces the communication cost.

In summary, the statistical methods provide two main benefits: (i) They provide a

probability criterion to determine whether every data instance is an outlier. (ii) They do not

require any extra information, such as labels of data instances to indicate their status. On

the other hand, statistical techniques cannot be deployed in a distributed manner, because

they require many data instances to estimate the mean and variance. Thus, statistical

methods are deployed in a centralized manner in WSNs. Algorithms based on these

techniques provide a probability model. A data point that does not belong to the model is

implied to have low probability and thus considered an outlier.

1.1.1.2.

Non-Statistical Methods Partition-based techniques belong to the category of non-

statistical methods. Assuming a dataset contains several partitions, partition-based tech-

niques divide the dataset into a number of initial partitions, where each partition represents

a cluster and contains at least one data instance. These techniques then use the probability

density or Euclidean distance of every initial partition to transform them into stable final

partitions.

The k-means approach is a well-known, widely used algorithm deriving from partition-

based techniques. Another algorithm using partition-based techniques is k-medoids, in

which data instances near the center are incorporated into the same partition. Other al-

gorithms using partition-based techniques are k-modes, Partitioning Around Medoids

(PAM), Clustering Large Applications (CLARA), and Clustering Large Applications

Based Upon Randomized Search (CLARANS). These partition-based techniques are

effective when a dataset is of small or medium size. Thus, they can be used for WSNs in a

distributed way. On the other hand, since they cannot provide a probability model, they

cannot give a probability criterion for determining whether a data instance is an outlier.

For example, in the case of event detection, these techniques cannot filter the outliers in a

cluster corresponding to an event.

In conclusion, both statistical and non-statistical methods of outlier detection have

some weaknesses regarding their use in WSNs. Statistical techniques require sufficient

data to estimate a model and are thus difficult to use in a distributed way. On the other

hand, although partition-based techniques can be executed in a distributed way in WSNs,

they cannot provide a probability criterion for outlier detection. Moreover, both techniques

require much computing power, which would reduce the life of low-powered sensor

nodes. The PSEM algorithm proposed in Chapter 5 for outlier detection does provide a

probability criterion, and its capability was tested through simulation on a real dataset.
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2.1.3 Reinforcement Learning in WSNs

Reinforcement learning provides a novel solution for automatically improving the ca-

pability of an agent when it interacts with its environment. The agent is similar to the

learning model in supervised learning. During the process of training an agent, if its action

approaches a designed goal, it receives a reward; otherwise, there is no reward. This

training process makes the agent approach the designed goal incrementally. A well-known

algorithm of this type is Q-learning [114], as illustrated in Fig. 2.5. The agent repeat-

edly updates its rewards according to its chosen action. The reward is calculated by the

following equation:

Q(st+1, at+1) = Q(st, at) + γ(r(st, at)−Q(st, at)), (2.1)

where Q(st+1, at+1) is the reward based on action at+1 at environment status st+1, r(st, at)

is the current reward, and γ is the training rate, which controls how fast the agent learns

from its environment.

Figure 2.5: Illustration of reinforcement learning

As mentioned above, reinforcement learning requires agents to interact with their

environment. Therefore, in designing a WSN, sensor nodes can naturally be considered

agents because they can collect measurement data from the environment or WSN. Moreover,

by using the collected information, sensor nodes can apply different strategies, as in WSN

routing problems. Research on routing problems in WSNs is covered in [112], [42], [46],

and [13].

2.2 ML in WSNs

WSNs have two major issues. The first issue is the “dynamic problem,” which refers to

both an internal dynamic property of WSNs and an extremal dynamic property. The second

issue is data processing.
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• Inner dynamic property: As mentioned before, WSNs usually adopt an ad-hoc

network infrastructure. In this type of network configuration, sensor nodes must

automatically and rapidly construct clusters, where a cluster is a small network

configuration composed of several sensor nodes. Sensor nodes in the same cluster

are not selected randomly but rather by some particular process. The process of

clustering is performed according to certain measurements related to wireless signal

characteristics, such as time of arrival, time difference of arrival, signal strength,

angle of arrival, and received signal strength. These measurements change by time,

in particular, as when a sensor node has low battery power. In this case, it will adopt

a power strategy of reducing its wireless signal strength to keep its kernel function

working. This phenomenon may change the cluster configuration of a WSN.

• External dynamic property: This property results from changes in the WSN

deployment environment. In addition, it is necessary to consider temporal and spatial

factors to explain such environmental changes. As an analogy, we can compare a

fact there might be heavy traffic during the day but fewer cars on the road at night.

The spatial factors are related to mobile sensor nodes, like those on an airplane,

whose measurements depend on the airplane’s location.

Regarding the second issue of data processing, collecting data from the environment

is the major function of a WSN. The increasing scale of WSNs results in so much data,

however, that it cannot all be processed promptly. Hence, efficient, correct processing of

collected data becomes an important issue.

In conclusion, by considering the definition of ML, we can see that appropriate ML

methods can solve such dynamic challenges. In this thesis, in particular, I focus on the

external dynamic property.

2.2.1 Summary of Advantages of Using ML in WSNs

• Greater suitability for monitoring dynamic environments: For example, cargo ships

on the Pacific Ocean encounter frequent changes in wind direction wind and tides.

WSNs on cargo ships assist with navigation and enable navigation strategies to

change with the dynamic environment. Machine-learning-based WSNs can provide

a solution.

• Rapid computation: Over the years, the field of ML has gradually accumulated

a series of mathematical optimization models for complicated environments. For

example, by the central limit theorem we can appropriately assume that an environ-

ment follows a Gaussian mixture model (GMM), which can be solved by the EM

algorithm [38], a well-known ML algorithm.
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• Extraction of unexpected relationships among features of a dataset: When data has

many features, it is difficult to recognize relationships among them by observation.

For example, most data collected by WSNs includes spatial and temporal information.

Clearly, establishing the relationships among on spatial and temporal features is very

important for improving the performance of WSNs. In ML methods for dimensional

reduction, such as PCA [116] and t-SNE [77], can solve this problem.

• Increased choice for automation and novel application: ML can facilitate greater

automation in a large-scale WSN. For example, the Internet of things and machine-

to-machine technologies can provide more intelligent applications, and such applica-

tions require less human intervention [12], [99].

• Exploration of the unknown: WSNs can be deployed in very difficult locations, such

as volcanoes, rainforest, marshes, and undersea. WSNs can enable development of

exploratory applications for early detection of volcanic eruptions, forest fires, and

tsunamis [43], as well as detection of anomalies and unexpected behavior patterns.

2.2.2 Challenges of Using ML in WSNs

The previous section introduced several advantages of applying ML in WSNs, which have

excited many researchers. Several challenges, however, remain.

• Resource constraints: The major weakness of sensor nodes is their limited battery,

memory, computational capacity, and communication bandwidth. In contrast, most

ML algorithms are very complex and require much data to support model building,

putting high demand on sensor resources. Therefore, an ML algorithm cannot be

simply and directly used in a WSN.

• High communication cost: Most ML algorithms are not designed to work in a

distributed fashion but on a given dataset. Distributed implementation increases

the volume of radio communication required for collecting data from every sensor

node, and this is the source of most battery consumption in sensor nodes. Thus, the

communication cost is usually several times higher than the computation cost [11].

• Real-time data processing: Data in WSNs can be considered as streams between

sensor nodes and a base station. The environment of each sensor node changes with

time, and thus the streams may also change. On the other hand, ML algorithms are

centralized and process all data at once. Moreover, research [49] shows that direct

computation of probabilities is difficult.

• Dynamic network topology, mobility, and heterogeneity of sensors: Because a

mobile sensor node can change its location at any time, the network has to be able to
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change its configuration. Moreover, if a sensor fails in a node equipped with many

different types of sensors, an ML algorithm cannot give a correct result.

• Increasing scale of WSNs: Developments in related techniques have made large-

scale WSNs possible, with hundreds or even thousands of sensor nodes. A more

appropriate protocol for managing these sensor nodes is necessary. This protocol

should not only control how data is transmitted at the physical level but also support

data processing strategies, such as the use of ML algorithms.

In conclusion, the question of how to efficiently use resources to prolong the lifetime

of a WSN is an issue in adopting ML methods, because they commonly require more

memory and a more powerful CPU to execute complex algorithms. Sensor nodes often

have low memory and a low-capability CPU, making it difficult to process as much data as

possible by an ML algorithm and while maintaining high accuracy result.

2.3 Outlier Detection Methods Based on ML Methods in
WSNs

Many outlier detection methods based on ML were introduced in the above sections. I

emphasize again that outlier detection methods based on ML must pay attention to the

external dynamic property. Moreover, because the concrete circumstances of different en-

vironments vary greatly, outlier detection methods must be based on different assumptions.

Using an appropriate assumption can sometimes simplify the outlier detection problem in

a concrete environment, so this section introduces some important assumptions.

2.3.1 Assumptions for Outlier Detection Methods in WSNs

As in Chapter 1, I again introduce the definition of an outlier, because of its importance.

Although there are many definitions, two are very well-known. The first is by Hawkins

[54]:

Definition 1. An outlier is an observation, which deviates so much from other observations
as to arouse suspicions that it was generated by a different mechanism.

The second is by Barnett and Lewis [1]:

Definition 2. An outlier is an observation (or subset of observations) which appears to be
inconsistent with the remainder of that set of data.

These definitions are very similar, and this thesis uses the following definition derived

from them:
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Definition 3. An outlier is a kind of data instance exhibiting different behaviors from most
other data instances.

The proposed methods for outlier detection are based on this definition.

Next, we show the development of assumptions for outlier detection in WSNs. I

describe the differences between them and use those differences to explain how each

assumption should be used under given conditions.

Assumption 1. Normal data instances in a dataset belong to one cluster, while data
instances from another cluster are considered outliers.

This assumption is quite strict, and this can only be used in very less cases. For

example, when a WSN is used to monitor a static environment. Such an environment has

similar conditions everywhere, e.g., the distribution of temperature is similar everywhere.

However, if the environment contains multi status, e.g., a large room where the distributions

of temperature are different, this assumption cannot be used.

Assumption 2. Using Euclidean distance normal data instances are close to the center of
a cluster, while outliers are far from any such center.

This is an upgraded version of Assumption 1. It applies in the case of a monitored

environment containing a variety of different conditions, e.g., the distributions of tempera-

ture in the kitchen and living room of a home are not the same. This assumption has one

degree of freedom, namely, the distance from a data instance to the center of a cluster. This

degree of freedom is important because it is used to determine which data instance is an

outlier. Therefore, when we do not have enough prior experience of the environment to

specify this degree of freedom, more errors will occur during outlier detection.

Assumption 3. If a cluster contains numerous data instances and has high density, then it
is a normal cluster; otherwise, it is a outlier cluster.

As mentioned above, Assumption 2 is difficult to apply without sufficient prior experi-

ence of the environment. In contrast, Assumption 3 does not require such prior experience,

because it is based on the central limit theorem and the law of large numbers. The central

limit theorem says that the distribution of independent random variables is a normal distri-

bution, even if the original variables themselves are not normally distributed. The law of

large numbers states that when the same experiment is repeated many times, the results

of these experiments converge to the same value. Therefore, we can say that when data

instances share many similar features, those data instances represent a normal state and

follow a normal distribution.

These assumptions obviously become more and more complex in complex situations of

outlier detection. Such complex assumptions also make implementation more complex and
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thus very difficult to execute with scarce sensor node resources. In conclusion, deciding

which assumption to adopt depends not only on the concrete environment status but also on

the type of sensor node, e.g., a powerful sensor node can execute a more complex method.

2.3.2 Challenges of Outlier Detection in WSNs

Although the above assumptions can simplify outlier detection methods, several challenges

must still be addressed. These challenges are summarized below.

• It is difficult to define an overall normal status encompassing every possible normal

status for data instances, because the environment of a WNS is dynamic, with many

possible statuses. This means that the boundary between normal and outlier data is

usually unclear.

• Outliers generated by a malicious attack are likely to be very similar to normal

data instances. Moreover, sensor nodes can easily be attacked because they are

not usually monitored. Therefore, detecting outliers due to malicious attacks is a

challenge.

• The normal status of a monitored environment changes with time. Outlier detection

methods in WSNs should be capable of detecting outliers in a dynamic environment.

• Data instances gathered by sensor nodes contain noise. For example, a temperature

sensor might be shaded by leaves, making the collected data neither an outlier nor

the correct temperature.

These challenges cannot be solved synchronously because they do not often occur. In

designing outlier detection methods for WSNs, however, we should consider solutions for

these challenges.

2.4 Related Works on Outlier Detection

This section describes techniques used in clustering algorithms for automatically dividing

a given dataset into different clusters. There are two main types of clustering approaches.

The first is based on parametric techniques, in which the parameters of a statistical model

must be calculated. The EM algorithm is one such parametric technique. The second type

of clustering approach uses non-parametric techniques, which can cluster a dataset without

calculating the parameters of a statistical model. Typical non-parametric techniques include

the k-means and k-means++ algorithms.
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The following subsections describe these two types of clustering approaches. Be-

cause outlier detection is critical, a later subsection describes relevant outlier detection

approaches.

2.4.1 Parametric Techniques

Parametric techniques assume that a dataset is generated from several parametric models,

such as GMMs. The clustering process is conducted by calculating the parameters of each

Gaussian model and assuming that data instances in the same cluster can be represented

by the same Gaussian model. Usually, a Gaussian model is chosen as the default model,

because it conforms to the central limit theorem. Researchers [118], [29] have used

parametric techniques in which detailed a priori estimates of statistical parameters are

calculated for the assumed statistical model (for example, the mean, median, and variance).

This allows them to fit statistical models.

EM [38] is a well-known, widely used algorithm using parametric techniques to cluster

datasets. The EM algorithm first calculates responses with respect to given parameters,

such as means and variances. This is referred to as the E-step. Then, in the M-step, the

algorithm uses the responses to update the given parameters. These two steps are iteratively

executed until the parameters approach the true parameters of the dataset. Once those

parameters are determined, the Gaussian models in the GMM are fixed, making clustering

possible with the Gaussian models.

Many benefits are associated with parametric techniques. Among the benefits, first,

these techniques provide a probability criterion to determine whether every data instance

belongs to a cluster. Second, they do not require additional information, such as labels on

data instances to indicate their states. On the other hand, parametric techniques cannot be

deployed in a distributed way, because a significant number of data instances is required

to estimate the mean and variance. Thus, outlier detection methods using parametric

techniques are deployed in a centralized way.

2.4.2 Non-Parametric Techniques

Other outlier detection algorithms use non-parametric techniques, which cluster datasets

without using statistical models. These techniques make certain assumptions, such as

density smoothness. They typically use histograms, as in [105], [44], and [45]. Histogram-

based approaches are appropriate for datasets in low-dimensional spaces, because the

computations in these techniques are exponential in the dimensions of the dataset. On the

other hand, this type of approach has low scalability to problems with larger numbers of

data instances and higher-dimensional spaces.

One typical non-parametric cluster algorithm is k-means [58]. In k-means, when
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candidate cluster centers are first provided to the algorithm, the number of centers is equal

to the number of clusters. Then, the algorithm calculates the sum of the distances from

the center of each cluster to every data instance. These two steps are iteratively executed,

and the given cluster centers are updated by minimizing the calculated sum. Once cluster

centers are determined, clusters are formed. Unfortunately, the k-means algorithm cannot

guarantee that the candidate centers will be close to the true cluster centers. The iterative

nature and clustering accuracy of the algorithm are thus not satisfactory.

To overcome the disadvantages of the k-means algorithm, Arthur, et al. [2] proposed

an extension called k-means++. The difference is that k-means++ uses the number of k

values to perform a calculation that identifies appropriate data instances to use as initial

centers. In contrast, in the k-means algorithm the initial centers are randomly selected,

which increases the number of clustering iterations. Therefore, k-means++ requires fewer

iterations than k-means.

In conclusion, there are disadvantages associated with the use of both parametric and

non-parametric techniques in WSNs. Parametric techniques can only estimate a model

when sufficient data is available, and therefore, they are difficult to use in a distributed way.

In contrast, non-parametric techniques can be executed in a distributed way but cannot

provide a probability criterion for detection. Moreover, both techniques need a massive

number of iterations to form clusters, requiring significant computing power, and both use

random data instances to start, causing low accuracy.

2.4.3 Outlier Detection in WSN Applications

Outliers are very common in collected WSN datasets for two reasons. First, sensor nodes

are vulnerable to failure, because WSNs are often deployed in harsh environments [39],

[19], [90], [9], and outliers are commonly found in datasets collected by such WSNs [91],

[50]. Second, wireless signal noise and malicious attacks both create outliers [63], [53],

which obviously reduce WSN capabilities.

Clustering methods are also used for outlier detection in WSN applications. For in-

stance, to robustly estimate the positions of sensor nodes, [14] used the EM algorithm

to iteratively detect outlier measurements. The algorithm was used to calculate variables

that could indicate whether a particular measurement was an outlier. [123] conducted

similar work using the EM algorithm to detect outliers. Additionally, [86] proposed a

novel flow-based outlier detection scheme based on the k-means clustering algorithm. This

approach separates a dataset containing unlabeled flow records into normal and anomalous

clusters. Similar research by [40] used k-means to detect heart disease. Unfortunately,

approaches using the EM and k-means algorithms to detect outliers suffer from the previ-

ously mentioned problems of heavy iteration for clustering and low accuracy. In contrast,

the novel approach introduced in Chapter 5 can solve such problems.
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Chapter 3

Distributed a Supervised Learning
Algorithm in WSNs

A Preliminary Experiment

3.1 Introduction

WSNs that monitor environments are usually used for preventing and predicting events.

For example, WSNs are used to monitor dangerous volcanoes or predict weather changes.

WSNs cooperating with data processing approaches can be used to minimize effects of

disasters. However, faulty sensor data detection is a critical problem in WSNs, because

faulty sensor data can reduce the abilities of WSNs and lead to substantial problems. This

issue has been investigated by many researchers. Previous work [125] proposed two types

of faulty sensor data. One type of fault is due to physical damage of sensor nodes that

is easy to detect and is defined as “function fault”. For example, sensor nodes may have

some physical problems that stop communicating with other sensor nodes. The other fault

type is defined as a “faulty data” that is difficult to detect. Because the sensor node can

be still communicating with other sensor nodes, however, the measurements of the sensor

node are incorrect.

There is a high probability to encounter faulty data when with more and more data is

gathered by advanced WSNs from environment, which motivated us to develop efficient

methods to detect faulty data. Several methods have been proposed. For example, improved

routing algorithms have been used to reduce data communication, centralize data, and han-

dle all of the data in a base node. Although these methods can increase lifetime of WSNs,

it cannot directly obtain result from a remote sensor node. Moreover, these improved

routing algorithms require fixed thresholds or parameters, and the thresholds or parameters

cannot be updated, so these algorithms are not adapted to dynamic environments.

In contrast, machine learning algorithms are based on statistics that dynamically extract
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properties from environment data, thus machine learning algorithms do not restricted by

fixed threshold or parameters. Moreover, machine learning algorithms can analyze these

properties to find changes in data, and then exploit the changes to manipulate thresholds

or parameters so that machine learning algorithms are adapted to dynamic environment.

One problem of applying machine learning algorithms in WSNs is that these algorithms

are very complex, and sensor nodes cannot execute these machine learning algorithms

for a long time. One solution is appropriate distributing these computationally intensive

machine learning algorithms over the WSNs. However, it is difficult to distribute machine

learning algorithms in WSNs, because machine learning algorithms analyze data in a

centralized way, which means the machine learning algorithms need to collect all sensor

nodes’ data.

Furthermore, machine learning algorithms can be applied to two classes of problems;

quantitative problems such as using historical temperature to predict future temperature,

and qualitative problems such as using information of credit cards to detect whether a

credit card has been stolen. Faulty data detection is a qualitative problem, and logistical

regression algorithm (one of machine learning algorithms) can appropriately solve the

problem of faulty data detection in WSNs. Because the logistical regression algorithm

do not need many features of environment, which it can reduce computation complex.

Moreover, we divide the logistical regression algorithm into two steps. The first step

executed on sink node that is a powerful sensor node and other sensor nodes connect with

it. Sink node processes data of all sensor nodes. The second step executed on each sensor

nodes, sensor nodes detect whether new measured data is a faulty data.

3.2 Proposed method

In this section, we first briefly discuss Logistical Regression, and then we describe how to

distribute our logistical regression algorithm in WSNs.
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Figure 3.1: Relationship Between Learning Step and Executing Step

3.2.1 Logistic Regression

Logistical Regression (LR) algorithm is typically used to solve qualitative problems such

as classification problems. A machine learning algorithms contain two steps, which are

Learning and execution steps, so as the LR algorithm. We respectively introduce these two

steps and the Fig. 3.1 shows the relationship between them.

Learning step

In the Learning step, parameters w of LR algorithm are calculated using the training data

(which contains input data x(i) and its corresponding result y(i)) to make difference between

y(i) and ŷ(i) as small as possible. The ŷ(i) is estimation of y(i), which can be represented

by sigmoid function. Thus, if we gather a appropriate w in the learning step, we can use

LR algorithm to calculate corresponding ŷ(new) of new input data x(new).

Logistical regression is used to predict a qualitative result. For example, using temper-

ature data gathered by a WSN and a given qualitative result, we can fit a line that divides

the data into two classes indicating the qualitative result. Then, this line can be used to

classify new data into their corresponding class, and predict the qualitative result of this

new data. However, a data falls into which side needs a quantity of probability to present.

For example, a data has 90% probability fall into normal side, and we can predict this data

is a normal one. Therefore, the decision line and the probability presentation are the basic
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requirements of the LR algorithm. Hence, a function that can present the decision line and

probability is needed. Fortunately, the sigmoid function satisfies these requirements, and is

defined as

P (x(i)) =
1

1 + e−wx(i)
; i ∈ (1, · · · ,m). (3.1)

Suppose that we have m sets of training data (x(i), y(i)). Each vector x(i) has n input

values that are used to calculate the probability of qualitative result P (x(i)). For example

x(i) has n x
(i)
j j ∈ (1, 2, · · · , n). Each x

(i)
j is one type of gathered data, e.g., x

(i)
1 could

represent temperature and x
(i)
2 could represent the data transmission time. Each x

(i)
j must

be gathered in the same situation i, otherwise LR cannot predict the qualitative result. For

example, at time i there is relationship between x
(i)
1 and x

(i)
2 that can be used to predict

the qualitative result, but there is less correlation between x
(i)
1 and x

(i+1)
2 . y(i) is a given

qualitative result. The purpose of this function is to make the value of P (x(i)) approach

y(i) by optimizing the parameter w, which has n elements wj j ∈ (1, 2, · · · , n) that are

associated with the x
(i)
j . To optimize w, we use a mathematical equation called a likelihood

function as follows.

l(w) =
m∏
i=1

P (x(i))y
(i)

[1− P (x(i))]1−y(i) . (3.2)

In this function, we introduce a variable y(i) that reduces P (x(i)) when it is incorrect.

y(i) is defined as

y(i) =

⎧⎨
⎩0 if P (x(i)) < threshold

1 otherwise.
(3.3)

To calculate the optimized value of the likelihood function, instead of obtaining the

maximum, we take log of the above function and construct the cost function

J(w) = − 1

m

m∑
i=1

[y(i) log(P (x(i)))

− (1− y(i)) log(1− P (x(i)))]. (3.4)

Then, we calculate the minimum value of the cost function. The figure of cost function

is shown in Fig. 3.2. In this figure, it shows the function is convergence, and the function

has a minimum value at the intersection of the two curves.

To find the minimum value of J(w), we must solve
∂J(w)
∂w(j)

= 0. The partial derivative

of J(w) with respect to w is
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Figure 3.2: Figure of cos function

∂J(w)

∂wj

=
1

m

m∑
i=1

[P (x(i))− y(i)]x
(i)
j (3.5)

=
1

m
(x(i))T [P (x(i))w)− y(i)]. (3.6)

Furthermore, we can optimize w using

w
(new)
j = wj − α

m

m∑
i=1

[P (x(i))− y(i)]x
(i)
j (3.7)

w(new) = w− α

m
(x(i))T [P (x(i)w)− y(i)]. (3.8)

Execution step

α is a constant that controls the training speed. In the execution step, we apply the

optimized w and new input data to calculate P (x(i)) using the sigmoid function. Then, we

can also determine y, which predicts the qualitative result for the new input data.

We give an example of LR algorithm by Fig.3.1. Supposing we have m sets of training

data (x(i), y(i)) i ∈ (1, 2, · · · ,m), and x(i) = (x
(i)
1 , x

(i)
2 , · · · , x(i)

j ) j ∈ (1, 2, · · · , n). Each

x
(i)
j indicates one feature (e.g., temperature or humidity). y(i) is a given qualitative result

corresponding to the x(i). Parameter of x(i) is w who also has n elements, and initialization

value of each element is 0. We optimize parameter w by training data. Then, we use the

optimized w to predict a qualitative result ŷ(i). Hence, the final goal of the LR algorithm is

to find optimal parameter w using the training data (x(i), y(i)). In conclusion, learning step

optimizes parameter w, and execution step predicts qualitative result ŷ.
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3.2.2 Algorithm

We deploy learning step in the sink node of WSNs. Every sensor node sends measured

data, which is input data, to sink node, then sink node executes the learning step, and sink

node sends optimized LR algorithm to corresponding sensor nodes. The Learning step of

the LR algorithm is as follows.

Algorithm 1: Logistical Regression (Learning step)

1: Set wj ← 0; D ← 0; i ∈ (1, 2, · · · ,m); j ∈ (1, 2, · · · , n)
2: while i < m do
3: while j < n do
4: D ← D + [ŷ(i) − y(i)]x

(i)
j ;

5: wj = wj − α
m
D;

6: j ← j + 1;

7: end while
8: i← i+ 1;

9: end while

In algorithm1, α is a constant that controls learning speed of optimizing parameter w.

D is a temporary value that used to update the w. ŷ(i) is an estimation of y(i), which can

be represented by sigmoid function and you can find the detail in appendix. After learning

step, as shown in Fig.3.3, sink node sends optimized w to every cooperating sensor nodes.

Then, each sensor node executes the execution step. The algorithm of execution step is

described as follows.

Figure 3.3: WSN Structure
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Algorithm 2: Linear Regression execution step
1: Set Y ← 0

2: if
(
ŷ(i) > threshold

)
then

3: Y = 1

4: else
5: Y = 0

6: end if

In algorithm 2, Y is a binary value that indicates status of measured data of sensor

nodes. Y = 1 indicates faulty measured sensor data and Y = 0 indicates normal measured

sensor data. The value of Y is decided by a ‘threshold’. A higher threshold corresponds to

a higher accuracy. However, an excessively higher threshold leads to overfitting, which

can result in false positive (normal sensor data is classed as faulty). In this paper, we set

the default value of threshold to 0.5, which is commonly used in in machine learning area.

3.3 Simulation

When a WSN is deployed in an environment to realize some certain application, if measured

data collected by sensor nodes contain a lot of faulty data, the faulty data have significant

effects on efficiency and accuracy. In this paper, we suppose that sensor nodes are gathering

data, such as temperature and humidity, from its deployed environment. Then, sensor

nodes transmit the measured data to its sink node. In the sink node, we use the measured

data to train LR algorithm first. Then, sink node send the optimized LR algorithm to sensor

nodes, and sensor nodes use the LR algorithm to detect the status of new measured data.

3.3.1 Simulation introduction

Our simulation use three different synthetic data sets to test robustness of our method.

Each of the three synthetic data sets was generated from normal distribution with σ ∈
(0.2, 0.5, 1) respectively. σ is the variance of a Gaussian distribution, and it controls the

amount of faulty data, a higher σ corresponds to higher amount of faulty data. Moreover,

each σ has two different sizes of training sets, which respectively contains 200 and 600

data, to investigate the influence of the size of the training set on w. Every synthetic data set

contains two variables, temperature and humidity. The mean of temperature is 36.5C◦, and

the mean of humidity is 20%. We also prepare test data set to assess prediction accuracy of

our method, in which the data status (normal or faulty) of x(i) in test sets is known. We use

the optimized LR algorithm and x(i) in test set to predict the status of of x(i) of test sets.

Because the status of x(i) in test sets is known, we can assess prediction accuracy of our
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method. Additionally, the test data contains 500 data.

3.3.2 Simulation results

Figures 3.4–3.15 show the prediction results by our method under different data set, where

σ are 0.2, 0.5 and 1. The triangles in every figures indicate the normal sensor data, and the

crosses indicate outliers. The top plot of each figure shows that the LR algorithm exploits

training data to estimate a bounder line that surrounds normal sensor data. The bottom

plot of each figure shows that the result of sensor nodes use the optimized LR algorithm,

the normal data is bounded by a boundary line.

Figure 3.4: Result of Training data is 200, σ = 0.2
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Figure 3.5: Result of Training data is 200, σ = 0.2

Figure 3.6: Result of Training data is 600, σ = 0.2
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Figure 3.7: Result of Training data is 600, σ = 0.2

Figure 3.8: Result of Training data is 200, σ = 0.5
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Figure 3.9: Result of Training data is 200, σ = 0.5

Figure 3.10: Result of Training data is 600, σ = 0.5
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Figure 3.11: Result of Training data is 600, σ = 0.5

Figure 3.12: Result of Training data is 200, σ = 1
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Figure 3.13: Result of Training data is 200, σ = 1

Figure 3.14: Result of Training data is 600, σ = 1
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Figure 3.15: Result of Training data is 600, σ = 1

As shown in the figures, the learning step in the sink node can properly optimize LR

algorithm. We can see this fact in every top plot of figures, that the bounder line can

precisely bound normal data. Then, this optimized LR algorithm is sent to sensor node

who can utilize the optimized LR algorithm to predict the status of sensor data. We can

see the prediction result in bottom plot of every figures. Table 3.1 shows the prediction

accuracy result of simulation.

Table 3.1: Prediction Accuracy Result

Size of Data σ = 0.2 σ = 0.5 σ = 1

200 95.8% 89.6% 95.20%

400 99% 83.80% 88.80%

600 98.20% 87.00% 96.60%

When σ = 0.2, there is more normal data than faulty data. It is easy to train LR

algorithm to distinguish normal and faulty data. The bottom plot in Fig.3.5 and Fig.3.6

Fig.3.7 show that sensor nodes precisely classified the sensor data. We also can see a high

prediction accuracy of LR algorithm under the condition σ is 0.2. A contrast case is that

when σ is equal to 1. In this condition, there is more faulty data and less normal data,

which is shown in Fig.3.12, 3.13 and Fig. 3.14, 3.15. We can see the prediction results in

both bottoms of Fig.3.13 and Fig.3.15 are also successful. These two simulation results

show that the LR algorithm is very efficient and accurate when there is a big difference
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between two classes. This can be proved when σ is equal to 0.5, thus the amount of normal

data and faulty data is similar. We can see the prediction accuracy of LR algorithm is

relatively low compared with σ = 0.2 and σ = 1. The comparison result is shown in

Table3.1.

In this preliminary experiment, we found that a LR can be used to detect outliers.

Preparing a training dataset is very difficult, we assume the all the data is normal in the first

beginning time. Therefore, if the environment changes or some sensor nodes are faulty

after a period, we cannot simply prepare a set of training data. Moreover, we assume to

use a powerful sensor node to train this LR. Therefore, a single sensor node has no ability

to change this trained model. For solving theses problems, we consider the unsupervised

learning is much better, because it does not need training data.
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Chapter 4

An Mean-shift Algorithm Based Outlier
Detection in WSNs

4.1 Introduction

In this section, we first introduce types of outliers and then introduce the related concepts

and assumption in our proposed method. Finally, we introduce the clustering algorithm

that we used in our method: “mean-shift algorithm”.

4.1.1 Types of Outliers

Outliers are usually categorized as “global outliers” and “local outliers” (Fig. 4.1). Global

outliers significantly deviate from the rest of the data points[53]. They are the simplest

type of outliers and can be easily removed with some filters, such as “anchor data”, that

will be used in our method. On the other hand, local outliers are data points whose

pattern significantly deviates from the pattern of the local area, so additional information

of neighbor data points is needed for detecting local outliers. Therefore, detecting local

outliers is more difficult than detecting global outliers.

4.1.2 Related Concepts and Assumption

There are three main indexes to show the center of a dataset: “mean value”, “median

value”, and “mode”.

The mean value is the average of the set of numbers, which can be easily calculated.

However, it is easily affected by outliers because it becomes larger or smaller due to the

effect of outliers.

The median value is the middle value in numerical order of a dataset. It is not observably

affected by the outliers because if a dataset contains outliers, the median value is still
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Figure 4.1: Global Outliers and Local Outliers

decided by the majority of the non-outlier data points. Hence, most data points of a dataset

are around the median value of the dataset.

The mode is a point that corresponds to the maximum probability density of a dataset.

Hence, most data points are around the mode, which is similar to the median. However,

calculating the mode of the dataset needs a lot of calculations. We can get an approximate

value for the mode by using the median of the dataset.

In this paper, we assume that data points from a similar environment are generated by

the same probability density function (PDF). Moreover, outliers are generated by other

PDFs. The collected sensing dataset is mixed with normal data points and outliers. As

stated above, the majority of data points should be around the center of the PDF. Moreover,

the probability of outliers occurring is very low [92]. Hence, most of the data points in the

dataset can be considered as normal data points, and they are around the center of the PDF.

We choose the median value of the dataset to approximately represent the center of the

PDF that generated the normal data points.

4.1.3 Mean-Shift Algorithm

The mean-shift algorithm [36] is an unsupervised learning based cluster algorithm devel-

oped by Fukunaga and Hostetler [48] in 1975. It is an intuitive “mode” seeking method.

Cheng et al. [34] showed that the mean-shift algorithm procedure is equivalent to the

gradient ascent by kernel density estimation. The result of kernel density estimation is the
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mode.

First, we introduce the general idea of the mean-shift algorithm. Assuming that a

dataset contains N data points in an M -dimension Euclidean space, each data point

contains M features, such as xi = (xi1, . . . , xiM), i = (1, . . . , N). We now explain a

window, radius, mean-shift vector, and mode in the mean-shift algorithm.

A window is a subset of the dataset that has center xj and radius h (Fig. 4.2). It contains

data points within a radius of h. The window notation in this paper is win(xj, h). Every

data point in a dataset can be considered as a center; hence, every data point can generate a

window with radius h when initiating a mean-shift algorithm.

The radius h of a window is the only parameter of the mean-shift algorithm. The

appropriate radius h is the deviation of the dataset [37]. Moreover, a stable dataset density

is needed to get radius h to adapt to the dynamic environment. Hence, we introduce anchor

data points.

The mean-shift vector is calculated within a window. It decides the distance (length of

mean-shift vector) and direction for moving the window from the previous center (xj) to

the next center (xj+1). At the next center, the mean-shift repeats to make a new window

and calculate the mean-shift vector of the new window. This process will terminate when

the length of the mean-shift vector approaches zero. The mean-shift vector is calculated

with the density gradient of the kernel density estimator according to Chengs study [34].

We show the derivations in the following subsection.

The mode is the center where a window finally stops moving. Data points swept by the

movement of the window are contained in the same cluster because they have the same

mode (center). Moreover, if some windows share the same mode (i.e. the modes are very

close together), clusters generated by those windows are merged into one cluster. Figure

4.2 shows the moving window procedure. The mode window is indicated by win (cl, h),
where cl is called the mode of cluster l.

Kernel Density Estimator for Window

By referring to Fig. 4.2, the total kernel density estimation of probability density at window

win(xj, h) [24] is

p (xj) =
1

n(j)hM

n(j)∑
i=1

K

(
xj − xi

h

)
, (4.1)

where n(j) is the total number of data points in win(xj, h).

K (•) is defined as the kernel function. In accordance with the radially symmetric

mentioned by Cheng [34], we are only interested in kernel function K(u) that satisfies

K (u) = ck
(‖u‖2) , (4.2)
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Figure 4.2: Mean-Shift migration from xj to mode

where k (‖u‖2) is called profile of K (•). c is the positive normalization constant that

assures the integration of the kernel function K (u) equals one. By utilizing the profile, we

have

p (xj) =
c

n(j)hM

n(j)∑
i=1

k

(∥∥∥∥xj − xi

h

∥∥∥∥
2
)

(4.3)

This is the kernel density estimator at win(xj, h).

Calculating Mean-shift Vector of Window by using Density Gradient

To calculate the mean-shift vector of a window, we calculate the density gradient of p (xj),

and we set g (s) = −k′ (s).

∇p (xj) =
2c

hM+2

n(j)∑
i=1

(xi − xj) g

(∥∥∥∥xj − xi

h

∥∥∥∥
2
)

=
2c

hM+2

⎡
⎣n(j)∑

i=1

g

(∥∥∥∥xj − xi

h

∥∥∥∥
2
)⎤
⎦×

⎡
⎣
∑n(j)

i=1 xig
(∥∥ xj−xi

h

∥∥2
)

∑n(j)

i=1 g
(∥∥ xj−xi

h

∥∥2
) − xj

⎤
⎦ (4.4)

The second term of Eq. 4.4 is mean-shift vector m (xj) in win(xj, h).

m (xj) =

∑n(j)

i=1 g
(∥∥ xj−xi

h

∥∥2
)

xi∑n(j)

i=1 g
(∥∥ xj−xi

h

∥∥2
) − xj (4.5)
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The mean-shift vector always points in the direction of the increasing maximum density as

shown in Fig. 4.2. Since xj and the mean-shift vector are known, the next candidate center

point of a window is calculated as follows:

xj+1 = m (xj) + xj (4.6)

=

∑n(j)

i=1 g
(∥∥ xj−xi

h

∥∥2
)

xi∑n(j)

i=1 g
(∥∥ xj−xi

h

∥∥2
)

Hence, the next window is win(xj+1, h). Moreover, according to Cheng [34], no matter

from which data point the calculation starts, the final result is convergent at the mode of

probability density of the observed data.

4.2 Local Outlier Detection Method

In this section, we introduce our local outlier detection method. We assume that the

WSN in our algorithm is a standard class1 -based WSN. In accordance with the similar

environment, the sensor nodes and class head (CH) are distributed into different classes.

Sensor nodes communicate with their CH, which transmits the gathered sensing data points

to the base station.

Supposing a WSN contains P classes and one class has W (p), (p ∈ [1, · · · , P ]) sensor

nodes, each sensor node transmits G data points to CH in time period t. Hence, each CH

receives a set of data points, whose size is N (p) = W (p) ×G. One data point xi contains

M features, xi = (xi1, . . . , xiM), i = (1, . . . , N (p)).

The goal of the method is to cluster collected sensing data points of CH into different

clusters and then find which cluster is an outlier in the sensing dataset. We add two main

features to accompany the mean-shift algorithm: (1) anchor data points to fix the density

of sensing dataset for each time period to efficiently utilize the mean-shift algorithm and

(2) a labeling technique to classify the properties of cluster as “normal” or “outliers” in an

unsupervised manner. The algorithm is divided into three steps.

4.2.1 Step 1: Fixing Density of Sensing Data and Detecting Global
Outliers

We define the density of a collected sensing dataset at time period t as follows:

dens(p) =
N (p)

ΠM
m=1R

(p)
m

, (4.7)

1 In WSNs, a group of sensor nodes is called a ‘cluster.’ In this paper, we call it a ‘class’ to distinguish it

from ‘cluster’ in the mean-shift algorithm.
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where R
(p)
m is the difference between the maximum and minimum value of the data points’

feature m of class p at time period t. The value range of feature m of the sensing dataset is

different in different time periods because the environment is different in different time

periods. Thus, the density changes along with the time period.

Moreover, when the density is changing, it is not appropriate to use the mean-shift

algorithm because mean-shift is sensitive to the density of a dataset, and variable density of

the sensing dataset reduces the accuracy of the clustering result of the mean-shift algorithm.

Furthermore, an incorrect clustering result will reduce the accuracy of outlier detection. To

avoid the density changes in such a situation, we define the anchor data points, low anchor

L
(p)
m , and high anchor H

(p)
m for each feature m of class p. The user decides the value of the

anchor data point of L
(p)
m and H

(p)
m for each feature m arbitrarily. Thus, a fixed density uses

anchor data points as follows

ˆdens
(p)

=
N (p)

ΠM
m=1(H

(p)
m − L

(p)
m )

, (4.8)

These anchor data points can also remove global, e.g., if a data point is lower than L
(p)
m

or larger than H
(p)
m . For example, in an office, the normal temperature range is from 20 ◦C

to 30 ◦C. We set two anchor data points to 15◦C and 35◦C. A measurement of 10◦C would

be a global outlier.

4.2.2 Step 2: Clustering with Mean-Shift Algorithm

The purpose of this step is to cluster the collected sensing data of class p at time period t

into different clusters by mean-shift algorithm. Moreover, we have to update radius ht at

every time period to guarantee the accuracy of the clustering result. Algorithm 1 shows the

procedure.

45



Algorithm 3: Mean-Shift based Clustering

1 for sensing dataset at each t do
2 calculating radius ht at time period t ;

3 end
4 for data point xi, i ∈ (1, · · · , N (p)) do
5 execute the mean-shift algorithm ;

6 by moving win(xi, ht) to win(c(p)l , ht) ;

7 data swept by win(c(p)l , ht) is defined as cluster C
(p)
l ;

8 end
9 if some windows share the same c(p) then

10 merge the clusters generated by those windows;

11 end

As explained in Sect. 3.2, the mean-shift algorithm can find the mode of a cluster. First,

CH calculates radius ht in time period t according to [37]. Then, the mean-shift algorithm

clusters the sensing dataset by moving win(xi, ht), i ∈ (1, · · · , N (p)) to win(c(p)l , ht),

where l indicates the number of clusters. If window win(xj, ht) finally stops at c(p)l , that

data points that are swept by the window is considered as cluster C
(p)
l . Moreover, if the

distance between some modes of clusters is very small, we consider that these clusters

share the same mode and merge those clusters. The new mode of merged cluster is the

average of mode of each cluster before merging.

4.2.3 Step 3: Local Outlier Labeling Technique

We define two distances with the mode of each cluster and the median value of the collected

sensing dataset, respectively. WSNs use these two distances to detect outliers. The detail

of the two distances and how to detect outliers are as follows.

We define a Euclidean distance of cluster l that is the average distance from the mode

c(p)l of cluster l to every data point in the collected sensing dataset of class p. We write this

Euclidean distance as

Dis
(p)
l =

∑N(p)

i=1

∥∥∥(x(p)
i − c(p)l )

∥∥∥
N (p)

(4.9)

M(p)
t is the median value of the collected sensing dataset of class p at time period t.

We define another Euclidean distance that is the average distance from M(p)
t to every data

point in the collected sensing dataset of class p. We write it as
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DIS(p) =

∑N(p)

i=1

∥∥∥x(p)
i −M(p)

t

∥∥∥
N (p)

(4.10)

We also find that Dis
(p)
l is always larger or equal to DIS(p). The proof is as follows.

The sensing dataset contains two parts. xi : i = 1, · · · , N is the normal part of the dataset,

and yj : j = 1, · · · , n is the outlier part of the dataset. Mt is the median value of the

dataset, and N � n. For the normal part, ρ̂ = E(|xi −Mt|) is the average deviation of the

normal data points, and ρ = max{|xi −Mt|}. For the outlier part, R̂ = E(|yj −Mt|) is

the average deviation of outliers, and R = min{|yj −Mt|}. c(l) is the mode of cluster l,

and the distance from every data point to c(l) is:

Dis
(p)
l =

N∑
i=1

∣∣xi − c(l)
∣∣+ n∑

j=1

∣∣yj − c(l)
∣∣

≥
N∑
i=1

(∣∣c(l) −Mt

∣∣− |xi −Mt|
)

≥ N(R− ρ̂) (4.11)

On the other hand, the distance from every data point to Mt is:

DIS(p) =
N∑
i=1

|xi −Mt|+
n∑

j=1

∣∣yj −Mt

∣∣
= Nρ̂+ nR̂ (4.12)

Then, the difference between Dis
(p)
l and DIS(p) satisfies:

Dis
(p)
l −DIS(p) ≥ N(R− 2ρ̂)− nR̂ (4.13)

We suppose N(R− 2ρ̂)− nR̂ ≥ 0, then:

R− 2ρ̂

R̂
≥ n

N
(4.14)

Since R� ρ̂ and N � n, then R

R̂
− 2 ρ̂

R̂
� 0 and R

R̂
− 2 ρ̂

R̂
≥ n

N
. Thus, our assumption that

R−2ρ̂

R̂
≥ n

N
is true. We get Dis

(p)
l ≥ DIS(p).

According to our assumption that data from a similar environment is generated by

the same PDF, the sensing data of every sensor node in the same class has the same PDF

because sensor nodes in similar environments are classified into the same class. Hence,

the center of every cluster (the mode of each cluster) is similar to the center of the entire

sensing dataset (the median value of the entire dataset) of the class. Thus, if cluster l is

normal, Dis
(p)
l should be close to DIS(p). In other words, the ratio of Dis

(p)
l to DIS(p)

should be close to 1. Moreover, because Dis
(p)
l ≥ DIS(p), we set threshold ε, which is a
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very small empirical value, and use discrimination
Dis

(p)
l

DIS(p) − 1 ≤ ε to detect outliers. The

algorithm for detecting outliers is as follows.

Algorithm 4: Outlier detection of cluster ;

1 for each cluster Dis
(p)
l do

2 if Dis
(p)
l

DIS(p) − 1 ≤ ε then
3 cluster l is labeled as normal ;

4 else
5 cluster l is labeled as outlier

6 end
7 end

4.3 Simulations

In this section, we show our simulation results based on a real dataset from the Intel

Berkeley Research Laboratory [7] and a synthetic dataset. We also compare our simulation

results with those of Zhang et al. [121]. They detected outliers on the basis of an

unsupervised method, since they used the same real dataset as we did, and we generate

synthetic dataset using the same method. Moreover, we show the generality of the proposed

method and compare simulation results with and without setting the anchor data since this

is an important characteristic of our method.

4.3.1 Simulation Results of Real Dataset

In this subsection, we simulate our method on the real dataset from Intel Berkeley Research

Laboratory as shown in Fig. 4.4. Each sensor node in the WSN records temperature,

humidity, light, and voltage once every 31 seconds. We choose the same sensor nodes

1, 2, 33, 34, 35, 36, and 37 inside the circle (35 is the CH), and we also use two features,

the temperature and humidity of 5th March 2004, which are the same as Zhang’s work.

In the simulation, we only considered two features for each data point: temperature and

humidity. Each sensor node contained 5000 data points, which are shown in Fig. 4.3

The normal data ranges and the averages of temperature and humidity are shown in

Table 4.1. According to the settings of Table 4.1, we set four types of outliers, which are

shown in Table 4.2. The four types of outlier cover the cases where outliers are close

to or far away from the normal data range. Moreover, we respectively generate datasets

containing 5%, 10%, 15%, 20%, and 25% outliers for every type of outlier.

• Outlier1 is near the normal data, some outliers are even inside the normal range.
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Figure 4.3: Dataset from Intel Berkeley Research Laboratory

Table 4.1: Normal Data Setting

Range Average

Temperature (◦C) 21.32 - 28.14 23.14

Humidity (%) 26.39∼44.02 37.69

• Outlier2 is far from the normal data; however, they cannot be removed by anchor

data.

• Outlier3 is such that the value of temperature is normal; however, the value of the

humidity is abnormal.

• Outlier4 is the opposite setting of Outlier3.

The following terms are used to access our method.

• True Positives (TPs) are true outliers that were detected as outliers by our method.

• False Positives (FPs) are true normal samples that are wrongly detected as outliers.

• True Negatives (TNs) are true normal samples that were detected as outliers.

• False Negatives (FNs) are true outliers that are detected as normal samples.
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Figure 4.4: Sensor nodes deployed in Intel Berkeley Research Laboratory [7]

Table 4.2: Outlier Data Setting

Type of Outlier Outlier1 Outlier2 Outlier3 Oulier4

Temperature (◦C) 26∼30 31∼35 22∼28 31∼35

Humidity (%) 42∼46 47∼52 47∼52 27∼44

The false positive rate (FPR) is the ratio of the normal data detected as outliers to the

total true normal data, which is FP
FP+TN

, and it estimates the ability of the algorithm to

distinguish outliers and normal data. We compare our method’s FPR with the FPR of

Zhang’s work; the result is shown in Fig. 4.5.

Fig. 4.5 shows that our method has ideal performance on outlier2, outlier3, and

outlier4. However, outlier2 and outlier3 have similar curves so that outlier2 is blocked

by outlier3. The FPR of outlier2, outlier3, and outlier4 kept below 3.3% when the

outliers’ percentage was less than or equal to 20%. Even in extreme conditions where a

dataset contains 25% outliers, the worst case (outliers1) in our simulation has an FPR

of about 12.8%. According to the results of the comparison in Fig. 4.5, we consider that

Zhang’s work had easier simulation conditions than ours in two ways: (1) they mentioned

that outliers were distant from other data but did not mention how far away they were and

(2) they did not test the performance when the partial feature of a data point is abnormal

when performed on a real dataset, such as outlier3 and outlier4.

Moreover, outlier2, outlier3, and outlier4 have similar results to those of our simula-

tion. Outlier2 can easily be detected as outliers because its temperature and humidity are
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Figure 4.5: Simulation results using real dataset of Intel Berkeley Research Laboratory [7]

compared with those of Zhang et al. [121].

both abnormal. Although features of outlier3 and outlier4 are partially normal, we can

imagine that the distributions of outlier3 and outlier4 deviated from the normal range in

2-Dimension. The results of outlier2, outlier3, and outlier4 prove that our method can

easily be adapted to different types of outliers.

Another fact (Fig. 4.5) is that more outliers significantly affect the FPR of our method.

In outlier1, with the proportion of outliers increasing, more and more outliers appear in

the normal range because some part of outlier1 overlaps the normal range. Hence, a lot of

normal data points are easily detected as outliers. Similar results also appear in outlier2,

outlier3, and outlier4 because with the proportion of outliers increasing, a great many

outliers appear near to the normal range. The FPR of our method decreases when the

proportion of outliers increases because normal data points are incorrectly detected as

outliers. On the other hand, it can be seen that our method is sensitive to outliers, and we

consider that it is a low tolerance feature for outliers of our method. The low tolerance for

outliers can be estimated by another estimator called recall.

Recall is equal to TP
FN+TP

and acts as one estimator that evaluates how many true

outliers are correctly detected. The recall of our simulation is shown in Fig. 4.6.

This figure shows that all types of outliers have recall near 98% when the proportion

of outliers is 5%. The recalls of outlier2, outlier3, and outlier4 are around 96% with

increasing proportion of outliers. Even the worst case with outlier1 with 25% outliers,
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Figure 4.6: Simulation results of Recall for Fig. 4.6.

the recall is near 85%. The simulation results of every type show that our method has a

very high accuracy for detecting outliers, and this is also evidence that our method has low

tolerance for outliers.

Moreover, we also estimated the precision and F1-score of our method in Fig.
4.7 and Fig. 4.8. According to the simulation results, we can see that the precsion
and F1-score are decresing when outliers are increasing. However, both of these
measurements keep a high value on this testing dataset.

4.3.2 Simulation Results of Synthetic Datasets

We use the same method to generate synthetic data as Zhang et al. [121] did. Synthetic

sensing data are generated by mixing three Gaussian distributions. The mean μ is randomly

selected from (0.3, 0.35, and0.45), and the standard deviation is σ = 0.03. Outliers are

generated by uniform distribution, which is distributed in an interval of [0.5, 1]. According

to the empirical rules of Gaussian, the value range of Gaussian distributions is μ ± 3σ,

and the normal range of the synthetic data is [0.21, 0.54]. This synthetic dataset blends

all the conditions we discussed in real data, which are outliers overlapping normal data,

outliers near to normal data, and partial feature values are normal. Hence, the generality is

improved because the synthetic dataset mixed most possible outlier conditions.

Figure 4.9 compares the simulation results for FPR between our algorithm and that of

Zhang’s work. Because the synthetic data blends all types of outliers and the outliers were
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Figure 4.7: Simulation results of Precision

randomly generated, sometimes more outliers fall into or near the normal range. Thus, we

can only control the quantity of outliers; however, we cannot decide where the outliers

falls. This leads to the FPR of our method being higher than that of the real data, and this

is the reason that the FPR is higher when the proportion of outliers is 15%.

We also calculate the recall of our method performed on the synthetic data to confirm

the effect of outliers, which is shown in Fig. 4.10. The result shows that the recall of

our method fluctuates because the randomly generated outliers sometimes fall inside the

normal range. When outliers fall inside the normal range, they significantly affect our

results. However, the recall of synthetic data has a similar trend, which is decreasing with

increasing outliers, with the recall of real data. Moreover, because the probability that

outliers occur is low, a dataset that contains 25% outliers is an extreme case. Even in the

extreme case, the recall almost keeps to around 80% (Fig. 4.10). Hence, we conclude that

our proposed method also has ideal performance in the more general cases.

4.3.3 Simulation Results Affected by Anchor Data

As mentioned in Sect. 4.1, the mean-shift algorithm may cluster the normal data into

several clusters because the density of the dataset is changing with time, which leads to

normal data being detected as outliers. Since using anchor data points is a feature of this

work, to evaluate this aspect, we performed the following simulation where an outlier-free

dataset is distributed in a 2-D Gaussian distribution. As shown in Fig. 4.11(a), two anchor
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Figure 4.8: Simulation results of F1-score

data points were inserted at each point L and H (Fig. 4.12(b)). The simulation results in

Fig. 4.11(a) show that, without setting anchor data points, the dataset were clustered into

four classes, and two of them were determined as outliers, as shown in Fig. 4.11(a). On the

other hand, the simulation results in Fig. 4.12(b) show that, taking advantage of the anchor

data points, the normal data were clustered as one class and were correctly determined as

“normal.”
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Figure 4.9: Simulation results for FPR of proposed algorithm and that of Zhang et al. [121]

Figure 4.11: Clustering results with and without anchor data.
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Figure 4.10: Simulation results for Recall on Synthetic Datasets

Figure 4.12: Clustering results with and without anchor data.
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Chapter 5

A Peak Searching Based Cluster
Method

We propose a new peak searching algorithm (PSA) that uses Bayesian optimization to

find probability peaks in a dataset, thereby increasing the speed and accuracy of clustering

algorithms. Wireless sensor networks (WSNs) are becoming increasingly common in a

wide variety of applications that analyze and use collected sensing data. Typically, the

collected data cannot be directly used in modern data analysis problems that adopting

machine learning techniques, because such data lacks additional information (such as

data labels) specifying its purpose of users. Clustering algorithms that divide the data

in a dataset into clusters are often used when additional information is not provided.

However, traditional clustering algorithms such as expectation-aximization (EM) and

k-means algorithms require massive numbers of iterations to form clusters. Processing

speeds are therefore slow, and clustering results become less accurate because of the

way such algorithms form clusters. The PSA addresses these problems, and we adapt

it for use with the EM and k-means algorithms, creating the modified PSEM and PSk-

means algorithms. Our simulation results show that our proposed PSEM and PSk-means

algorithms significantly decrease the required number of clustering iterations (by 1.99

to 6.3 times), and produce clustering that, for a synthetic dataset, is 1.69 to 1.71 times

more accurate than it is for traditional EM and enhanced k-means (k-means++) algorithms.

Moreover, in a simulation of WSN applications aimed at detecting outliers, PSEM correctly

identified the outliers in a real dataset, decreasing iterations by approximately 1.88, and

PSEM was 1.29 times more accurate than EM in maximum.

5.1 Introduction

Over the past decade, Wireless sensor networks (WSNs) have been widely applied in

applications that involve analyzing collected data to improve quality of life or secure
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property. For example, sensor nodes are present in homes, vehicle systems, natural

environments, and even satellites and outer space. These sensors collect data for many

different purposes, such as health monitoring, industrial safety and control, environmental

monitoring, and disaster prediction [4], [52] [87] [117]. In such WSN applications, sensing

data can be manually or automatically analyzed for specific purposes. However, in the

age of big data, an increasing amount of sensing data is required for precise analysis in

the WSN applications. Consequently, it is difficult or, in some cases, even impossible to

manually analyze all of the collected data.

There are several conventional ways to automatically manage the collected data. The

most typical and the easiest method is to set threshold values that correspond to sensing

events. Events are triggered once the data exceed these thresholds. However, the thresholds

in large-scale WSNs vary, and chances due to environment changes. Moreover, precise

analysis results cannot be obtained through the use of thresholds alone.

A complementary approach uses supervised machine learning. In this approach, a

model is trained that can categorize sensing data into the different states required by an

application. However, because sensing data labels are required in the training phase, extra

work is required to manage the data. This process is particularly difficult when the dataset

is large. Moreover, if the sensing environment changes, certain labels must also change. It

is difficult to maintain a functional model under conditions where labels change frequently;

this affects the analysis results.

Unsupervised machine learning methods are feasible and well-studied, and are not

associated with the data labeling problems described above. Clustering is an important and

common method in such approaches. In clustering, the overall features of the dataset are

extracted. Then, the data are divided into clusters according to their features. As a result,

data labeling is not required, and the data-labeling difficulties that occur in supervised

approaches can be avoided. However, in state-of-the-art clustering methods such as the

expectation-maximization (EM) [38] and k-means [58] algorithms, a massive number

of iterations must be performed in order to form clusters, and a significant amount of

computation time is required. Furthermore, because these algorithms use random start

data points as initial center points to form clusters, and because the number of clusters is

not precisely determined, the clustering results become less accurate. To address these

problems, in this paper, we propose a peak searching algorithm (PSA) for improving

clustering algorithm capabilities.

Our approach should be applicable to different dataset distributions. Therefore, the

collected sensing dataset is considered to be generated by a Gaussian mixture model com-

posed of several different Gaussian distributions. If the number of Gaussian distributions

and appropriate initial center points are known, clustering algorithms can appropriately

divide the dataset into different clusters, because each Gaussian distribution corresponds
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to a cluster. The proposed PSA employs a Bayesian optimization (BO) strategy that uses

a Gaussian process [98]. Bayesian optimization is typically used for hyper-parameter

optimizations; to the best of our knowledge, our approach is the first to use BO to improve

clustering.

Given a collected dataset, the PSA searches for the data points with the highest

probability values (i.e., peaks in the dataset). A Gaussian distribution peak is a point

that corresponds to the mean. By searching the peaks, we can obtain appropriate initial

center points of Gaussian distributions, hence, the corresponding clusters. This method

overcomes the difficulties associated with the hard determination of starting data points

in traditional cluster algorithms, thereby reducing the number of iterations. By using the

PSA, cluster algorithms can form clusters using peak points instead of random start points,

which improves the clustering accuracy.

We used simulations to investigate the potential of the proposed PSA for improving

algorithm performance. To measure performance improvements, we applied the PSA to

the EM and k-means algorithms. We refer to these modified algorithms as PSEM and

PSk-means, respectively. The simulation results showed that for PSEM and PSk-means,

the required numbers of clustering iterations were significantly reduced by 1.99 to 6.3

times. Additionally, for synthetic datasets, clustering accuracy was improved by 1.69 to

1.71 times relative to the traditional EM and enhanced version of k-means, i.e., k-means++

[2].

The proposed method can accurately group data into clusters. Therefore, any outliers

in a dataset can be clustered together, making them possible to identify. Because outliers

obviously reduce the capabilities of the WSN applications, we also conducted a simulation

using a real WSN dataset from the Intel Berkeley Research lab. This allowed us to compare

the outlier-detection capabilities of PSEM and EM. Our simulation results showed that

PSEM correctly identified outliers, decreased iterations by approximately 1.88 times, and

improved accuracy by 1.29 times in maximum.

5.2 Bayesian Optimization

Before a dataset can be divided into clusters, the starting data points of clusters in the

dataset must be determined. In particular, the number of peak points (a peak point is a data

point corresponding to the maximum probability) in a dataset corresponds to the number

of clusters. In this study, we use BO to identify peak points. Typically, we do not know the

form of the probability density function p(x). Nevertheless, we can obtain the approximate

value f(x) of p(x) at data point x, with some noise. For example, we can approximately

compute the density of a certain volume. This density is an approximate value of the

probability density (see Sec. 4). following subsection, we introduce the Gaussian process
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used in BO. However, obtaining the maximum density can be computationally expensive,

because of the large number of data points. To reduce computation costs, we used BO [30]

[24], a very powerful strategy that fully utilizes prior experience to obtain the maximum

posterior experience at each step. This allows the maximum density to be approached.

Thus, fewer data points are required to obtain the maximum density. In the following

subsection, we introduce the Gaussian process used in BO.

5.2.1 Gaussian Process

In BO, a Gaussian process (GP) is used to build a Gaussian model from the provided

information. The model is then updated with each new data point. Assume that a set of

data points contains t elements: {x1,x2, · · · ,xt}. We use the notation x1:t to represent

the set of data points. Each of these points exists in a D-dimensional space. An example

data point is xi = (xi1, · · · , xiD).

There is an intuitive analogy between a Gaussian distribution and a GP. A Gaussian

distribution is a distribution over a random variable. In contrast, the random variables of

a GP are functions. The mean and covariance are both functions. Hence, function f(x)

follows a GP and is defined as follows:

f(x) ∼ GP(m(x), k(x,x′)) (5.1)

where m(x) is the mean function, and k(x,x′) is the kernel function of the covariance

function.

Suppose that we have a set of data points x1:t and their corresponding approximate

probability density {f(x1), f(x2), · · · , f(xt)}. We assume that function f(xi) can map

a data point xi to its probability density p(xi) with some noise. For concision, we will

use f1:t to represent the set of functions for each data point {f(x1), f(x2), · · · , f(xt)}.
For the collected dataset, D1:t = {(x1, f1), (x2, f2), · · · , (xt, ft)} is the given informa-

tion. For convenience, we assume that D1:t follows the GP model, which is given by an

isotropic Gaussian N (0,K) whose initial mean function is zero and covariance function

is calculated using K, as follows1:

K =

⎡
⎢⎢⎣
k (x1,x1) · · · k (x1,xt)

...
. . .

...

k (xt,x1) · · · k (xt,xt)

⎤
⎥⎥⎦ .

Once, we have calculated K, we build a GP model from the information provided.

1k(xi,xj) consists of the kernel functions.
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A new data point xt+1 also follows ft+1 = f(xt+1). According to the GP properties,

f1:t and ft+1 are jointly Gaussian:[
f1:t

ft+1

]
= N

(
0,

[
K k

kT k (xt+1,xt+1)

])
,

where

k =
[
k (xt+1,x1) k (xt+1,x2) · · · k (xt+1,xt)

]
.

Moreover, we want to predict the approximate probability density ft+1 of the new data

point xt+1. Using Bayes’ theorem and D1:t, we can obtain an expression for the prediction.

P (ft+1|D1:t,xt+1) = N
(
μt(xt+1), σ

2
t (xt+1)

)
(5.2)

where

μt (xt+1) = kTK−1f1:t

σ2
t (xt+1) = k(xt+1,xt+1)− kTK−1k. (5.3)

We can observe that μt and σ2
t are independent of ft+1 and, and that we can calculate ft+1

using the given information.

5.2.2 Acquisition Functions for Bayesian Optimization

Above, we briefly describe how to use the given information to fit a GP and update the

GP by incorporating a new data point. At this point we must select an appropriate new

data point xi+1 to use to update the GP, so that we can obtain the maximum value of

f(xi+1). To achieve this, we could use BO to realize exploitation and exploration. Here,

exploitation means that we should use the data point with the maximum mean in the GP,

because that point fully uses the given information. However, this point cannot provide

additional information about the unknown space. Exploration means that a point with a

larger variance in the GP can provide additional information about the unknown area. The

acquisition functions used to find an appropriate data point are designed on the basis of

exploitation and exploration. There are three popular acquisition functions: probability of

improvement, expectation of improvement, and upper confidence bound criterion.

The probability of improvement (PI) function is designed to maximize the probability

of improvement over f(x+), where x+ = argmaxxi∈x1:t
f(xi) The resulting cumulated

distribution function is:

PI(x) = P
(
f(x) ≥ f(x+) + ξ

)
= Φ

(
μ(x)− f(x+)− ξ

σ(x)

)
(5.4)
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where ξ is the exploration strength, which is provided by the user.

The expectation of improvement (EI) is designed to account for not only the probability

of improvement, but also the potential magnitude of improvement that could be yielded by

a point. The EI is expressed as

EI(x) =

⎧⎨
⎩(μ(x)− f(x+)− ξ) Φ(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0
(5.5)

Z =

⎧⎨
⎩

μ(x)−f(x+)−ξ
σ(x)

if σ(x) > 0

0 if σ(x) = 0
(5.6)

The upper confidence bound (UCB) criterion uses the confidence bound, which is

the area representing the uncertainty between the mean function and variance function in

Eq. 5.3. The UCB is compared with the other two acquisition functions, and is relatively

simple and intuitive. In detail, it directly uses the mean and variance functions obtained

from the given information. A potential new data point is presented by the sum of (i) the

mean function, and (ii) a constant ν times the variance function. That is, given several

potential new data points, the data point with the largest UCB will be selected as the next

new data point. Moreover, ν, which is greater than 0, indicates how much exploration is

expected. The UCB formula is

UCB(x) = μ(x) + νσ(x) (5.7)

These three acquisition functions are suited to different datasets, and allow us to obtain

an appropriate new data point. The BO algorithm is shown below.

Algorithm 5: BO

1 for i = 1, 2, . . . do
2 Fit a GP to the given information D1:t;

3 Use acquisition functions to find a data point x that has the maximum value

μ(x|D1:t) over GP;

4 Calculate the value of f(x) at xi;

5 Augment the dataset D1:t+1 = {D1:t, (xi, fi)} and update the GP;

6 end

5.3 Peak Searching Algorithm

In this section, we first introduce some preliminary information related to our proposed

algorithms. Then, we explain the algorithm.
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5.3.1 Preliminary Investigations

In most cases, the environment can be represented as a collection of statuses that indicate

whether or not certain events have occurred. Such events include fires, earthquakes, and

invasions. The data points collected by the sensor nodes contain measurements that

describe the statuses of these events. One can assume that the collected dataset is generated

by a Gaussian mixture model (GMM), because the data points contained in the dataset

are collected from the normal environment, or from natural events. Thus, before fitting a

GMM, it is necessary to clarify the peaks of the GMM, because each peak is a point that

has the largest probability corresponding to a Gaussian distribution. Therefore, we need to

know the probability of each data point when we search for the dataset peaks. Although the

probability density function is unknown, it can be approximated using alternative methods,

which are shown as follows.

Figure 5.1: A volume in 3− dimensional space

One type of method assumes that the set of data points exists in a D-dimensional

space. The probability of data point x can then be approximated as follows. (i) Set x as

the center of a volume with side h. Figure 5.1 shows an example of a volume in 3-D space,

where the length of each side is h. (ii) The density of the volume with center x, calculated

using Eq. (5.8) [24], is approximately equal to the probability at data point x. The density

p(x) in this formula depends on the length of side h in the volume and the number Th (that

is, the number of neighbors of data point x in the volume). N is the total number of data

points in the dataset and hD is the size of the volume. Thus, to search for the peaks, we

must calculate the densities of all of the different data points using Eq. (5.8). However,

this is computationally expensive.

p (x) =
Th

NhD
(5.8)

63



Another method fixes h and applies a kernel density estimator [24]. In this case, the

probability of data point x can be calculated as

p(x) =
1

NhD

T∑
i=1

K

(
x− xi

h

)
, (5.9)

where K(•) is the kernel function and T is the number of data points in a volume with

side h. Then, the largest value of p(x) occurs along the gradient of Eq.(5.9), which is

∇p(x) =
1

NhD

T∑
i=1

K ′
(
x− xi

h

)
. (5.10)

By setting Eq. (5.10) equal to zero, we can calculate the point along the gradient that has

the largest p(x). With this method, we do not need to search the unimportant data points,

which reduces the time required to identify peaks. However, Eq. (5.9) and Eq. (5.10) are

difficult to solve. Moreover, the length of side h affects the peak search results. Firstly, it

supposes that all of the volumes are the same size, because they have the same h. Second

an inappropriate h value will lead to an incorrect result. In particular, h values that are too

large cause over-smoothing in high-density areas, while h values that are too small cause

significant noise in low-density areas. To overcome these shortcomings, we introduce the

PSA, which we describe in the following subsection.

5.3.2 The Algorithm

We propose a peak searching algorithm (PSA) that does not consider parameter h. We will

use simulations to investigate the details of the PSA, which can be used to improve the

speed and accuracy of clustering algorithms such as EM and k-means.

In Eq. (5.10), x−xi

h
is a vector that starts at point x and ends at neighboring point xi.

Because a kernel function is used to calculate the inner product of the vectors, in this case

the inner product is equal to the length of vector. Moreover, it calculates the largest p(x)

and the location of data point x where x on the vector at 1
NhD times the length of the vector.

Therefore, the largest probability for finding the peak lays on this vector. This allows us

to concentrate only on the vector, without considering constants 1
NhD and h. Hence, we

propose using Vx to represent the vector in the PSA as

Vx =
T∑
i=1

(x− xi)

‖(x− xi)‖ (5.11)

In Eq. 5.11, only Vx is searched. A significant amount of non-important space is not

searched. However, many probabilities must be calculated along Vx. Moreover, because

there are too many data points on the vector Vx, it becomes impossible to search for the

best data point with the largest probability in a limited amount of time. Hence, we apply
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BO when searching for the largest probability along Vx. BO optimizes the method for

searching the maximum probability value mentioned in Algorithm 1. However, as we

mentioned in Sect. 3, the form of probability function p(x) is not known, and it can instead

be represented by an approximate probability function, which is f(x) in Algorithm 1 line

4. Therefore, in this paper, we use Eq. (5.8) to calculate the approximate probability

function, which we use in the proposed algorithm. Eq. (5.8) is simpler and more practical

for finding dataset peaks. The following describes the details of the proposed PSA.

Algorithm 6: PSA

1 Given a starting data point x(j), and calculate the V
(j)
x ;

2 i = 0 ;

3 while True do
4 Search for Max p

(
x
(j)
i

)
along V

(j)
x by using Algorithm 1 ;

5 Set x
(j)
i as a peak and calculate V

(j)
xi with x

(j)
i ’s K neighbors;

6 Search for Max p
(
x
(j)
i+1

)
along V

(j)
xi by using Algorithm 1 ;

7 if
∣∣∣p(x(j)

i

)
− p

(
x
(j)
i+1

)∣∣∣ < ε then

8 x
(j)
i+1 is a peak of the dataset ;

9 break ;

10 else
11 Set x

(j)
i+1 as a peak and calculate V

(j)
xi+1 with x

(j)
i+1’s T neighbors ;

12 V
(j)
x ← V

(j)
xi+1 ;

13 i← i+ 1 ;

14 end
15 end

Next, we will explain how the PSA works in accordance with Algorithm 2. The

initializing step requires a number of starting data points from which to begin the search

for peaks, because the dataset may contain multiple peaks. Therefore, the PSA randomly

selects M starting points, {x(1),x(2), · · · , andx(M)}. For convenience, we will use starting

point x(j) to describe the details of the method. Vector x(j) is calculated using Eq. (5.11)

in line 1. The peak searching process shown in Fig. 5.2 contains four steps. In Step 1,

the PSA uses Algorithm 1 to search for the peak. That is, data point x
(j)
i , which has a

maximum probability along V
(j)
x . The probability denoted by p

(
x
(j)
i

)
is calculated using

Eq. (5.8) as shown in line 4. In Step 2 in line 5, a new vector V
(j)
xi is calculated on the

basis of x
(j)
i and its T neighboring data points. In Step 3, the method searches for the peak

x
(j)
i+1 along V

(j)
xi in line 6. Notice that data points x

(j)
i and x

(j)
i+1 are possible dataset peaks.

Step 4 starts from line 7 to 14, and the method repeats these steps until the difference
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between p
(
x
(j)
i

)
and p

(
x
(j)
i+1

)
gets close enough to zero. At this point, data point x

(j)
i+1 is

selected as a dataset peak. The same four steps are used with the other starting data points

to identify all peaks in the dataset.

Figure 5.2: Peak searching

5.3.3 Peak Searching Test

In the following, we test this PSA algorithm to search the peak of a dataset that is a

Gaussian mixture model that has the peaks of (1, 1) and (3, 3). For concision, we only use

one starting data point to search the peak of one Gaussian. We also want to identify the

affection of several parameters, which are the number of neighbors and the number of test

data point during Gaussian process.
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Case 1

In the case 1, we set the number of neighbors is 20, and at first the number of test points

is 10. The result is shown in the following. We can see that the PSA randomly selected

a staring point (1.94, 3.66) and executes 4 times to find the final peak (2.93, 3.04). The

searched peak is very close to the true peak. During the peak searching, the V ector that is

a blue line changes its direction towards to the peak of (3, 3), and there are 10 test points on

the V ector. The diamond on this vector is a candidate peak before the searching process

end.

Figure 5.3: Peak searching, 20 neighbors and 10 test points (step 1)
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Figure 5.4: Peak searching, 20 neighbors and 10 test points (step 2)

Figure 5.5: Peak searching, 20 neighbors and 10 test points (step 3)
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Figure 5.6: Peak searching, 20 neighbors and 10 test points (step 4)

Case 2

In the case 2, we only change the number of test point from 10 to 20. The PSA ran-

domly selected a data point at (3.703, 2.35), and it executes two times to find the peak at

(3.05, 3.01). The searched peak is much more close to the true peak. This result shows

a more test data points may provide a more accuracy searching result. However, the

drawback is that the calculation of PSA increased. Therefore, we think during the real

application of PSA how to decide the number of test data is an issue for the WSNs,

because the resource constraint sensor nodes have not enough batter.
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Figure 5.7: Peak searching, 20 neighbors and 20 test points (step 1)

Figure 5.8: Peak searching, 20 neighbors and 20 test points (step 2)
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Case 3

In the case 3, we want to identify the affection of the neighbors because the Vector is

decided by the neighbors, which is very important during the peak searching process

of PSA. Intuitively, more neighbors can provide more informations of the dataset. On

the other hand, more data points may bring more noises of the dataset. Therefore, the

number of neighbors is also very important for this PSA. The following results show

that we using 20 test data points and different number of neighbors. In the first one, we

using 60 neighbors, and the PAS randomly selected a point at (3.58, 3.80) and it stops at

(3.10, 2.94). The searching processes are as follows.

Figure 5.9: Peak searching, 60 neighbors and 20 test points (step 1)

71



Figure 5.10: Peak searching, 60 neighbors and 20 test points (step 2)

Figure 5.11: Peak searching, 60 neighbors and 20 test points (step 3)
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Figure 5.12: Peak searching, 60 neighbors and 20 test points (step 4)

Case 4

In the last case, we reduce the number of neighbors to 10 and keep the same number of

test point. The PAS randomly select a data point at (2.38, 2.45) and the searched peak is

(3.10, 2.99). Comparing with case 2 and case 3 the accuracy of peak searching result is not

changes too much. According to these results of cases, we infer that the PSA has a robust

property about the number of neighbor. The peak searching process of case 4 is shown as

follows.
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Figure 5.13: Peak searching, 60 neighbors and 20 test points (step 1)

Figure 5.14: Peak searching, 60 neighbors and 20 test points (step 2)
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Figure 5.15: Peak searching, 60 neighbors and 20 test points (step 3)

Figure 5.16: Peak searching, 60 neighbors and 20 test points (step 4)
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5.4 Simulation and Analysis

In this section, we investigate the efficiency of the proposed PSA. Because the PSA is a

method for improving clustering algorithms, we must use it in state-of-the-art clustering

algorithms to evaluate the extent to which the PSA can improve those algorithms. As

mentioned in Sect. 2, EM and k-means are common clustering algorithms. Here,

variations of those algorithms using the PSA are referred to as PSEM and PSk-means,

respectively. In PSEM and PSk-means, the PSA first searches the peaks of the collected

dataset. Then, EM and k-means use the obtained peaks as the initial starting points to

start clustering. In the simulations, we assume that the collected datasets follow GMMs,

and that the number of peaks found by the PSA is equal to the number of Gaussian

distributions.

We conducted simulations using synthetic datasets and a real dataset. In simula-

tions with synthetic datasets, we compared the accuracies and iterations of PSEM and

PSk-means with those of the original EM (OEM), k-means, and k-means++ algo-

rithms. Moreover, because recall and precision are important evaluation indicators, we

also used the simulations to compare recalls and precisions. In the simulation using a real

dataset, we simulated our methods in order to detect outliers. Because a real dataset could

be either isotropic or anisotropic, and because k-means has a weak effect on anisotropic

datasets, we only compared PSEM to OEM for the real dataset.

5.4.1 Simulation on Synthetic Datasets

Synthetic Dataset

We generated two synthetic datasets, whose data points contained two features. Each

dataset was generated using a GMM that contained two different Gaussian distributions.

The Gaussian distributions in the first dataset were isotopically distributed; their true peaks

(means) were (1, 1) and (2, 2) and their variances were 0.6 and 0.5, respectively. The

Gaussian distributions in the second synthetic dataset were transformed using the following

matrix to create anisotropic ally distributed datasets:[
0.6 −0.6
−0.4 0.8

]
.

The two synthetic datasets are shown in Fig. 5.17. The two synthetic datasets are appro-

priate for these types of simulations, because they can represent both easy and difficult

clustering situations. This allows us to evaluate the effects of our algorithm.
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Figure 5.17: Synthetic Dataset

Simulations and Results

To estimate the extent to which the PSA can improve clustering capabilities, we compared

PSEM with the original EM (OEM ) algorithm. Both PSEM and OEM use EM to
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fit a GMM, and have a time complexity of O(N3), where N is the number of data points.

Hence, we cannot use time complexity to compare PSEM and EM . Computational

efficiency can also be measured from the number of iterations. The EM algorithm

contains two steps: the E-step and the M -step. These two steps are iteratively executed

to fit a GMM, and are the core calculations of this algorithm. Hence, we compared the

number of iterations in PSEM (i.e., how many E-steps and M -steps were executed) with

the number of iterations in OEM . Note that the OEM algorithm does not use PSA, so

its calculations start at randomly selected initial starting points.

PSEM and OEM were executed 200 times for the two different datasets. Fig. 5.17

shows 200 peak searching results for PSA. The dark crosses indicate the peaks identified

by PSA. We can see that in the isotropically distributed dataset, the identified peaks are

very close to the true peaks. In the anisotropically distributed dataset, the identified peaks

are also close to the true peaks. Fig. 5.18 illustrates the number of iterations (y-axis)

for each size of dataset (x-axis). In the peak searching step, three different acquisition

functions are used (UCB, EI , and PI), and their calculation efficiencies are compared.

According to the results shown in Fig. 5.18, there were 3.06 to 6.3 times fewer iterations

for PSEM than OEM . In other words, the PSA improved the calculation efficiency

of OEM by 73.9% to 86.3%. Moreover, we can see that there is no obvious difference

between the three acquisition functions.

300 500 700 900 1100 1300 1500

Size of Synthetic Dataset

5

10

15

20

N
o
. 
o
f 

It
e
ra

ti
o
n
s

OEM

PSEM(UCB)

PSEM(EI)

PSEM(PI)

Figure 5.18: Comparison of iterations: OEM

Because we wanted to fairly estimate the extent to which the proposed PSA im-

proves clustering capabilities, we compared the PSA to k-means++ in another simulation.

k-means++ uses a special method to calculate its initial points, and its clustering method

increases the speed of convergence. Note that both PSk-means and k-means++ are
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based on k-means, which has a time complexity O(N2T ), where N is the number of

data points and T is the number of iterations. Similarly, we cannot use time complexity

to compare calculation efficiencies. However, we can compare the number of iterations

required for PSk-means to that required for k-means++. Both of these algorithms were

executed 200 times with the two different datasets, and the results are shown in Fig. 5.19.

300 500 700 900 1100 1300 1500

Size of Synthetic Dataset

3

4

5

6

7

8

9

N
o
. 
o
f 

It
e
ra

ti
o
n
s

k-means++

PSk-means(UCB)

PSk-means(EI)

PSk-means(PI)

Figure 5.19: Comparison of iterations: k-means++

The simulation results are shown in Fig. 5.19. The average number of iterations for

PSk-means is reduced by 1.04 to 1.99 times compared with the number of iterations for

k-means++. In other words, the PSA improved the calculation efficiency of OEM by

51% to 67%. Additionally, there was no obvious difference between the three acquisition

functions.

Performance Estimation of Clustering

Accuracy, precision, and recall are three commonly used measurements for estimating

machine learning algorithm performance. Therefore, we adopt these measurements to

quantify the performances of our proposed algorithm. In simulations, a dataset containing

two clusters is generated by GMM. To explain these measurements, we assume that the

two clusters are cluster A and cluster B. Data points belonging to cluster A are considered

to be positive instances, while those that belong to cluster B are considered to be negative

instances. If a data point from cluster A is correctly clustered into cluster A, it is a true

positive (TP) result. Otherwise, it is a false positive result (FP). Similarly, if a data point

from cluster B is correctly clustered into cluster B, that is a true negative (TN); otherwise,
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it is a false negative (FN). Overall accuracy can be calculated as follows:

accuracy =
TP + TN

TP + FP + TN + FN
. (5.12)

Recall is equal to the ratio of TP to the total number of positive instances. It is based

on the total positive instances, and shows how many positive instances can be detected by

the algorithm. It is calculated as

recall =
TP

TP + FN
. (5.13)

From a prediction standpoint, Precision indicates how many TPs occur in the detected

positive instances. It presents the proportion of TP to the total number of data points that

are detected as positive, which is equal to TP + FP. Precision is calculated as

precision =
TP

TP + FP
. (5.14)

We estimated the accuracy, precision, recall and F1 − score of the PSk-means

and PSEM clustering algorithms, and compared the values with those for k-means,

k-means++, and OEM . We repeated this estimation 200 times for each dataset; the

average accuracy of each algorithm is shown in Figs. 5.20 and 5.21
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Figure 5.20: Measurements for isotropic dataset

The isotropic datasets shown in Fig. 5.17 are difficult to cluster, because the two

clusters partially overlap and their centers are very close together. We can see from the

simulation results shown in Fig. 5.20 that the estimations of k-means, k-means++, and

OEM are similar. However, PSk-means and PSEM show a great improvement over

their original algorithms. The accuracy of PSk-means is 1.69 times higher than that of

k-means++, while that of PSEM is 1.71 times higher than that of OEM . The recall

of PSk-means is 1.66 times higher than that of k-means++, and the recall of PSEM
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is 1.83 times higher than that of OEM . Moreover, the precision of PSk-means is 1.64

times higher than that of k-means++’s. The precision of PSEM is 1.84 times higher

than that of OEM . Moreover, the F1− score of PSEM is 1.83 times higher than that

of OEM . The F1− score of PSk − -means is 1.86 times higher than that of k-means,

and 1.64 times higher than that of k-means++.
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Figure 5.21: Measurements for anisotropic dataset

The results for the anisotropic datasets are shown in Fig. 5.21. Because the anisotropic

datasets are elliptical, as shown in Fig. 5.17, and the two datasets are very close together,

82



the datasets are very difficult to cluster. As a result, k-means and k-means++ exhibit

low estimation performance, and PSk-means yields little improvement. However, the

accuracy of PSEM was 1.48 times higher than that of OEM , and its recall and precision

were 1.44 and 1.48 times higher, respectively, than they were for OEM . Moreover, the

F1 − score of PSEM is 1.46 times higher than that of OEM . The F1 − score of

PSk-means is 52.77 that is higher than that of k-means and k-means++, respectively

Accordingly, we can see that the PSA can improve clustering accuracy.

5.4.2 Simulation on a Real Dataset from Intel Berkeley Research
Laboratory

We used a real sensor dataset from the Intel Berkeley Research Laboratory[7] to assess

outlier detection performance. In the simulation, we only considered two features for each

data point: temperature and humidity. Each sensor node contained 5000 data points.

Because the original dataset did not provide any outlier information or labels, we

manually cleaned the data by removing values that fell outside a normal data range. All of

the remaining data points were considered to be normal. Table 5.1 lists the normal data

ranges.

Table 5.1: Normal data ranges

Range Average

Temperature (◦C) 21.32 - 28.14 23.14

Humidity (%) 26.39 - 44.02 37.69

After completing this step, a uniform distribution was used to generate artificial outliers.

Temperature outliers were generated within a range of (27-30)◦C, and humidity outliers

were generated within a range of (42-46)%. Thus, some outliers can fall inside the normal

range with the same probability. Outliers were then inserted into the normal dataset. We

produced four different cases, in which the outliers accounted for 5%, 15%, 20%, and 25%

of the total normal data points.

Setting of WSNs

PSEM and OEM were run for a real dataset from the Intel Berkeley Research Laboratory.

There were 54 sensor nodes, each of which had a Mica2Dot sensor for collecting humidity,

temperature, light, and voltage values. Temperatures were provided in degrees Celsius.

Humidity was provided as temperature-corrected relative humidity, and ranged from
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0-100%. Light was expressed in Lux (1 Lux corresponds to moonlight, 400 Lux to a bright

office, and 100, 000 Lux to full sunlight), and voltage was expressed in volts, ranging

from 2-3. The batteries were lithium ion cells, which maintain a fairly constant voltage

over their lifetime; note that variations in voltage are highly correlated with temperature.

We selected data from 10 sensor nodes (nodes 1 to 10) to test our method, and used only

humidity and temperature values.

In this simulation, we assumed that the WSN was hierarchical and consisted of classes.2

Each class contained one class head (CH) and other member sensor nodes (MSNs). The

MSNs sent the data points collected over a certain time period to the CH, which used the

proposed method to monitor whether the dataset collected from its members contained

outliers. The configuration of the WSNs is shown in Fig. 5.22.

Figure 5.22: WSN configuration

Results

Using the real dataset, we tested the proposed PSEM and compared it with the OEM .

The CH executed the PSEM or OEM to detect outliers, and sent outlier reports to the

base station. We generated four different datasets, containing 5%, 15%, 20%, and 25%

outliers.

It was relatively easy to detect outliers in the test dataset containing only 5% outliers,

because the proportion of outliers was so low. Thus, the accuracy of our method approached

100% for 5% outliers. In contrast, the accuracy of the OEM was only approximately 85%.

In the other datasets, more outliers fell within the normal dataset. In such cases, it was

difficult to detect the outliers; the accuracies of both methods decreased as the proportion

of outliers increased. However, PSEM remained more accurate than OEM . In the worst

case, with 25% outliers in the test dataset, its accuracy of PSEM was approximately 80%,

while the accuracy of OEM was only approximately 60%. That is, PSEM was about

2“Cluster” is used in the WSNs to describe a group of sensor nodes. However, “cluster” can also refer to

a group of similar data points in data mining. In this paper, we use “class” instead of cluster to describe a

group of sensor nodes.
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Figure 5.23: Accuracy of real dataset

1.09 to 1.29 times more accurate than OEM . Moreover, Fig. 5.24 shows the number of

iterations was 1.52 to 1.88 times lower for PSEM , meaning that PSEM improved the

calculation efficiency of OEM by 60% to 65.2%. Because accuracy and iteration numbers

are very important metrics for assessing the clustering algorithm efficiency, this simulation

result demonstrated the practical significance of PESM , and therefore, of the PSA.

Simulation Platform

Moreover, we use a raspberry pi 3B model as a sensor node, which uses a quad core

1.2GHz Broadcom BCM2837 64bit CPU and a 1GB RAM, and we measured the executing

time of this peak searching algorithm on it, we also measured the executing times of the

same clustering algorithms, and we compare the executing time with k-means and EM that

are not using the peak searching algorithm. The executing time is shown in the Table 5.2.

Table 5.2: Executing time on Raspberry pi 3B

Size of Dataset 300 500 700 900 1100 1300 1500

k-means 0.09s 0.12s 0.12s 0.13s 0.14s 0.14s 0.133s

PSk-means 0.011s 0.01s 0.012s 0.007s 0.011s 0.012s 0.008s

EM 0.064s 0.065s 0.072s 0.099s 0.10s 0.051s 0.091s

PSEM 0.03s 0.037s 0.035s 0.039s 0.043s 0.046s 0.047s

According to the measured executing time on raspberry, we can see algorithms using

the peak searching algorithm cost less time than that not using the peak searching algorithm.
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Therefore, if the sensor nodes have enough extra power support, we consider this peak

searching algorithm can be deployed on WSNs to reduce the executing time of clustering.

5.5 Discussions

In this section, we describe other important aspects of the WSNs, such as WSN power

consumptions and lifetime. We also discuss the advantages and disadvantages of the

proposed method.

Because most sensor nodes in the WSNs are powered by batteries, sensor node power

consumptions, WSN lifetime, and energy efficiency are also important problems affect-

ing the quality of a WSN. H. Mostafaei et al. [83] proposed an algorithm PCLA to

schedule sensors into active or sleep states, utilizing learning automata to extend network

lifetime. Our previous work attempted to extend battery life by reducing peak power

consumption. We scheduled sensor execution times [93], and used optimized wireless

communication routes to reduce energy consumption, with the goal of prolonging network

lifetimes[129][130]. If the proposed PSA can be applied in such approaches to analyze

data using clustering methods, then energy consumption can be further reduced. Because

the PSA can reduce clustering iterations, the required computational power decreases,

leading to energy savings.

The proposed algorithm has advantages and disadvantages. In conventional clustering

methods such as EM and k-means, cluster-forming procedures are started at random data

points. There are two disadvantages associated with this. First, correct clusters may not

be able to form from random starting points. Second, because random staring points may
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not occur near cluster centers, massive iterations may be needed to update random points

to approach the cluster centers. However, because the PSA can identify the peak points

near cluster centers, it is a better approach for forming clusters than an algorithm starting

from a random point. Therefore, clustering algorithms using the PSA can form clusters

more accurately. Moreover, using peak points as the starting points to form clusters can

significantly reduce clustering iterations, because peak points are the desired points.

There are some disadvantages associated with the PSA. The PSA use BO, and are,

therefore, affected by the problems associated with BO. A particular issue is that a priori

design is critical to efficient BO. As mentioned in Sect. 3, BO uses GPs to build Gaussian

models with Gaussian distributions, making the resulting datasets transcendental. If a

dataset does not have a Gaussian distribution, the PSA may be less efficient. Another weak

point of the PSA is that it is centralized. It is not suited for highly distributed WSNs where

data analyses are conducted at each sensor node.

5.6 Conclusion

In this paper, we proposed a new PSA for improving the performance of clustering

algorithms (i.e., for improving accuracy and reducing clustering iterations). BO is used to

search for the peaks of a collected dataset in the PSA. To investigate the efficiency of the

PSA, we used the PSA to modify EM and k-means algorithms. The new algorithms

were named PSEM and PSk-means, respectively.

Using simulations, we investigated the performance of PSEM and PSk-means

relative to that of OEM and k-means++. We conducted simulations using both synthetic

datasets and a real dataset. For synthetic datasets, PSEM and PSk-means reduced

iterations by approximately 6.3 and 1.99 times, respectively, in maximum. Moreover, they

improved clustering accuracy by 1.71 times and 1.69 times, respectively, in maximum. On

a real dataset for outliers detection purpose, PSEM reduced iterations about 1.88 times,

and improved clustering accuracy by 1.29 times in maximum. These results show that our

proposed algorithm significantly improves performance. We obtained the same conclusions

by illustrating the recall and precision improvements for PSEM and PSk-means.

In the future, we will improve this method so that it can be used with high-dimensional

data, such as images collected by a camera. Moreover, we would like to deploy the peak

searching algorithm with sensor nodes, to allow CHs to obtain peak searching results from

their neighbors; this will reduce the calculation time required for the peak search. Thus,

clustering can be implemented in the sensor node and communication costs can be reduced.
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Chapter 6

Conclusion

The purpose of this doctoral thesis is to distribute outliers detection method into each

sensor node of a WSN. Therefore, a sensor node can provide a real-time data analysis

service. In this doctoral thesis, we adopt machine learning algorithms into WSNs for

outliers detection. This thesis contains three main parts. In the first part, we distributed

a supervised learning based method into a WSN. In the second part, we developed an

unsupervised method based on mean-shift algorithm. The last part, we proposed peak

searching algorithm to improve the capability of clustering algorithm.

6.1 A Brief Summary of Each Method

The preliminary experiment deployed a logistic regression algorithm for detecting outliers

in WSNs. In detail, we divided this algorithm into learning step and executing step. We

deployed the learning step into a sink node and the executing step into every senor node of

a WSN. In preliminary experiment, the proposed method can accurately detect outliers.

Moreover, we found the logistic regression does not need so many training data. Therefore,

we think that this experiment can reduce the computation cost of sensor nodes. However,

the weak points of a supervised learning method is that it needs enough training data to

establish a model. Moreover, a more important issue is that preparing training data is very

time cost and a bad training data cannot provide a good performance of outliers detection.

Moreover, training data may lose effectiveness when environment changed. Therefore, we

proposed an unsupervised learning based method.

In the first method, we described the necessity for detecting outliers in WSNs and

presented an unsupervised learning based outlier detection method to solve this problem.

In our method, we first fixed the density of the dataset to utilize the mean-shift algorithm

efficiently by using anchor data. Then, the mean-shift algorithm was used to cluster the

collected sensing dataset into clusters. As we mentioned that preparing training data is

time cost, finally, we proposed a labeling technique to label those clusters as “normal” or
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“outliers,”; hence, outliers in the sensing dataset can be detected. In the simulations, we

showed the performance of our proposed method and compared our work with related work

[121]. The results showed that our method has a lower FPR than that of the related work,

and when outliers are far away from the normal data, our method obtained an FPR below

3.3%, which is quite low. Moreover, even in datasets where the distributions of outliers are

close to the normal data or a substantial number of outliers are in the dataset, our method

can still keep FPR at a low rate. Extended simulations also showed the generality of our

method.

In the second method, we proposed a new peak searching algorithm. The algorithm

calculates a vector according to kernel density function in order to provide a direction for

searching for the peaks of the dataset. We adopted the strategy of Bayesian optimization,

which can reduce the computations of the peak search. In simulations, we compared our

algorithm with other unsupervised cluster methods, the OEM algorithm and k-means++

algorithm. The results indicated that PSA improves the clustering accuracy and reduces

the iterations of the calculation. In particular, PSEM had 70% fewer iterations compared

with OEM, while its accuracy improved 1.72 times compared with that of the original

algorithm on an isotropic dataset.

6.2 Limitations and Future Works

Our proposed methods are all focused on outliers detection of WSNs and we only tried

our algorithms in a 2-dimensional dataset. However, WSNs are used in many purposes,

such as object detection and intrusion detection. Many applications usually need a high

dimensional data information. In the future, we need to improve our algorithms so that

they can deal with high dimensional data, such as images collected by a camera. Moreover,

the peak searching algorithm in simulation is deployed in a sink node. We also want to

develop a method that can deploy this algorithm into every sensor node, so that the class

head can get the peak searching result from its neighbors; this will reduce the calculation

time of the peak search. Thus, the clustering can be implemented in the sensor node and

thereby reduce the communication cost.

Although cloud computing and edge computing are widely used for resource limited

devices, limited bandwidth and weak wireless signal increase the time of data process.

Moreover, cloud computing and edge computing are very valuable for big firms because

they have enough money to deploy powerful devices and learn characters of their customers.

On the other hand, individual will pay less money on devices and they have different

demands when using data analysis tools. Therefore, we still pay a lot of attention to

develop simple and efficient data process tools that can distributed executing on many

resource limited devices.
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Moreover, from the QoS perspective of WSNs, to keep the WSN working properly,

when outliers in the sensing data are discovered, approaches such as how to tolerate the

outliers or how to detect outliers on the sensor node side should be considered. Therefore,

part of our future work is methods for tolerating outliers and distributed outlier detection

in sensor nodes. Moreover, our method can be used for event detection because outliers

are an event in the dataset.
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