
Doctoral Thesis

A New Balance for Efficiency and Accuracy
of Feature Selection for High-dimensional

Datasets

by

Adrian Pino Angulo

2019

Graduate School of Applied Informatics
University of Hyogo

Abstract

Machine Learning has been one of the most hottest trends for the last ten years. Super-

vised classification as a sub-field of machine learning, is increasingly gaining popularity

among researchers due to its versatility and power of application at any field where data is

available. Among the most common examples of supervised learning we can find: microar-

ray problem classification, cancer diagnosis and network intruder detection. Supervised

classification is a central issue in machine learning and consists on finding a classification

function � : D → v(c) that is able to classify an arbitrary instance with unknown class from

v(c) ∈ C. � is built from analysing the relation between instances in D. The performance

of supervised classifiers is often measured in three directions: efficiency, representation

complexity and accuracy. The efficiency refers to the time required to learn the classifica-

tion function �; while the representation complexity often refers to the number of bits used

to represent the classification function. All these three factors can be strongly affected

when there exist features in D that do not contain useful information to predict the class

variable. Feature selection methods are able to identify and remove unneeded, irrelevant

and redundant features from data that do not contribute to the improvement of the accuracy

of a predictive model. Feature selection allows us to build models as good or with better

accuracy whilst requiring less data. The process of selecting features is composed of two

basic components: an evaluation function and a search engine. The evaluation function is

a metric that evaluates quantitatively how good are a set of features to discriminate among

class labels. On the other hand, the search engine is in charge of generating all the potential

sets to be evaluated. Feature selection algorithms can be divided into three broad categories:

wrapper, filter and embedded methods. To evaluate a feature set F , wrapper methods

use some accuracy score of a classifier after being trained in the dataset projected by F .

Wrapper methods are very low in efficiency since training and testing the inferred function

is required for each evaluation. Conversely, filters make use of explanatory analysis on

data to assign a score to each feature set. Filters are usually less computationally expensive

than wrappers, but they output a feature set that is not tuned to a specific type of predictive

model. Embedded methods learn which features best contribute to the accuracy of the

model while the model is being created. The most common type of embedded feature

selection methods are regularization or penalization methods. Filter-based feature selection

can be also classified as: feature ranking, pairwise evaluation and consistency-based
algorithms. The feature ranking methods evaluate relevance of individual features using

statistical measures. That is, features are ranked using their individual relevance score and

then the top features are selected. Although the ranking feature algorithms are usually

simple and fast, they have two serious drawbacks that may affect the performance of super-

vised classifiers. First, redundant features are likely to be selected. Second, they usually

can not detect interacting features. Oppositely to the feature ranking algorithms, pairwise

evaluation methods can detect and eliminate relevant features, but also are able to remove

redundant features by computing the correlation between features. Consistency-based

algorithms can detect interacting features by collectively evaluating relevance (correlation)

of a feature set to the class. Although exhaustive search of all possible feature sets is

computationally too expensive, the result can be expected to be accurate. In this paper, we

propose several feature selection algorithms for high-dimensional data that can efficiently

find very accurate solutions when compared with other benchmarking algorithms. Our

contribution is as follows.

• We first, propose four new feature selection algorithms based on consistency mea-

sures, which are improvements of the current state-of-the-art algorithms: Steepest-
Descent-Consistency-Constrained (SDCC), the Linear-Consistency-Constrained
(LCC), Super Linear-Consistency Constrained(SLCC), respectively.

• Second, we propose a rule-based feature selection algorithm, namely, Probabilis-
tic Attribute Value Integration for Class Distinction (PAVICD), which can detect

interacting features and is extremely fast.

• Third, we propose a new version of the pairwise-evaluation-based algorithms, the

Fast Correlation based Filter (FCBF) and the Correlation-based Feature Selection
(CFS).

• Lastly, we propose an improvement of the hybrid feature selection algorithm, namely

Genetic Bee Colony for Feature Selection (GBC).

All the proposed algorithms are tested in terms of accuracy, number of selected features

and running time required. Results of the experiments in high-dimensional data exhibits

that in most of the datasets our proposed algorithms are faster and more accurate than the

original algorithms.

Contents

Contents iii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Background . 1

1.2 Motivation . 3

1.3 Objective . 4

1.4 Structure of this research . 4

1.5 Notation . 5

2 An Overview of Feature Selection and Related Work 6
2.1 Feature Selection in Supervised Learning 8

2.2 Related Work . 11

2.2.1 Methods to Rank Features . 12

2.2.1.1 Relief and ReliefF . 12

2.2.1.2 Laplacian Score . 13

2.2.1.3 Fisher Score . 13

2.2.1.4 Information Theory-based Functions 14

2.2.1.5 Support-Vector-Machine-based Recursive Feature Elim-

ination . 14

2.2.2 Methods based on Pairwise Evaluation of Relevance 15

2.2.2.1 Fast Correlation based Filter 15

2.2.2.2 Correlation-based Feature Selection 16

2.2.2.3 Maximum-Relevance Minimum-Redundancy 17

2.2.2.4 Sequential Forward Selection-based Validity Index . . . 18

2.2.2.5 Supervised Simplified Silhouette Filter 19

2.2.3 Methods based on Set-wise Evaluation of Relevance 20

2.2.3.1 Interact . 22

i

2.2.3.2 Linear-Consistency-Constrained 22

2.2.3.3 Steepest-Descent-Consistency-Constrained 24

2.2.3.4 Super-Lcc . 25

2.2.4 Methods with Two-stage Search 25

2.2.4.1 Genetic Bee Colony for Feature Selection 26

3 First Contribution: Improvement of Accuracy of Set-wise Evaluation Meth-
ods 30
3.1 Introduction . 30

3.2 Fast SDCC . 30

3.3 Accurate Sdcc . 33

3.4 Experimental evaluation . 36

3.5 Sdcc with the sliding window method 41

3.6 Experiments of Sddc with the window method 47

3.7 Simulated-Annealing-based LCC . 48

3.7.1 Simulated annealing . 50

3.7.2 Target function . 50

3.7.3 Neighbour generator function 51

3.7.4 SALCC: A new algorithm . 52

3.7.5 Experiments . 53

4 Second Contribution: Improvement of Efficiency and Accuracy of Pairwise
Evaluation Methods 58
4.1 Introduction . 58

4.2 Fast CFS . 58

4.3 Experimental evaluations of the Fast CFS 62

4.4 MRMR+ and CFS+ . 65

4.4.1 The proposed algorithm: MRMR+ 69

4.4.1.1 The ideas to solve the problems 69

4.4.1.2 A description of the algorithm 70

4.4.1.3 A thought experiment 72

4.4.2 Extension of our proposal . 73

4.4.2.1 Proposed algorithm: CFS+ 74

4.5 Results and Discussion . 75

4.5.1 Comparing MRMR with MRMR+ 77

4.5.2 Comparing Mrmr+ with benchmark algorithms 79

4.5.3 Testing MRMR+ in the two-stage selection algorithms 80

ii

5 Third Contribution: Improvement of Efficiency and Accuracy of Two-stage
Algorithms 85
5.1 The MRMR algorithm . 85

5.2 Initialization Phase . 87

5.3 Intensification . 89

5.4 Minor improvements . 91

5.5 Experimental evaluation . 93

6 Summary of algorithms proposed in this research 95
6.1 Fast SDCC . 95

6.2 Accurate Sdcc . 95

6.3 Sdcc with the sliding window method 96

6.4 Simulated-Annealing-based LCC . 97

6.5 MRMR+ and CFS+ . 97

6.5.1 Extension of our proposal: Cfs+ 98

6.6 Improvement of GBG algorithm: GBC+ 98

7 Conclusion 100

Acknowledgements 102

References 109

iii

List of Figures

2.1 The basic framework of feature selection of the filter and wrapper ap-

proaches. F is the entire feature set of a dataset D, and F̃ denotes the

current best feature subset. 7

2.2 Illustration of a support vector machine (SVM) 10

2.3 Search space for the feature selection problem with five features: a, b, c, d, e. 12

2.4 Graphical representation of the LWS index. 18

2.5 Example of how non-relevant features can interact with each other to

accurately discriminate between two classes. 20

2.6 FOCUS. 21

2.7 Interact. A threshold δ is given as a parameter. 22

2.8 The algorithm of INTERACT . 23

2.9 The algorithm of LCC . 23

2.10 Linear Consistency Constrained (LCC) Algorithm 24

2.11 The algorithm of SDCC . 25

2.12 Example of the search strategy used by SDCC 25

2.13 The main phases of the GBC algorithm. 26

2.14 The preprocessing phase in the GBC algorithm. t is usually fixed to 50 genes. 27

2.15 Crossover operation between the Queen Bee and a solution randomly

selected from the population. 28

3.1 Example of the search strategy used by SDCC 31

3.2 The algorithm of FSDCC . 33

3.3 The algorithm of ASDCC . 35

3.4 Performance of ASDCC algorithm with different values of α 37

3.5 Number of features selected, Br(), proportion of the number of evaluation,

and accuracy . 39

3.6 Graphical results of Bonferroni-Dunn non parametric test for ranking size

and Br() . 40

3.7 Graphical results of Bonferroni-Dunn non parametric test for ranking AUC

values . 40

iv

3.8 An example of search paths by steepest-descent. r stands for the individual

relevance of a feature. 42

3.9 Comparison between the original SDCC [59] and its corrected version

that searches features based on Eq.(1) in terms of the bayesian risk, the

AUC-ROC by C4.5 classifier and, the number of features selected. 43

3.10 Percentage of the first consecutive features {f1, . . . , fl} such that Br(F ;C) =

Br(F \ {f1, . . . , fl};C) to the entire feature set F 44

3.11 The algorithm of SWCFS . 46

3.12 Nemenyi test with α = 0.05 . 47

3.13 AUC-ROC values of c4.5 classifier for the outputed value of LCC/SUPER-

LCC when varying δ. Five-fold cross validation was used to compute

AUC-ROC values. 49

3.14 The algorithm of Simulated Annealing 51

3.15 Algorithm to generate the next candidate Bayesian risk 52

3.16 search space and set found by the proposed algorithm 54

3.17 search space and set found by the proposed algorithm 55

4.1 Ratio between running time of CFS and FCFS in different datasets. Gray

shadow represents the standard deviation across six runs. 64

4.2 Running Time required by CFS (bold curve) and FCFS (gray curve) in

each iteration of the greedy forward search. Thick gray curve represents

the standard deviation of the results of CFS across six runs. 66

4.3 Running Time required by CFS (bold curve) and FCFS (gray curve) in

each iteration of the greedy forward search. Thick gray curve represents

the standard deviation of the results of CFS across six runs. 67

4.4 A thought experiment: comparison of MRMR+ and MRMR 73

4.5 The factor of improvement in run-time 82

4.6 % of evaluations avoided by the improved algorithms 82

4.7 Extent of improvement of MRMR+ and CFS+. The blue curve represents

the comparison between MRMR+ and MRMR, while the orange curve does

the comparison between CFS+ and CFS algorithm. The horizontal axis rep-

resents datasets: 1:LEU 2:CNS 3:TUM 4:DEX 5:ARC 6:T21 7:T41 8:T45

9:WAP 10:FBI 11:STJ 12:BRE 13:ECM 14:HEP 15:BUR 16:LA2 17:LA1

18:T31 19:OHS 20:NEW 21:DA1 22:DA4 23:DA5 24:DA6 25:ANT

26:MOU 27:OVA 28:VAR 29:DOR 30:PEMS. 82

4.8 Cumulative function of the number of evaluations required in each itera-

tion by CFS/MRMR(blue curve), CFS+(green curve) and MRMR+(orange

curve). Vertical axis is expressed in log10 scale. 83

v

4.9 Cumulative function of the number of evaluations required in each itera-

tion by CFS/MRMR(blue curve), CFS+(green curve) and MRMR+(orange

curve). Vertical axis is expressed in log10 scale. 84

5.1 Percentage of time required by MRMR (the lighter area) in the GBC algorithm. 86

5.2 Comparison in running time (in seconds) in the GBC algorithm when using

the original MRMR and the faster MRMR+ in the filter phase. The area

with the + symbol represents the MRMR+ while the the darker area is the

running time of the rest of the GBC algorithm. Results of the original GBC

is on the right of the MRMR+. 87

5.3 Chart representing the probability of choosing feature fi to be tested in the

j-th solution. 88

5.4 Accuracy of the solutions in the population of the original method (black)

and the proposed method (gray curve). Number of selected genes are

located over each solution. 90

5.5 Comparison between the original GBC (Gray points) and GBC with the

proposed method of intensification (black points). The line between two

black points quantifies an improvement in the Queen Bee by the proposed

method. 92

vi

List of Tables

1.1 Notation used in this research . 5

3.1 Datasets used in the experiment . 36

3.2 Run-time (sec.) with δ=0.01 (Intel Core i3 2.6GHz and 8GB memory) . . 41

3.3 Results of AUC-ROC values for the reduced data and number of features

selected by each algorithm . 48

3.4 AUC values comparison among some of the state-of-the-art algorithms and

SALCC. 56

3.5 Number of times the classifier is used versus the number of all possible

sets and the number of features selected by LCC and SALCC. 57

4.1 Characteristics of the data used in the experiments 63

4.2 Running Time (in seconds) of FCFS and CFS in each dataset. AVE. stands

for the average of the running time in the first fifteen datasets. 64

4.3 Characteristics of the datasets used in the experiments. 76

4.4 Results for the running time and number of evaluations of the original and

the proposed algorithms. Number of evaluations is expressed in 103 units. 78

4.5 Accuracy and Running time of several benchmark feature selection algo-

rithms . 79

4.6 Running time taken by MRMR and MRMR+ in GBC and MRMR-GA. . . 81

5.1 Percentage of time saved by the minor improvements respecto to the

original GBC algorithm. Values are expressed as % of number of evaluation

saved / percentage of running time saved. AVE. stands for average. 93

5.2 Accuracy of GBC and GBC+ in several datasets. 93

5.3 Running time of GBC and GBC+. 94

5.4 Number of genes selected by GBC and GBC+ in the experiments. 94

vii

Chapter 1

Introduction

In the field of knowledge discovery, feature selection has been playing a crucial role to

detect and remove irrelevant and redundant information from datasets. Feature selection

is important not only to find good models that describe specific phenomena with a small

number of explanatory variables, but also to improve efficiency and accuracy of machine

learning algorithms [21]. In this research we focus on creating feature selection algorithms

for high-dimensional data, so that the research community can use them to improve the

machine learning process through the efficient and accurate selection of features.

1.1 Background

Machine Learning has been one of the most hottest trends for the last ten years. Super-

vised classification as a sub-field of machine learning, is increasingly gaining popularity

among researchers due to its versatility and power of application at any field where data

is available. Among the most common examples of supervised learning we can find:

microarray problem classification [6][10], cancer diagnosis [40][34] and network intruder

detection[52][2]. Supervised classification is incredibly powerful to make predictions and

suggestions by means of inferring a function from labelled training data. The most basic

structured data corresponds to a single data matrix

D =

⎡
⎢⎢⎣
x1
1 · · · xn

1 c1
...

. . .
...

...

x1
m · · · xn

m cm

⎤
⎥⎥⎦ ,

where every instance xj is described by a row vector [x1
j , . . . , x

n
j , cj]: xi

j is a value for

the feature fi; and cj is a class label, which is a value for the class variable C. The

collected data have no utility unless useful information is discovered from them. Supervised

classification is a central issue in machine learning and consists on finding a classification

1

function � : D → v(c) that is able to classify an arbitrary instance with unknown class

from v(c) ∈ C. � is built from analysing the relation between instances in D [41]. The

performance of supervised classifiers is often measured in three directions: efficiency,

representation complexity and accuracy. The efficiency refers to the time required to learn

the classification function �; while the representation complexity often refers to the number

of bits used to represent the classification function. One of the most common metrics to

measure the accuracy of a supervised classifier is the error rate defined as:

Err(�,D) =
1

m

m∑
j=1

δ(�(xj), cj),

where m is the number of instances in D and δ is the complement of the Kronecker’s

delta function, which returns 0 if both arguments are equal and 1 otherwise. All these

three factors can be strongly affected when there exist features in D that do not contain

useful information to predict the class variable. Feature selection plays an essential

role in supervised classification since its main goal is to identify and remove irrelevant

and redundant features that do not contribute to minimize the error of a given classifier

[32]. Basically, the advantages of feature selection include selecting a set of features

F̃ = {fi1 , . . . , fik} � F with:

Err(�,DF̃) ≤ Err(�,D),

where DF̃ is the result of projecting F̃ over D. The process of selecting features is com-

posed of two basic components: an evaluation function and a search engine [42]. The

evaluation function is a metric that evaluates quantitatively how good are a set of features

to discriminate among class labels. On the other hand, the search engine is in charge of

generating all the potential sets to be evaluated.

Feature selection algorithms can be divided into three broad categories: wrapper, filter

and embedded methods [32]. To evaluate a feature set F̃ , wrapper methods use some

accuracy score of a classifier after being trained in the dataset projected by F̃ . Wrapper

methods are very low in efficiency since training and testing the inferred function is

required for each evaluation. Conversely, filters make use of explanatory analysis on data

to assign a score to each feature set. Filters are usually less computationally expensive

than wrappers, but they output a feature set that is not tuned to a specific type of predictive

model. Embedded methods learn which features best contribute to the accuracy of the

model while the model is being created. The most common type of embedded feature

selection methods are regularization or penalization methods [24].

Since we are especially interested in high-dimensional data, in this research we focus

only on the filter approach. Although we also propose a new algorithm to speed up the

2

wrapper approach.

1.2 Motivation

The main motivation of this research lies on the benefits underlying the usage of the feature

selection methods. Feature selection brings several benefits to the machine learning process,

and in particular, can contribute the following advantages to the supervised learning:

• Efficiency: The running time and memory consumption of most of machine learning

algorithms depends on the number of features in the datasets. Therefore, applying

feature selection reduce the dimensionality of data, and consequently, the running

time and memory consumption of machine learning algorithms may drastically

decrease.

• Accuracy: The more information we have about a problem, not necessarily means

the better decisions we can make. When data contains noisy, irrelevant and redundant

features, the accuracy of machine learning models can be seriously affected. Since

the aim of feature selection is to remove irrelevant and redundant features, the

accuracy of machine learning techniques can be improved by only focusing in the

relevant information of the data.

• Resources: In some real-world problems, the acquisition of data is very expensive.

For example, when the measurement of some characteristics of the problem requires

chemical analysis. The exclusion of irrelevant features may avoid wasting resources.

• Scalability: Some machine learning algorithms, such as those based on diffuse rules,

suffer from the curs-of-dimensionality. Their accuracy is given by a mathematical

function that grows very fast depending on the number of features (for example,

exponential-order functions). The curse-of-dimensionality makes some algorithm

no to be scalable to some high-dimensional datasets. Consequently, feature selection

makes wider the scope of application of some machine learning algorithms.

• Comprehensibility of results: Some machine learning techniques, such as the rule-

based and decision-tree-based classifiers returns a model that can be interpretable

by researchers. However, when datasets are high-dimensional, this models are

rather difficult to interpret due to the huge mount of information. However, feature

selection is able to reduce the number of features, and hence, the comprehension of

the model is easier.

Feature selection is an endless problem because as time passes the dimensionality of

datasets, taken from real-world problems, increases. Therefore, the necessity of removing

3

features that do not contribute to the solution of our problems, and therefore, my harm

the efficiency and accuracy of machine learning algorithms will continue to get higher.

Subsequently, the number of feature selection algorithms proposed by researchers also

increases in recent years. Some feature selection algorithms can be applied in a wide variety

of problems, and the achieved improvement in such algorithms has resulted in valuable

contributions in the real word. Other algorithms cannot be used with high-dimensional

datasets, but there is a room of improvement so that they became scalable to the size of

datasets.

The main motivation of this research is to improve some of the best feature selection

algorithms so that they can be applied to high-dimensional datasets without sacrificing

efficiency. We are very interested in high-dimensional data analysis, and to enhance our

research we propose to make some state-of-the-art algorithms scalable to high-dimensional

domains. In our proposal, we not only improve accuracy of such algorithms, but also

efficiency.

1.3 Objective

The main goals we aim in this research are the followings.

• Deep understanding and study of feature selection. Creating new feature selection

algorithms is a difficult task. However, by studying and analysing the benchmarking

algorithm we can make easier this task.

• Improvement of some of the existing methods. Some of the current feature selection

methods are very accurate, but they can not be applied to high-dimensional data. In

this research we propose some modifications to these methods, so that they can be

scales to high-dimensional data. On the other hand, some methods are very fast, but

we also propose to improve the in terms of accuracy.

• Evaluation of our proposed algorithms. To validate our proposals we aim to run

experiments in high-dimensional datasets. We use datasets that contains data mainly

from microarray cancer classification, text mining and artificial data. Basically, we

evaluate three parameters when testing an algorithm: quality of solutions, running

time and number of features selected.

1.4 Structure of this research

This paper is compose by five chapters, in which we present our whole research, conclu-

sions and future work. In chapter 2, we analyse and describe some of the state-of-the-art

4

feature selection algorithms. We divide these algorithms in three groups: methods to

rank features, methods based on pairwise evaluations and methods based on set-wise

evaluations. Since the methods in the last groups outperforms the other algorithms, we

focus on improving some of these algorithms in chapter 3.

In chapter 3, we propose four new feature selection algorithms based on set-wise

evaluation. Most of these methods are based on state-of-the-art algorithms that have shown

good results. However, these algorithms has some gaps and we propose to solve them by

proposing a new version of the algorithms that outperform their original versions. We also

perform evaluations to validate each proposal.

In chapter 4, we present new proposals, but in the pair-wise-evaluation approach. We

are especially interested in this approach, because some of their algorithms can be used in

the two-stage search, which is extremely accurate. However, the two-stage algorithms are

not scalable to high-dimensional data. Since a pair-wise evaluation algorithm represents

the first phase of a two-stage search, improving the efficiency of the pair-wise evaluation

algorithm can drastically increase the efficiency of a two-stage search.

1.5 Notation

During the entire document we use the same notation. Therefore, the following is a list of

all notations used in this research.

Table 1.1: Notation used in this research

Symbol Definition

D Dataset

xj j-th instance in the dataset D
fi j-th feature in the dataset D
xi
j feature value that corresponds to the j-th instance in the i-th feature in D

C set of all possible class labels in D
F̃ current selected set of features

μ a feature selection evaluation function

F entire feature set in D

5

Chapter 2

An Overview of Feature Selection and
Related Work

Today many modern scientific research fields make use of machine learning techniques

for speeding up the process of knowledge discovery and making decisions [1]. These

problems often involve a large number of variables that incrementally grow as the time

passes due to the improvement of measurement techniques and technology. Many factors

affect the success of machine learning on a given task. The representation and quality

of the example data is first and foremost. Theoretically, having more features should

result in more discriminating power. However, practical experience with machine learning

algorithms has shown that this is not always the case [54]. Usually, most of these features

are either redundant or irrelevant to the predictive model. In typical predictive modelling

tasks like supervised classification, extensively large feature sets can lead to poor accuracy,

high computational cost and memory usage, and slow speed. If there is too much irrelevant

and redundant information present or the data is noisy and unreliable, then learning during

the training phase is more difficult. Therefore, selection of the optimal (possibly minimal)

feature set giving best possible results is desirable to increase the discriminating power of

predictive models [21].

Feature subset selection is the process of identifying and removing as much irrelevant

and redundant information as possible [22]. This reduces the dimensionality of the data

and may allow learning algorithms to operate faster and more effectively. In some cases,

accuracy on future classification can be improved; in others, the result is a more compact,

easily interpreted representation of the target concept.

A feature selection algorithm can be seen as the combination of a search method that

generates candidate feature subsets, along with an evaluation function, which assigns a

score to the candidate feature subset according to its ability to uniquely determine class

labels with high likelihood [19].

In the well known survey by Molina et al. [42], the search strategy is further decom-

6

posed into search organization and generation of successors, and an evaluation function is

referred to as an evaluation measure. The search strategy represents sequences of theoreti-

cal and/or heuristic decisions on feature sets to investigate. The evaluation function, on the

other hand, is an information-theoretic function used to evaluate the feature sets that the

search strategy generates, and the evaluation results are input into the search strategy as

feedback.

Search Strategy Evaluation
FunctionInitialization

Initialize the current best F̃ .

Generation
Generate a feature set T � F to test.

Query
Request Evaluation Func-

tion to compute μ(T).

Update & Decision
Update F̃ , if necessary, and decide

whether to continue or to terminate.

Output F̃ and terminate.

Compute the eval-

uation μ(T) of T .

T

μ(T)

Figure 2.1: The basic framework of feature selection of the filter and wrapper approaches.

F is the entire feature set of a dataset D, and F̃ denotes the current best feature subset.

Figure fig:framework depicts this framework. In Initialization, the current best feature

set F̃ is set to an appropriate initial value. For example, we let F̃ = ∅ for forward selection

and F̃ = F for backward elimination, where F denotes the entire feature set of the dataset D
input. In Generation, the search strategy generates a feature set T that is to be investigated

and then requests the evaluation function to evaluate T . In Update & Decision, based on

μ(T) returned from the evaluation function, the search strategy updates F̃ , if necessary,

and decides whether it should continue the search or should terminate it by outputting F̃ .

The simplest algorithm, following this general framework, is to test each of the 2n

possible subset of features finding the one which minimizes the error prediction rate. How-

ever, this is an exhaustive search of the space, and its computationally cost is prohibitively

high. Therefore, alternative search-based techniques have been constantly proposed by the

machine learning community.

In large, feature selection includes three approaches, namely, the embedding approach,

the wrapper approach and the filter approach. Intuitively speaking, the embedding ap-

proach consist of classification algorithms that intrinsically include the feature selection

functionality. Decision tree algorithms such as CART [9], ID3 [49] and C4.5 [51] are good

examples: Pruning branches corresponds to eliminating irrelevant features.

7

The wrapper approach relies on a particular classifier algorithm and aims to select

feature sets that optimize the performance of the classifier. Wrapper methods generally

result in better performance than filter methods because the feature selection process is

optimized for the classification algorithm to be used. However, wrapper methods are too

expensive for large dimensional database in terms of computational complexity and time

since for every feature set to be evaluated, the classifier must be trained and tested on the

reduced data [13].

In general, filters are fast due to the fact they do not incorporate learning algorithms

and rely on the intrinsic characteristics of the training data to select and discard features.

As a consequence, filter methods are generally much faster than wrapper methods, and, as

such, are more practical for use on data of high dimensionality. Although in this research

we propose two new wrapper algorithms, we are mainly focus on filter algorithms.

2.1 Feature Selection in Supervised Learning

A fundamental issue in supervised classification is to learn the functional relationship

�() from training instances X = {x1, x2, · · · , xm} with associated correct labels C =

{c1, c2, . . . , ct}, to correctly determine the class labels for unseen instances [53]. xj is a

vector of real numbers, where xi
j ∈ fi is the value of the i-th feature in the j-th instance.

C represents a finite set of possible results associated to a given instance. As an example,

xj might be a vector of values associated to the cells of a tumour biopsy or the cells of

the tissue of a healthy patient, whereas C represents whether the patient has cancer or not.

Then, the classification algorithm analyses thousands of patients data along with labels

containing the correct diagnosis of the patient. The algorithm will then learn a function

� that represents the relationship between the patient data and their associated diagnosis.

Once � is learnt, new patients without diagnosis can be classified using �(xp) → C, where

xp represent the data of the new patient.

In order to solve a given problem of supervised learning, the following steps must be

accomplished [53]:

1. Determine the type of training examples. Before applying supervised classification

algorithms, the researcher should know the type of data disposed. This is especially

useful to know whether or not the data need to be preprocessed or even to determine

the potential algorithm to use as a learner [26].

2. Gather a training set. The input or training set must be representative within the

universe of all possible instances of the problem. Hence, a set of input objects is

collected along with their corresponding outputs, either from human experts or from

measurements.

8

3. Determine the input feature representation for the learned function. The accuracy

of the learned function depends strongly on how the input object is represented.

Typically, the input object is transformed into a feature vector, which contains a

number of features that are descriptive of the object. The number of features should

not be too large, because of the curse of dimensionality; but should contain enough

information to accurately predict the output.

4. Determine the structure of the learned function and corresponding learning algo-
rithm. The learned model can be expressed in several formats such as: decision trees,

artificial neuronal networks and list of rules. An approximation of the best model

representation can be search through a trial and error process [41].

5. Complete the design. Optimizing the parameters of the supervised algorithm via

cross validation is essential to reach the highest possible accuracy.

6. Evaluate the accuracy of the learned function. After parameter adjustment and

learning, the performance of the resulting function should be measured on a test set

that is separate from the training set. A wide range of supervised learning algorithms

is available, each with its strengths and weaknesses. It is strongly recommended to

test several algorithms to choose the one that better fits to the given data. There is no

single learning algorithm that works best on all supervised learning problems.

There are plenty of supervised learning algorithms in the literature that mainly differs

on the way they represents their learning function. The following algorithms are very

representative in the research community and we use many of them to evaluate the proposed

feature selection algorithms through cross validation.

• Naive Bayes: Bayesian theory is a very simple, but powerful tool in machine learning

because hypotheses can be assigned weights based on prior probability. Bayesian

methods calculate explicit probabilities for hypotheses. For example, Michie, et al.

[36] compared decision tree and neural network methods with a Naive Bayesian

classifier found they have some similar features. The Naive Bayes algorithm uses a

simplified version of Bayes equation to decide which class a new instance belongs to.

The posterior probability of each class is computed, given the feature values present

in the instance; the instance is assigned the class with the highest probability. The

following equation shows the naive Bayes formula, which makes the assumption

that feature values are statistically independent within each class.

P (ct|x1
j , x

2
j , . . . , x

n
j) =

P (ct)
∏n

i=1 P (xi
j|ct)

P (x1
j , x

2
j , . . . , x

n
j)

(2.1)

9

Learning with the Naive Bayes classifier is straightforward and involves simply

estimating the probabilities in the right side of the Equation from the training

instances. The result is a probabilistic summary for each of the possible classes.

• Support vector machines (SVMs) provide very powerful machine learning algo-

rithms. Unlike regression, an SVM determines a separation hyperplane with a

margin so as to maximize the gap between different classes, as illustrated in Fig.

2.2. The SVM divides the dataset into different parts according to data instances

called support vectors. The class of a new data instance is determined by the area in

which it falls. An SVM in conjunction with a kernel function, which projects data

to a higher-dimensional space, can efficiently handle high-dimensional data. An

Figure 2.2: Illustration of a support vector machine (SVM)

SVM model is a representation of the examples as points in space, mapped so that

the examples of the separate categories are divided by a clear gap that is as wide

as possible. New examples are then mapped into that same space and predicted to

belong to a category based on which side of the gap they fall.

• C4.5 Decision Tree In decision tree learning, data features are compared with

decision conditions in order to select a specific category [50]. Along with systems

that induce logical rules, decision tree algorithms have proved popular in practice.

This is due in part to their robustness and execution speed, and to the fact that explicit

concept descriptions are produced, which users can interpret [7]. C4.5 builds

decision trees from a set of training data {x1, x2, . . . , xm}, using the concept of

information entropy. Each instances in the training data has a class value associated

from C = {c1, . . . , ck}. At each node of the tree, C4.5 chooses the feature of the

data that most effectively splits its set of samples into subsets enriched in one class

10

or the other. The splitting criterion is the normalized information gain (IG).

IG(fi; C) =
∑
xi
j∈fi,
ct∈C

P (fi = xi
j,C = ct) log

P (fi = xi
j,C = ct)

P (fi = xi
j)P (C = ct)

(2.2)

The attribute with the highest normalized information gain is chosen to make the

decision.

Recent research has shown that common machine learning algorithms can be adversely

affected by irrelevant and redundant features in the training data. As an example, there

have been several researches that points out that the simple nearest neighbour algorithm

is sensitive to irrelevant features and its accuracy can significantly be improved when

noisy feature are removed [31]. The Naive Bayes classifier can be adversely affected by

redundant attributes due to its assumption that attributes are independent given the class

[35]. Decision tree algorithms such as C4.5 can sometimes overfit training data, resulting

in large trees [50]. In many cases, removing irrelevant and redundant information can

result in C4.5 producing smaller trees [32].

In the remaining of this chapter, we describe some feature selection algorithms used in

this research. Algorithms have been divided in three groups: ranking methods, pair-wise

evaluation methods and set-wise evaluation methods.

2.2 Related Work

Researchers have studied various aspects of feature selection. One of the key aspects is to

measure the goodness of a feature subset in determining an optimal one [19].

When working with high dimensional data with thousands or hundred thousands

features, it is very common that a large number of the features are not informative because

they are either irrelevant or redundant with respect to the class variable [66]. However,

the search space in the feature selection problem grows exponentially with the increase of

dimensionality, as shown in Figure 2.3. In other words, the possible number of solutions is

2n, where n is the number of features.

Finding the optimal solution is almost impossible in high-dimensional datasets: many

problems related to feature selection have been shown to be NP-hard [8]. In the remaining

of this section, we describe several feature selection algorithms that fall into one of the

categories of: methods to rank features, pairwise evaluation methods or set-wise evaluation

methods.

11

Figure 2.3: Search space for the feature selection problem with five features: a, b, c, d, e.

2.2.1 Methods to Rank Features

The individual relevance score r(fi; C) of a feature fi is a common term that refers to the

power of a single feature to predict the class feature C. The individual relevance score

can be used as a metric to select the features that better predicts the class under certain

threshold. That is, features are ranked using their individual relevance score and then the

top features are selected. The selection condition can be expressed in number of features

to select or in a threshold for r. These algorithms are called feature ranking methods and

often use correlation, distance and information measures between a single feature and the

class feature to find a set full of high-relevant features.

2.2.1.1 Relief and ReliefF

As an example, RELIEF [29] computes the relevance score of a feature fi based on the

capability of fi to discriminate among instances of different classes. Assuming instance

xk with class c+ is randomly sampled from the data, and Hk and Mk are two sets of

instances (in the neighborhood of xk) with class c+ and c− respectively, then a feature has

high separability power if it has similar values in instances from Hk and different values

in instances from Mk. RELIEFF is an extension of RELIEF that handle multiple classes

by splitting the data into series of two-class data [33]. The individual relevance of each

feature fi in F is assessed by computing the average of its separability power in l instances

12

randomly sampled. That is,

RF (fi; C) =
1

|C|

l∑
k=1

(− 1

|Mk|
∑

xj∈Mk

d(xi
k, x

i
j) +

∑
c �=c(xk)

p(c)

|Hk|(1− P (c))

∑
xj∈Hk

d(xi
k, x

i
j)),

where P (c) is the probability that an instance is labeled with class c and d(xi
k, x

i
j) =

(xi
k − xi

j)/(max(fi) − min(fi)), with max(fi) and min(fi) being the maximum and

minimum value of feature fi.

2.2.1.2 Laplacian Score

A similar metric is used by Xiaofei et al. [23] in the Laplacian Score measure. The main

difference lying between ReliefF and the Laplacian Score is that the latter does not use

information about C, so it is applicable to unsupervised learning as well. Laplacian Score

evaluates the quality of a feature fi according to its agreement with the graph Laplacian

matrix. Consider a matrix W ∈ Rm×m that represents the similarity between any pair of

instances xj and xk such that

Wjk =

⎧⎨
⎩e−

‖xj−xk‖
t if xj and xk are neighbors

0 otherwise
, (2.3)

where ||x|| is norm of vector x and the neighbourhood of an instance is defined by a

distance function. If we think of matrix W as a graph of neighbouring instances that are

connected by similarity edges, then the Laplacian Score of a feature fi represents how

consistent is fi with the similarity graph. That is, fi is consistent with W if it takes similar

values for instances that are near to each other and dissimilar values for instances far from

each other. The Laplacian Score metric is computed by

LS(fi;C) =

∑
j,k(x

i
j − xi

k)
2Wjk∑

j(x
i
j − μi)2Ajj

, (2.4)

where μi = 1/m
∑

j x
i
j and A is a diagonal matrix such that Aii =

∑
j Wji. This measure

seems to be very robust, but according to Zhu et al. in [69] the graph of neighbouring

instances is not consistent when the dataset is high-dimensional.

2.2.1.3 Fisher Score

Another popular measure among the ranking feature algorithm is the Fisher Score [18].

Let nc be the number of instances with class c and let μic and σ2
ic be the mean and variance

of the i−th value of all instances in the data respectively. The Fisher Score represents the

13

average of the distances among instances with different classes when the data is projected

with feature fi. Fisher score metric is defined as follows.

FS(fi;C) =

∑|C|
c=1 nc(μic − μi)

2∑|C|
c=1 ncσ2

ic

. (2.5)

2.2.1.4 Information Theory-based Functions

Within the ranking feature selection functions, is the Mutual Information, which can handle

categorical features and can be used to measure correlation between a feature and the class:

MI(fi; C) =
∑

xi
j∈V (fi),

c∈C

Pr[fi = xi
j,C = c] log

Pr[fi = xi
j,C = c]

Pr[fi = xi
j]Pr[C = c]

To compute the mutual information, we use the empirical probability derived from the

dataset D: the empirical probability Pr[fi = v] is the ratio of the number of the instances

whose feature value with respect to fi is identical to v to the total number of instances m

and is given by

Pr(fi = v) =
1

m

∣∣{j | xi
j = v}

∣∣ . (2.6)

The symmetrical uncertainty SU(S,C) [48], on the other hand, is the harmonic mean

between MI(S;C)/H(S) and MI(S;C)/H(C), and a formula to compute it is given as

SU(S;C) =
2 ·MI(S,C)

H(S) +H(C)
. (2.7)

Mutual Information is biased in favour of features with greater number of values and

this is a problem when used for feature selection [67]. The Symmetrical Uncertainty

measure deals with this problem by a normalizing function:

SU(fi;C) = 2
MI(fi;C)

H(fi) +H(C)

The Symmetrical Uncertainty is the harmonic mean between MI(fi, C)/H(fi) and

MI(fi, C)/H(C). therefore it is symmetrical and in the range of [0, 1].

2.2.1.5 Support-Vector-Machine-based Recursive Feature Elimination

The classification error-based measures use useful information discovered during the

training phase of a classifier to weight the features. As an instance, the Recursive Feature

Elimination algorithm evaluates a feature fi by computing the added error when fi is

14

removed from the current set [19].

RFE(fi;C) =
(∑

k

αk c(xk) x
i
k

)2

(2.8)

where c(xk) = {+1,−1} returns the class corresponding to the instance xk and αk is the

optimal weight, which can be computed with a linear discriminatory classifier such as

SVM by:

min
α

1

2

∑
j,k

C(xj)C(xk)αjαk(xjxk + λδjk)−
∑
k

αk (2.9)

s.t 0 ≤ δk ≤ ζ,
∑

δkC(xk) = 0, (2.10)

being λ and ζ soft margin parameters (usually fixed to λ = 10−4 and ζ = 102 [19]) and δjk

is the Kronecker function (δjk = 1 if j = k and δjk = 0 otherwise). Different from most of

feature ranking algorithms, in the Recursive Feature Elimination approach a greedy search

is performed to add at the end of the ranking the feature that minimize RFE. Although this

atypical way of building a ranking leads to a relatively high computational complexity, the

quality of the output is high [19].

Although the ranking feature algorithms are usually simple and fast, they have two se-

rious drawbacks that may affect the performance of supervised classifiers. First, redundant

features are likely to be selected. Second, they usually can not detect interacting features.

2.2.2 Methods based on Pairwise Evaluation of Relevance

Oppositely to the feature ranking algorithms, pairwise evaluation methods can detect and

eliminate relevant features, but also are able to remove redundant features. Most of these

algorithms use one of the measures mentioned in the section above. The way most of

these algorithms operates is as follows. First, the relevance score r(fi, C) of each feature

in fi ∈ F is computed and second, pairwise evaluations r(fi, fj) between features are

performed to detect features that are highly correlated to others.

2.2.2.1 Fast Correlation based Filter

As an example, the algorithm FCBF (Fast Corelator based-Filter) [67] first ranks all

features {f1, . . . , fn} in the descending order of the Symmetrical Uncertainty scores. Then,

starting from the best/first feature in the ranking f1, it applies a redundancy filter to all of

features fj with j > i, and, if SU(fi; fj) > SU(fj;C) holds then it removes fj . Since the

overall complexity of algorithm FCBF is O(mn log n) where m is the number of instances

in the data, this algorithm is scalable to large data.

15

Algorithm 1 Fcbf [67]

Require: Dataset D described by a feature set F

Ensure: A feature subset {f̄1, . . . , f̄q} ⊂ F.

1: Rank features in F according to SU(fi,C)
2: for i = 1, . . . , |F| − 1 do
3: for j = i+ 1, . . . , |F| do
4: if SU(fj) < SU(fi, fj) then
5: F = F \ {fj}
6: end if
7: end for
8: end for
9: return F

2.2.2.2 Correlation-based Feature Selection

CFS is one of the most well-known feature selection algorithms that take advantage of

a redundancy filter [22]. The CFS function Cfs : FD → R takes an element of FD, the

power set of the entire features of a dataset D, as input. Therefore, an input into the CFS

function is a subset of the entire features. On the other hand, the returned real value is

the result of evaluation of S from the class-relevance and interior-redundancy points of

view. This design is based on the idea of “a good feature subset contains features highly
correlated with the class variable C, yet uncorrelated to each other” [22]. Every set F̃ is

heuristically evaluated as follows:

Cfs(F̃ , C) =
|F̃ | rcf√

|F̃ |+ |F̃ |(|F̃ | − 1) rff

(2.11)

, where rcf represents the average of the relevance score of each feature in F̃ and rff

is the average of the redundancy score of all possible pair of features in F̃ . The time

complexity of this algorithm is quadratic in terms of number of features. As depicted in

Algorithm 2, CFS use the Greedy Forward approach as a search engine. Therefore, CFS is

not recommended for high-dimensional data.

As Algorithm 2 shows, the greedy forward search initializes S to be with the empty

(S = ∅). In each iteration, every feature f that is not in S is evaluated on the basis of the

extent to which the CFS score is improved by adding f to S. The feature that maximizes

the CFS score is actually added to S, and the algorithm proceeds to the next iteration. The

search stops when no features improve the current CFS score, or the number of iteration

exceeds the given threshold n. The feature that is selected in the first iteration has the

maximum SU score, because Cfs({f}) = SU(f ;C) holds.

16

Algorithm 2 CFS [22]

Require: Dataset D described by a feature set F

Ensure: A feature subset S ⊂ F.

1: S = ∅
2: for k = 1, . . . , n do
3: fi ∈ argmaxf∈F\S Cfs(S ∪ {f})
4: if Cfs(S ∪ {fi}) ≤ Cfs(S) then
5: break
6: end if
7: S = S ∪ {fi}
8: end for
9: return S

2.2.2.3 Maximum-Relevance Minimum-Redundancy

As was stated before, the main goal of feature selection is to identify features 1) that have

high correlation with the target class (relevance) but 2) low mutual relevance among them

(redundancy). Peng et al. [45] have proposed the algorithm named the Max-Relevance
and Min-Redundancy algorithm (MRMR), which finds approximate solutions to the afore-

mentioned problem efficiently. MRMR evaluates each subset of genes by the Mutual
Information Difference measure MIDα(·, ·) defined as shown below:

MIDα(f, ∅) = I(f, C); (2.12)

MIDα(f, S) = I(f, C)− 2α

k

∑
f ′∈S

I(f, f ′), (2.13)

where I(f, f ′) represents the Mutual Information between the two genes f and f ′. MRMR

takes the forward search approach, and hence, the variable S that holds the features selected

at each iteration of the for loop (line 2 – 5) is initialized to the empty set (line 1). Then, for

each iteration of the for loop, a single feature f that maximizes MIDα(f, S) is added to S.

Algorithm 3 MRMR [45]

Require: Dataset D described by a feature set F and a number q of features to select.

Ensure: A feature subset {f̄1, . . . , f̄q} ⊂ F.

1: S = ∅
2: for k = 1, . . . , q do
3: f̄k ∈ argmax{MIDα(f, S) | f ∈ F \ S}
4: Add f̄k to S.

5: end for
6: return S

The Minimum Relevance Maximum Relevance (MRMR) algorithm uses a very similar

process to select feature sets [15]. In each iteration the feature f ∗ ∈ F \ F̃ that optimize

17

certain evaluation function is selected. Again, the evaluation function corresponds to a

balance between the averages of the relevance score and redundancy score of the set of

already selected features F̃ :

f ∗ = argmax
fi∈F\F̃

{
MI(fi, c)

1
|F̃ |

∑
fj∈F̃ MI(fi, fj)

}
(2.14)

2.2.2.4 Sequential Forward Selection-based Validity Index

The SFS-LW algorithm evaluates the quality of a feature set by measuring the minimum

separation degree between two linearly separable classes in the data. The separation degree

between two classes: i and j, is assessed as equation 2.15 shows.

FDi|j = d(vi, vj)− (ri + rj), (2.15)

where d(vi, vj) represents the distance between the centroids vi and vj , and ri and rj are

radii of the clustered instances in class i and class j respectively. A feature subset S is

evaluated by computing the minimum separation degrees between all pair of classes as

shown in the following equation.

LWS =
1

|C|

|C|∑
i=1

min
i �=j,j=1,...,|C|

FDi|j (2.16)

Figure 2.4 represents the LWS index graphically.

Figure 2.4: Graphical representation of the LWS index.

The LW-index is used as an evaluation function to evaluate the candidate sets and is

combined with the Sequential Forward Search.

18

2.2.2.5 Supervised Simplified Silhouette Filter

The S3F algorithm is based on the feature clustering concept [11]. That is, the set of

features F = {f1, f2, . . . , fn} are partitioned into a collection CF = {C1, C2, . . . , Ck}
of k mutually disjoint subset of correlated features Ci of F. Features belonging to the

same cluster are expected to be highly correlated whereas features in different clusters

are expected to have low correlation between them. To build the clusters, S3F uses the

k-medoids algorithm [55]. In addition, the distance between features in a cluster is assessed

taking into account the correlation between the features and their individual correlation

with the class variable, as shown in the following equation.

SUS(fi, fj) =
1− SU(fi, fj) + |SU(fi, C)− SU(fj, C)|

2
. (2.17)

The medoid (or centroid) of each cluster is the feature more correlated with the class and

least correlated with the other features in the cluster. In S3F, the medoid is heuristically

determined as follows.

ηr = argmax
fi∈Cr

{
1

2

[∑
fj∈Cr

SU(fi, fj)

|Cr| − 1
+ SU(fi, C)

]}
. (2.18)

Finally, two features are selected from each cluster: the medoid, and the one determined

by:

argmax
fi∈Cr

{
1− SU(fi, ηr) + SU(fi, C)

2

}
, (2.19)

which is the feature least correlated with the medoid ηr and the most correlated with the

class.

Although feature ranking and pair-wise evaluation methods are quite fast and easy to

implement, they are not able to detect interacting features. That’s why in high-dimensional

domains they may output low-quality sets.

To illustrate, consider the class target function c = f1⊕f2 where {f1, f2, . . . , fn} ∈ F

are binary features and ⊕ denotes the xor operator. Beforehand, we know {f1, f2} won’t

be selected because both features by themselves are uncorrelated with c. If we consider

that features in F \ {f1, f2} can not accurately describe the class then we can not expect a

good performance of the classifier after reducing F by any of the feature ranking or pair-

wise evaluation algorithms. Figure 2.5 depicts a numerical version of the aforementioned

example. Consistency-based measures are a successful choice to face this problem because

they can detect high-order interacting features [68].

According to [27] a feature fi interacts with a set of features F̃ when is considered

irrelevant based on its individual correlation with the class; but when combined with F̃ , it

becomes very relevant. Formally we can say that: fi interacts with F̃ if Br(F̃ ∪ {fi}) ≤

19

Figure 2.5: Example of how non-relevant features can interact with each other to

accurately discriminate between two classes.

δ andBr(F̃) > δ.

2.2.3 Methods based on Set-wise Evaluation of Relevance

Consistency-based algorithms can detect interacting features by collectively evaluating

relevance (correlation) of a feature set to the class. Although exhaustive search of all

possible feature sets is computationally too expensive, the result can be expected to be

accurate. We first introduce the Bayesian risk as a consistency measure example and then

we define the consistency measure concept. To illustrate, for a dataset , we view a feature

of as a random variable and a feature set F̃ as a joint variable. Then, we let ΩF̃ denote

the sample space of F̃ , C denotes a variable that describes classes and Pr denotes the

empirical probability distribution of . With these notations, the Bayesian risk is defined by

Br(F̃) = 1−
∑
x∈ΩF̃

max{Pr
D
[F̃ = x,C = y] | y ∈ ΩC}.

This function is also referred to as the inconsistency rate in [68]. The Bayesian risk has

two important properties, that is, determinacy and monotonicity, and we first introduce the

notion of consistent feature sets to explain the properties. For a dataset described by F,

a feature set F̃ � F is consistent, iff, Pr[C = y | F̃ = x] = 0 or 1 for all x ∈ ΩF̃ and

y ∈ ΩC.

Then, the determinacy and monotonicity properties are described as follows.

Determinacy. Br(F̃) = 0, if, and only if, F̃ is consistent in .

Monotonicity. Br(F̃) ≥ Br(G), if F̃ � G � F.

Formally, a consistency measure is defined as a function that returns real numbers on

input of feature sets that has the determinacy and monotonicity properties. The consistency-

20

Search Strategy Evaluation
Function

F̃ = ∅; i =
1;//Initialization

T = {T � F | |T | =
i};//Generation

//Query

If min{Br(T) | T ∈ T} = 1,
then

i = i+ 1;
If i ≤ |F|, then go to

Generation;
Else

F̃ ← argmin{Br(T) | T ∈ T};
//Update & Decision

Return F̃;

For each T ∈
T,
Br(T) =
Bin(D)T ;

T

{Br(T) | T ∈ T}

Figure 2.6: FOCUS.

based feature selection, on the other hand, is characterized by use of consistency measures

as the evaluation function.

FOCUS [3] is a feature selection algorithm that searches the minimum feature subsets

that are consistent in (Fig. 2.6).

FOCUS include two serious problems. One is that the a dataset does not always include

consistent feature subsets, and hence, FOCUS cannot find answers in such cases.

The significant difference of the Bayesian risk from the binary consistency function is

the property of the Bayesian risk that we can not only determine whether feature sets are

consistent but also measure their closeness to the state of being consistent.

The other important problem of FOCUS is its impractically low time-efficiency. Since

FOCUS performs exhaustive search, its search space includes 2|F| feature subsets. There

have been many attempts to improve the efficiency. Automatic Branch & Bounds [43]

takes advantage of the monotonicity property of the Bayesian risk to prune unnecessary

branches of the search trees. It actually narrows down the search space of FOCUS but is still

slow because it performs complete search. Then, heuristic methods play an important role.

For example, SETCOVER [12] was the first algorithm the leveraged sequential forward
selection (SFS). The probabilistic and hybrid methods are also useful, and Las Vegas Filter
[39] and Quick Branch & Bounds [30] were good examples.

21

Search Strategy Evaluation
Function

F = (F1, . . . , Fn)
//Increasing order of

SU(Fi,C);
F̃ = F; i = 1;
//Initialization

T = F̃ \ {fi}; //Generation

//Query;

If Br(T) − Br(F̃) ≤ δ, then
F̃ = T ;
i = i+ 1;
If i ≤ n, then go to
Generation;
//Update & Decision

Return F̃;

Br(T) =
Br(D)T ;

T

Br(T)

Figure 2.7: Interact. A threshold δ is given as a parameter.

2.2.3.1 Interact

In this regard, INTERACT [68] was an important breakthrough. It investigates only |F|
feature subsets, nevertheless it can exhibit high accuracy by incorporating interaction

among features into the evaluation. Fig. 2.7 shows the algorithm of INTERACT: INTERACT

receives a dataset that is described by a feature set F and a threshold δ; In the Initialization
step, INTERACT sorts the features in F into (f1, . . . , f|F|) in the increasing order of the

symmetric uncertainty SU(F,C) between each F ∈ F and the feature C that represents

class labels; Since INTERACT is a backward elimination algorithm, the initial value of F̃

is F; Starting from i = 1, INTERACT lets T = F̃ \ {fi} and computes Br(T)−Br(F̃),

which is non-negative by the monotonicity property of the evaluation function; If Br(T)−
Br(F̃) ≤ δ, INTERACT judges that the feature fi is not important and eliminates it from

F̃ ; INTERACT repeats the steps of Generation, Query and Update & Decision until no

more feature is left untested.

2.2.3.2 Linear-Consistency-Constrained

As was stated in [58], INTERACT usually tends to output F̃ with high Br(F̃);C because

each set is not evaluated as a whole but each feature is individually evaluated based on its

consistency contribution to the current set. Supposing we have a ranked set of features

F = {f1, f2, . . . , fn}, such that SU (fi) < SU(fi+1) with i = {1, 2, . . . , n− 1}, and in

22

Algorithm: INTERACT

INPUT: A consistency measure function Br(),
a threshold δ

OUTPUT: a feature subset F̃
STEPS:

Let F̃ = F
Order the features f ∈ F̃ in incremental order of SU (f, C)

For each f ∈ F̃ from the first to the end.

If CC
(
f, F̃

)
≤ δ, let F̃ = F̃ \ {f}

End For.

Figure 2.8: The algorithm of INTERACT

Algorithm: Linear CC (LCC)

INPUT: A consistency measure function Br(), an ordered feature set F
a threshold δ

OUTPUT: a minimal subset F̃ ⊆ F such that Br(F̃ ;C) ≤ δ
STEPS:

Let F̃ = F
If Br(F̃ ;C) > δ, abort.

For each f ∈ F̃ from the first to the end.

If Br(F̃ \ {f};C) ≤ δ, let F̃ = F̃ \ {f}
End For.

Figure 2.9: The algorithm of LCC

the worst case CC(f1;F) = δ, CC(f2;F\{f1}) = δ, ..., CC(fj;F\{f1, . . . , fj−1}) = δ,

with j ≤ n ; Br(F̃ ;C) of the output F̃ will be equal or higher than j ∗ δ.

As a solution to this drawback, Shin and Xu propose to use Br(F̃ \ {f}) ≤ δ instead

of CC(f ; F̃) to decide whether or not f must be removed [58]. This guaranties that

Br(F̃ ;C), for the output F̃ , be equal or smaller than δ. In short, the main difference

these algorithms have is that LCC evaluates the quality of a set when a feature is removed

whereas INTERACT evaluates the quality of a feature based on its consistency contribution

to the current set. In other words, the former focuses on the set generated in each iteration

while the latter focusses on the quality of each feature individually. In Figure 2.9 the

algorithm LCC is shown.

Despite LCC reaches good outputs, is usually trapped by local optima due to the nature

of its search. In fact, supposing each feature fi ∈ F is ranked in incremental order, this

algorithm outputs from all the sets Hi ⊆ F , such that Br()(Hi;C) ≤ δ, that one which

has its least relevant feature, according to Symmetrical Uncertainty measure, nearest to the

first position in the ranking.

23

Search Strategy Evaluation
Measure

F = (f1, . . . , fn)
//Decreasing order of

SU(fi);
F̃ = F;
i = 1;

T = F̃ \ {fi};

//Call the evaluation
function;

If Br(T) ≤ δ, then F̃ = T ;
i = i+ 1;
If i ≤ n, then go to
Generation;

Return F̃;

Br(T) =
Br(D)T ;

T

Br(T)

Figure 2.10: Linear Consistency Constrained (LCC) Algorithm

Formally, LCC exactly outputs F̃ such that:

F̃ =

{
Hk | Hi ∈ F

i=1,..,k,k+1,..
, μ (Hi;C) ≤ δ and max

Fj∈Hi

{min {SU (fj)}}
 Hk

}

Unfortunately, most of the time F̃ is not the global optima.

2.2.3.3 Steepest-Descent-Consistency-Constrained

The Steepest-Descent Consistency-Constrained (SDCC) algorithm is less prone to be

trapped by local optima [59]. SDCC sets the set F̃ to the full set of features F and in each

iteration removes a single feature f from F̃ while Br(F̃ \ {f};C) ≤ δ. The last F̃ is the

output of SDCC and δ is the minimum allowable inconsistency for this output. In each

iteration SDCC selects f to be eliminated by

f = argmin
f∈F̃

Br(F̃ \ {f};C).

SDCC needs
(
|F|+ |F̃ |

)(
|F| − |F̃|+ 1

)
/2 evaluations to remove |F|−|F̃| subsets

and output F̃ . In Figure 2.11 the algorithm is presented.

24

Algorithm: Steepest-Descent CC (SDCC)

INPUT: A consistency measure function Br(), an ordered feature set F
a threshold δ

OUTPUT: a minimal subset F̃ ⊆ F such that Br(F̃ ;C) ≤ δ
STEPS:

Let F̃ = F
If Br(F̃ ;C) > δ, abort.

Repeat

Take f ∈ F̃ with the smallest

δ′ = Br(F̃ \ f ;C)

If δ′ ≤ δ, let F̃ = F̃ \ {f}, else break.

End Repeat.

Figure 2.11: The algorithm of SDCC

Figure 2.12: Example of the search strategy used by SDCC

2.2.3.4 Super-Lcc

Recently, the efficiency of LCC has been improved by conducting binary search instead of

linear search [56]. This idea was materialized under the name of SUPER-LCC and works

under the assumption that high-dimensional datasets are abundant in irrelevant features

that can be removed in mass. By the first to the (i− 1)-th iterations of the algorithm, the

algorithm determines a sequence of indices of features l1 < l2 < · · · < li−1, and defines

F̃ = F \ {f1, . . . , fli−1
} ∪ {fl1 , . . . , fli−1

}. In the i-th iteration, the algorithm finds li such

that

li = argmax
j=li−1+1,...,n

{Br(F̃ \ {fli−1+1, . . . , fj}) ≤ δ}.

by Binary Search due to the monotonicity property of the bayesian risk. SUPER-LCC out-

puts the same set as LCC but on average has a computational complexity of O(nm(log n+

logm)) where n is the number of features that describes the m instances in D. To the best

of our knowledge, SUPER-LCC is the algorithm with better practical performance in both

of efficiency and accuracy. According to their authors, for data with more than hundred

thousand features, SUPER-LCC needs some seconds to give a response in an ordinary

personal computer [56].

2.2.4 Methods with Two-stage Search

A two-stage feature selection algorithm separates its job into two stages that aim at (1)

gradual reduction of number of features using a fast algorithm and (2) final and finer

25

selection of features using a slow but powerful algorithm. The first stage narrows down the

search space so that even the slow algorithm at the second stage can find answers within a

reasonable time allowance. Usually, a filter-type algorithm is selected for the first stage

algorithm, and in particular, MRMR has been extensively used as in the literature because

of its efficiency and accuracy [4][25][5][17][16].

2.2.4.1 Genetic Bee Colony for Feature Selection

GBC is a novel hybrid meta-heuristic algorithm that takes advantage of two bio-inspired

methods: genetic algorithms (GA) and artificial bee colony (ABC) optimization algorithm.

As Figure 2.13 shows, GBC is composed by five phases. In the Preprocessing phase,

the grand majority of features are removed by the filter-based MRMR algorithm. After-

wards, the first SN candidate solutions are randomly generated in the Initialization phase

similarily to the initialization phase in the ABC meta-heuristic algorithms [37].

Figure 2.13: The main phases of the GBC algorithm.

In the Employee Bee phase the genetic crossover operation is performed between

the Queen Bee, which is the best solution found so far, and solutions randomly chosen

from the population to generate new diverse solutions closer to the optima. Subsequently,

the Scout Bee phase is accomplished by resetting the solutions trapped by local optima.

Also, in this phase, the genetic mutation operation is performed over the Queen Bee to

intensify the search. In the remainder of this section we briefly explain the different phases

aforementioned.

26

• Phase 1: The preprocessing phase In high-dimensional microarray datasets, with

hundred of thousands of genes, it is infeasible to apply evolutionary algorithms

such as GA and ABC. Therefore, GBC takes advantage of the filter-based algorithm

MRMR to remove irrelevant and redundant genes at the very beginning of the search

to narrow down the space of solution from 2n to 2qt subsets, with qt � n.

Figure 2.14: The preprocessing phase in the GBC algorithm. t is usually fixed to 50 genes.

As shown in Figure 2.14, MRMR is run several times until the stopping criteria

is met. In each run, MRMR returns the subset selected in the previous run plus

q additional genes. The preprocessing phase stops when the returned subset can

uniquely determine the class variable. That is SVM(G) = 1.0, being SVM(G)

the accuracy reached by the classifier SVM in the reduced dataset composed by the

current qt genes in G.

• Phase 2: The Initialization phase In the second phase, GBC generates the initial

population composed by SN solutions. Each solution is represented as a group of

genes indices that are selected from the subset G, returned by the MRMR algorithm.

To build a solution a linear forward selection search is performed. That is, a gene

is randomly selected from G, then is tested in the current solution. If the current

solution improves by adding the gene, then we continue adding genes while the

current solution improves. The solution is built when a gene does not improve it.

The i-th gene in a solution is randomly selected according to the following equation:

xi
j = rand(0, 1)× qt, (2.20)

where rand(0, 1) represents a random number generator in the range of [0,1) with a

normal distribution.

• Phase 3: The employee bee phase In the Artificial Bee Colony (ABC) population-

based algorithm, the colony consists of three group of bees: employee bees, onlooker

bees and scout bees [28]. The position of a food source represents a potential

solution while the amount of nectar in a food source corresponds to the accuracy of

27

the associated solution. The ABC optimization problem consists on finding the food

source with higher amount of nectar through the social cooperation of bees.

GBC algorithm uses this analogy to improve the current population of solutions.

GBC sends the employee bees to search in the neighbour of the current SN solutions

(food sources) to find solutions that may be closer to the global optima. A neighbour

solution is determined by changing the index genes of a current solution by the

following equation:

vij =

⎧⎨
⎩xi

j +K if |S| −K > xi
j

xi
j −K otherwise,

(2.21)

with K = rand(−1, 1) × (xi
j − xk

j), where rand(−1, 1) denotes a random real

number in the range of [−1, 1] and k is a random integer number in [0, SN − 1].

• Phase 4: The onlooker bee phase In GBC, the crossover operation is used to share

information between employee and onlooker bees in the optimization search space

(hive). The employee bees indicates their location of the food sources to the onlooker

bees, by a waggling movement.

Figure 2.15: Crossover operation between the Queen Bee and a solution randomly selected

from the population.

As Figure 2.15 depicts, the crossover operation is accomplished by the Queen Bee,

which is the best solution found so far, and a solution randomly selected from the

current population of bees. The probability a solution has to be selected depends

only on its accuracy, and can be computed as follows:

P (xj) =
SVM(xj)∑SN
k=1 SVM(xk)

. (2.22)

28

Uniform crossover works by treating each gene independently and making a random

choice as to which parent it should be inherit, as shown in Figure 2.15.

• Phase 5: The scout bee phase In the GBC algorithm the scout bee phase is two-fold.

First, we check all the employee bees in the population and reset all of them that

have been trapped by local optima. This is achieved by counting the number of times

c that we perform an operation in a solution with no improvements. At this point, if

c > δ then we replace the solution with a new subset randomly generated.

Second, a mutation operator is applied to the Queen Bee to intensify the search in

the neighbourhood of the best solution found so far. Consequently, for each gene in

the Queen Bee we generate a random number r in [0, 1] and if r < α then the i-th

gene mutates according to the following equation.

vij =

⎧⎨
⎩QueenBi +K if |S| −K > QueenBi

xi
j −K otherwise,

(2.23)

, with K = rand(−1, 1)× (QueenBi − xk
j), where rand(−1, 1) denotes a random

number generator in the range of [−1, 1], k is an integer random number in [0, SN −
1] and QueenB is the best solution found so far.

29

Chapter 3

First Contribution: Improvement of
Accuracy of Set-wise Evaluation
Methods

3.1 Introduction

In this chapter, we propose new feature selection algorithms based on consistency measures.

First, we propose a new algorithm based on the steepest descent method. Second, we

propose a combination of the SUPER-LCC and the SDCC algorithms to improve the

accuracy and speed up the SDCC method. The novel approach makes use of a sliding

window technique to accomplish better accuracy and efficiency. Lastly, we propose a new

hybrid method that is based on the super-lcc and the simulated annealing technique. This

method, namely the Hybrid-Consistency-based Simulate Annealing, uses a given classifier

to estimate the best threshold δ for the super-lcc algorithm.

3.2 Fast SDCC

INTERACT and LCC algorithms have a linear computational complexity in terms of features.

Nevertheless they are usually trapped by local optima. As a solution to this problem, the

SDCC algorithm, proposed in [59], presents a good balance to the fundamental tradeoff

between the quality of outputs of feature selection algorithms and their efficiency. It

has been verified that SDCC outputs better subsets than INTERACT and LCC in terms of

consistency. Nevertheless, due to SDCC must evaluate
(
|F|+ |F̃ |

)(
|F| − |F̃|+ 1

)
/2

subsets to output F̃ , it is not applicable to high-dimensional datasets. It would be very

profitable if outputs with similar quality of those returned by SDCC were obtained in a

fast way in high-dimensional domains. To make this yearning real, one of the the main

30

Figure 3.1: Example of the search strategy used by SDCC

contributions of this research is the proposal of two new algorithms, which take advantage

of the properties of consistency measures to avoid unnecessary evaluations.

Next, we analyse some weak points of SDCC using the example of Figure 3.1 . Let

assume that the entire feature set F consists of four features: f1, f2, f3, f4. In Figure 3.1, a

node represents a feature subset of F (we have 24 = 16 nodes in total), while a link between

two feature subsets means that SDCC can move from the feature subset placed above to

the other placed below by removing a single feature. Thus, starting from F̃ = F̃ , SDCC

keeps travelling downward along links, while the visited feature subset meets the condition

of Br(˜̃F ; C) ≤ δ = 0.01. In the chart, the inconsistency measurement is represented

enclosed in parentheses below the subsets which meet this condition.

In this example, a deficiency relating to the effectiveness of SDCC is revealed. Suppos-

ing {f1, f4} is the smallest of the consistent sets (i.e. the optimal set). SDCC is trapped

by a local optima because in the first iteration the effect of removing f1 and f3 is similar.

Thus, due to a lack of a mechanism to decide which feature removes when there is a tie,

SDCC randomly selects a feature. Now, we propose this weakness formally.

Weakness 1. When Br(F \ fi; C) = δ′ for i = {1, 2, . . . , l} and δ′ =

min
F∈F̃

Br(F̃ \ {F} ;C), the SDCC algorithm arbitrarily selects any feature fi.

When this happens, the probability of SDCC be trapped by a local optima

depends on the probability of the removed feature belongs to the optimal

set.

Regarding the number of evaluation we can ask ourself the follwoing question. Why SDCC

31

evaluates, in the first iteration, to {f1, f3, f4}; {f1, f2, f4} and {f1, f2, f3} if the set with

minimum inconsistency has been already discovered (i.e. brF̃ \ {f1} = Br({f2, f3, f4} ; C) =
Br(F̃; C)). The monotonicity property of consistency measures allows avoiding unnec-

essary evaluations. Although irrelevant and redundant features are abundant in high-

dimensional datasets, we could expect that the number of evaluations executed by SDCC

to output F̃ could be significantly smaller than
(
|F|+ |F̃ |

)(
|F| − |F̃ |+ 1

)
/2. Further-

more, supposing SDCC is in the second iteration where the effect of individually removing

f2, f3 or f4 from F̃ = {f2, f3, f4} is evaluated; Br(f2, f3; C) > δ means that f4 may not

be removed from F̃ , and even more, based on the monotonicity property we can say that

Br(f2) > δ and Br(f3) > δ. We generalize this idea below.

Lemma 1. If we remove feature f from F̃ and F̃ \ f becomes inconsistent,

then any subset G̃ from the power set of F̃ such that G̃ /∈ f is also

inconsistent. Consequently, f may not be removed from F̃ and must be

part of the output.

Consequently, the evaluation Br(f2; C) is unnecesary in the third iteration.

Weakness 2. SDCC execute several unnecesary evaluations.

In order to polish up the SDCC algorithm, we address these issues as follows:

1. If two or more features fulfill the removing condition, then that one less

correlated with the class is eliminated.

2.1 If, in an iteration, F̃ \ {f} turns inconsistent (i.e. Br(F̃ \ {f} ;C) > δ),

G̃ \ {f}, with G̃ � F , won’t be evaluated in next iterations. Thus, f won’t

be removed and will be in the final output.

2.2 Furthermore, if the minimum inconsistent measurement is reached in the

i-th evaluation of an iteration, the i-th feature evaluated is immediatly

removed and the current iteration is finished. In this way, | F̃ | −i

evaluations are saved in each iteration.

Note that proposition 2.2 is contradictory to first issue since we suggest to arbitrarily

remove the first feature evaluated which, when is removed, do not increase the inconsistency

measurement of the current F̃ . Because of that, we also propose to ranking the features

before starting the search, in incremental order according to the correlation of each feature

fi ∈ F with the class, as in INTERACT and LCC. In this manner, of those all features

which do not increase the inconsistency rate of the current F̃ when are removed, the first

evaluated will be the least correlated with the class.

An important observation is that when δ = 0, FSDCC selects the same output of LCC

executing | F | evaluations. This happens because in FSDCC when Br(F̃ \ {F} ;C) > 0,

32

ALGORITHM Fast Steepest-Descent CC (FSDCC)

INPUT A consistency measure function

An ordered feature set F
A threshold δ

OUTPUT A minimal subset F̃ ⊆ F such that Br(F̃ ;C) ≤ δ
STEPS

Let F̃ = F and ξ = Br(F ;C).
If ξ > δ, abort.

For each F ∈ F , let δ(F) = 0.

Repeat

Let ξ′ = δ and F ′ = Nil.
For each F ∈ F̃ from the first to the end

If δ(F) ≤ ξ′

Let δ(F) = Br(F̃ \ {F} ;C).
If δ(F) = ξ

Let F̃ = F̃ \ {F} and F ′ = F .

Break.

Else If δ(F) < ξ′

Let ξ′ = δ(F) and F ′ = F .

End If.

End If.

End For.

If F ′ = Nil, break.

Let F̃ = F̃ \ {F} and ξ = ξ′.
End Repeat.

Return F̃ .

Figure 3.2: The algorithm of FSDCC

F will be in the final output, and hence, is useless to evaluate it over again. On the other

hand, when Br(F̃ \ {f} ;C) = 0, F is immediately removed.

Furthermore, when δ > 0, the features F such that δ ≥ Br(F̃ \ {F} ;C) > Br(F̃ ;C)

are evaluated more than once.

The algorithm Fast Steepest-Descent Consistency-Constrained (FSDCC) algorithm

which take into consideration all these solutions to the weakness of SDCC is depicted in

Figure 3.2 .

3.3 Accurate Sdcc

Although we expect that FSDCC considerably improve the performance of SDCC in terms

of number of evaluations and consistency rate of outputs, we think it posses some weakness

relating to the accuracy obtained by the machine learning algorithms applied to the reduced

33

data when compared with LCC. This fact could happen because, due to the nature of the

search of SDCC and FSDCC, not always the features more correlated with the class tend to

remain in the final output.

In order to better understanding this idea, let analyse the following example. Supposing

we have, in each itertion, a set F̃ and for some of its features fi ∈ F̃ , δ ≥ Br(F̃ \
{fi} ;C) > Br(F̃ ;C) holds. On the one hand, LCC removes the feature fi less correlated

with the class because is the first feature evaluated that fulfils the removing condition

δ ≥ Br(F̃ \ {fi} ;C). On the other hand, SDCC and FSDCC remove the feature F =

argmin
fi

Br(F̃ \ {fi}). Therefore, we can say that the final output of LCC will tend to

contain the features more correlated with the class whereas SDCC will tend to select a very

consistent set which not necessarily will be composed by features highly correlated with

the class. Once presented this apparent contradiction, the following step is to discover

which of these approaches is the most suitable for the knowledge discovery process.

One way to do this, is by establishing a balance between the consistency contribution

of each feature and its respective correlation level with the class. With this propose, next

equation is presented:

ϑ (f, C) = αSU (f, C) + (1− α)
Br(F̃ \ {f} ;C)−Br(F ;C)

δ −Br(F ;C)
. (3.1)

Here, 0 ≤ α ≤ 1 is a balance parameter which allows to specify, in certain level, the

preferable type of feature to seize: those highly correlated with the class, those which

are indispensable to compose a very consistent set or a combination of both. When

anlyzing all features f ∈ F̃ , since it is suitable to remove f with small correlation with

the class and poor consistency contribution, the main goal will be to remove feature

f = argmin
f∈F̃

ϑ (f, C). Furthermore, ϑ (f, C) has the following properties:

1. When δ ≥ Br(F̃ \ {f} ;C), that is: f is consistent, 0 ≤ ϑ (f, C) ≤ 1 holds.

2. If SU(g, C) > SU(f, C) and Br(F̃ \ {f} ;C) = Br(F̃ ;C), then ϑ (g, C) �

ϑ (f, C). Thus, ϑ is monotonic when is applied in conjunction of a backward search

over a ranked set.

3. If ϑ (f, C) with α = 0 is used as evaluation function in FSDCC the output will be

the same as if Br(F̃ \ {f} ;C) is used instead.

Taking into consideration these basic properties we have modified (see Figure 3.3) the

FSDCC algorithm giving place to a new algorithm named Accurate Steepest-Descent
Consistency-Constrained (ASDCC).

34

ALGORITHM Accurate Steepest-Descent CC (ASDCC)

INPUT A consistency measure function

An ordered feature set F
A threshold δ

OUTPUT A minimal subset F̃ ⊆ F such that Br(F̃ ;C) ≤ δ
STEPS

Let F̃ = F and ξ = Br(F ;C).
If ξ > δ, abort.

For each f ∈ F , let δ(f) = 0.

Repeat

Let ξ′ = δ, ϑ = ∞ and f ′ = Nil.
For each f ∈ F̃ from the first to the end

If δ(f) ≤ ξ′

Let δ(f) = Br(F̃ \ {f} ;C) and ϑ′ = ϑ (f, C)
If δ(f) = ξ and ϑ′ < ϑ

Let F̃ = F̃ \ {f} and f ′ = f .

Break.

Else If δ(f) < ξ′

Let ξ′ = δ(f).
If ϑ′ < ϑ
ϑ = ϑ′and f ′ = f
End If.

End If.

End If.

End For.

If f ′ = Nil, break.

Let F̃ = F̃ \ {f} and ξ = ξ′.
End Repeat.

Return F̃ .

Figure 3.3: The algorithm of ASDCC

35

Table 3.1: Datasets used in the experiment

Dataset #EXAM. #FEAT. #CLASSES

DERMATOLOGY 366 34 6

ARRHYTHMIA 452 279 16

Kr-vs-Kp 3196 36 2

PENDIGITS 10992 16 10

MUSHROOM 8124 22 2

OPTIDIGITS 5620 64 10

NURSERY 12960 8 5

WAVEFORM 5000 40 3

SPECTROMETER 531 100 48

MFEAT-FACTOR 2000 216 10

MFEAT-FOURIER 2000 76 10

MFEAT-KARHUNEN 2000 64 10

MFEAT-PIXEL 2000 240 10

MFEAT-ZERNIKE 2000 47 10

SEGMENT 2310 19 7

SEMEOIN 1593 256 10

3.4 Experimental evaluation

We prove effectiveness of the FSDCC and ASDCC through experiments using the datasets

described in Table 3.1 . We verify the advantages of these algorithms over SDCC and

LCC in terms of number of features selected, Br(F̃ ; C) and accuracy obtained by three

machine learning algorithms applied in the reduced data. Naive Bayes (NB), C4.5 and

Support Vector Machine (SVM) were the machine learning algorithms selected because

they are very representatives. The results of INTERACT are not shown because they were

very low when compared with LCC.

We evaluated all the evaluation variables changing the threshold δ from 0 to 0.1 with

0.01 increments in between for each dataset, and plotted the average over the 16 datasets.

Becasue of the SDCC algorithm is sensitive to the order of features, for each δ it was

computed the mean (straight line) and the standard deviation (dashed lines) over 10 runs.

In each run the order of features was randomly changed.

After evaluating the ASDCC with different values of α, we state α = 0.75 is a good

value. In Figure 3.4 only some of these evaluations are presented.

According to the experiments represented in Figure 3.4 , FSDCC outputs the most

reduced and less inconsistent solutions for almost all δ. The third chart in the first row of

Figure 3.4

represents the proportion of the number of evaluations executed between SDCC and

LCC, FSDCC and ASDCC. In other words, this chart shows how many times the number

of evaluation of SDCC exceeds the number of evaluation of the other algorithms. Although

36

����

����

� ���

����

����

� ���

��	

��
�

� ���

�

��

� ���

�

����

���

����

�

�

����

� ���

Figure 3.4: Performance of ASDCC algorithm with different values of α

37

FSDCC and ASDCC have a remarkable difference when compared with LCC when δ > 0,

they shown a vaste improvement vis-a-vis SDCC algorithm.

On the other hand, the outputs of ASDCC are quite beneficial for the accuracy reached

by the three machine learning algorithms applied after the reduction. Surprisingly, although

SDCC and FSDCC output very consistent sets, the accuracy reached by the machine learning

algorithms over their results are not so good. A response to this phenomenun could be that

each classifier partialy assumes feature dependencies.

Speaking with generality, ASDCC obtain more consistent sets than LCC and more

accurate sets than all the algorithms.

Bonferroni Dump non parametric test was used to detect significant differences among

the performance of feature selection algorithms. In Figure 3.6 and 3.7 the critical distance

which defines the existence of significant differences between the best ranked algorithm

and the others with a confidence level of 90% is depicted using a dark shadow. Note that

in these charts the ranking value is defined as the average over the rank positions obtained

by an algorithm in each dataset.

According to the results shown in Figure 3.5 FSDCC outputs sets significantly smaller

than those of LCC and SDCC when δ ≥ 0.01 and δ > 0.01 respectively. Relating to the

Br() measurements the best ranked algorithm for small δ is SDCC.

On the other hand, it was verified that for all δ, ASDCC and FSDCC significantly

improved the AUC values obtained by the three machine learning algorithms executed

over the outputs of SDCC. Although for C.45 and SVM algorithms significant difference

are not so evident when comparing AUC values of ASDCC and FSDCC against LCC, the

ranking value tends to be better for the formers when compared with the latter. This means

that LCC dropped more relevant features as δ increases and consequently is more sensible

to be trapped by local optima.

We measure the time-efficiency of the algorithms by the number of times in which the

algorithms compute Bayesian risks since the time to compute Bayesian risks is dominating

in the entire execution time of the algorithms. Figure 3.5 shows plots of the averaged ratios

of SDCC to the other algorithms.

From Figure 3.5 , we see that FAST SDCC and ACCURATE SDCC compute as many

Bayesian risks as LCC for δ = 0, that is, they are as fast as LCC. This is because FAST

SDCC and ACCURATE SDCC give up further search in each iteration of Repeat when they

detect the first occurence of Br(F̃ \ {f}) = Br(F) (Lines 12 to 14 in Figure 3.3), and

hence, they behave exactly the same as LCC. For δ > 0, the chart indicates that SDCC

computes Bayesian risks 30 times more than FAST SDCC, while it does about 20 to 30

times more than ACCURATE SDCC.

Also, Table 3.2 shows the actual run-time of the algorithms for each dataset measured

in seconds for δ = 0.01. The averaged run-time ratios of SDCC and LCC, FAST SDCC

38

�

��

� ���

�
��

����

����

���

��
��

��
��

���

���

� ���

��

��

��

��

� ���

	
���
��

	
����	
��

	
����	
��

����

����

� ���

��		

��

���

�		

���		

���		

����

����

� ���

����

����

� ���

��

��

� ���

����

�	
�

�	
�

��

�����

�����

��

��

� ���

��

��

� ���

Figure 3.5: Number of features selected, Br(), proportion of the number of evaluation,

and accuracy

39

�

�

� ���

	
��

���

	
��

�	
��

���

���

� ���

�
��

���

��
��

��
��

Figure 3.6: Graphical results of Bonferroni-Dunn non parametric test for ranking size and

Br()

���

���

� ���

	
��

���

	
��

�	
��

���

���

� ���

	
��

���

	
��

�	
��

���

���

� ���

	
��

���

	
��

�	
��

Figure 3.7: Graphical results of Bonferroni-Dunn non parametric test for ranking AUC

values

40

and ACCURATE SDCC are 45.7, 34.6 and 33.4, respectively, and are very closed to the

ratios in the numbers of computation of Bayesian risks.

Consequently, we can conclude that FAST SDCC and ACCURATE SDCC are 20 to 30

times faster than SDCC and a few times slower than LCC.

Table 3.2: Run-time (sec.) with δ=0.01 (Intel Core i3 2.6GHz and 8GB memory)

Dataset SDCC ASDCC FSDCC LCC

DER 0.175 0.091 0.092 0.153

ARR 43.83 0.532 0.504 0.398

KRK 2.246 0.747 0.721 0.247

PEN 3.044 1.928 1.708 0.700

MUS 1.066 0.228 0.225 0.276

OPT 14.04 1.268 1.239 0.921

NUR 0.536 0.613 0.534 1.057

WAV 6.557 0.930 0.971 0.632

SPE 3.495 0.877 0.674 0.596

MFA 107.2 1.448 1.586 1.388

MFO 6.638 0.929 0.927 0.729

MKA 5.054 0.691 0.694 0.665

MPI 140.3 1.468 1.399 0.976

MZE 2.119 0.500 0.506 0.521

SEG 0.444 0.206 0.215 0.130

SEM 127.6 1.452 1.420 0.787

3.5 Sdcc with the sliding window method

Steepest-descent is a first-order optimization algorithm that finds a local minimum of a

given function by stepping the solution in the direction where the function decreases most

quickly [59]. The main advantage of SDCC over LCC can be justified as follows. LCC

eliminates the first feature fi that satisfies Br(F̃ \ {fi};C) ≤ δ from F̃ , while SDCC tests

all fi ∈ F̃ and eliminates fi that minimizes Br(F̃ \{fi};C) such that Br(F̃ \{fi};C) ≤ δ.

We consider F̃ as a point in the space of subsets of the entire features of . The neighbours of

F̃ are determined by F̃ \{fi} for fi ∈ F̃ ; and the distance between F̃ and F̃ \{fi} is given

by Br(F̃{fi};C)−Br(F̃ ; C). When a function f over feature subsets is f(F̃) = |Ft|, the

gradient from F̃ to F̃ \ {fi} is 1/(Br(F̃ \ {fi};C)−Br(F̃ ; C)). Therefore, an increase

of the inconsistency score by eliminating a single feature for SDCC is at least equal than

by eliminating a single feature for LCC. This also means that SDCC can eliminate more

features than LCC.

Although it is known that SDCC significantly beats LCC in terms of the inconsistency

score, SDCC performs (|F |+ |F̃ |)(|F | − |F̃ |+1)/2 evaluations to output F̃ . Furthermore,

we have detected that SDCC removes a lot of features highly-correlated with the class

41

{f1, f2, f3, f4}

{f2, f3, f4} {f1, f3, f4} {f1, f2, f4} {f1, f2, f3}

{f3, f4} {f2, f4} {f2, f3} {f1, f4} {f1, f3} {f1, f2}

{f4} {f3} {f2} {F1} r = 0.4r = 0.3r = 0.2r = 0.1

∅

Figure 3.8: An example of search paths by steepest-descent. r stands for the individual

relevance of a feature.

variable, which may affect the performance of classifiers. In the remainder of this section

we discuss some efficiency and effectiveness issues of SDCC. Moreover, we propose a new

algorithm to solve these issues.

Figure 3.8 is the Hasse diagram of F = {f1, f2, f3, f4}, and the gray nodes represent

the feature subsets whose inconsistency is zero. With δ = 0, the solid lines represent an

example of the paths that SDCC can track. In the first iteration, SDCC investigates the four

feature subsets of {f2, f3, f4}, {f1, f3, f4}, {f1, f2, f4} and {f1, f2, f3}. The inconsistency
of three of them are zero, and SDCC chooses {f2, f3, f4}. In the same way, in the second

iteration, SDCC investigates {f3, f4}, {f2, f4} and {f2, f3} and chooses {f2, f4}. In the

last iteration, SDCC investigates {f4} and {f2} and then terminates.

Problem 1: Small Total Relevance Score: In Figure 3.8, {f2, f4} and {f1, f4} are

the two candidates that SDCC can select, because they are minimal in the inclusion relation

among the feature subsets in F with Br(F ;C) ≤ 0. Although the Sdcc selects one

of {f2, f4} and {f1, f4} arbitrarily, {f1, f4} is likely to be a better answer than {f2, f4},

because r(f1,C) + r(f4,C) = 0.5 > r(f2,C) + r(f4,C) = 0.4. In general, provided all

the minimal sets G in F with Br(G;C) ≤ δ, SDCC arbitrary selects any set G regardless

any other information.

Solution to Problem 1 The Individual relevance insensitivity problem occurs be-

cause the individual relevance of features has no meaning in the steepest-descent al-

gorithm. That is, the steepest-descent arbitrarily removes any feature f− such that

f− ∈ argminfi∈F̃{Br(F̃ \ {fi};C) | Br(F̃ \ {fi};C) ≤ δ}.

A straightforward way to deal with this problem is by removing the feature f− with

the smallest individual relevance. That is, in each iteration remove feature f−, such that

f− ∈ argmin{r(f ;C) | f ∈ argmin{Br(F̃ \ {fi})|fi ∈ F̃ ,Br(F̃ \ {fi}) ≤ δ}}. (3.2)

To validate the effect of this solution, we have compared SDCC and the corrected that

42

Figure 3.9: Comparison between the original SDCC [59] and its corrected version that

searches features based on Eq.(1) in terms of the bayesian risk, the AUC-ROC by C4.5
classifier and, the number of features selected.

searches features by Eq.1 version using 50 datasets chosen from the UCI machine learning

repository [14]. As we expected the corrected version significantly outperforms the original

version in terms of the AUC-ROC, the bayesian risk and the number of features selected.

Figure 3.9 depicts the averages of the bayesian risk, AUC-ROC when C4.5 is used as

a classifier and the number of features selected across the 50 datasets. The threshold

parameter δ varies in the interval [0, 0.1] with an increment of 0.01.

Although these results are quite good, maximization of the average of the individual

features (collective relevance) can not be guaranteed because the individual relevance of

features is measured back stage. This means that until now the process of removing a

feature is composed by two sequential steps and the individual relevance score is only used

in the second one. In many cases, this unbalanced trade-off between the bayesian risk and

the collective relevance of a set, may lead to undesirable results as stated in Section 2.2.3.

We now consider the individual relevance of features as a crucial factor to judge the quality

of a feature set, by proposing the interelevance score measure defined as follows.

IR(F̃ ; fi;C) = (1− α)A(F̃ ; fi;C) + αB(fi;C)

with A(F̃ ; fi;C) =

⎧⎨
⎩

Br(F̃\{fi};C)−Br(F ;C)
δ−Br(F ;C)

, if Br(F ;C) ≤ δ

Br(F̃ \ {fi};C)−Br(F ;C), if Br(F ;C) = δ

B =

⎧⎨
⎩

r(fi;C)−r−
r+−r− if r+ > r−

0 if r+ = r−

where r+ = maxfi∈F r(fi;C), r− = minfi∈F r(fi;C) and α satisfies 0 ≤ α ≤ 1. The

interelevance score IR is normalization function that evaluates how good is a given

feature fi for the current feature set F̃ . IR measures: i) how relevant is fi and ii) the

effect of removing fi from F̃ from the consistency point of view. Function A normalize

the bayesian risk obtained by removing feature fi from F̃ . Br(F ;C) and δ are taken

43

as the minimum and maximum value respectively in the normalization function. We

expect that IR metric allows to select interacting feature sets composed by features with

high relevance score. Thus, to select f−, we do not use Eq.1 as a criterion, but use

f− ∈ argmin{IR(F̃ ; fi;C) | fi ∈ F̃ ,Br(F̃ \ {fi};C) ≤ δ}.

Figure 3.10: Percentage of the first consecutive features {f1, . . . , fl} such that Br(F ;C) =
Br(F \ {f1, . . . , fl};C) to the entire feature set F .

Problem 2: Low scalability to high-dimensional data: Our new version of SDCC

may be still slow in datasets with large number of interacting features. Although it is well

known high-dimensional datasets are rich in non-interacting features, we do not assume

their class variable can be described by a small number of features. Therefore, we now

describe two mechanism to reduce even more the number of evaluation of our proposal.

Solution 1 to Problem 2: Eliminating the big mass of irrelevant features by
SUPER-LCC. High-dimensional datasets are likely to be abundant in irrelevant and non-

interacting features. Assuming |F | is very large, we can expect Br(F \F ′;C) = Br(F ;C)

with F ′ = {f1, . . . , fl} for a large value of l. To make sure this expectation is true, we

randomly picked 44 datasets from the UCI machine learning repository and determine l.

The experiments were conducted in small (|F | ≤ 100), medium (100 < |F | ≤ 10000)

and high-dimensional data (10000 < |F |) using δ = Br(F ;C). Figure 3.10 depicts the

results, and we see that values of l are very close to the numbers of the entire features |F |,
when the dataset is high-dimensional. This means that for these high-dimensional datasets

our steepest-descent algorithm will remove a huge number of consecutive features one by

one, which is not so efficient. However, recently Shin et al. in [56] have found that l can

be determined efficiently by means of binary search. In fact, {f1, . . . , fl} are removed by

the first iteration of SUPER-LCC. This finding broke the premise that consistency-based

algorithms were computationally too expensive to apply to high-dimensional data. We use

their finding to efficiently remove F ′ with only a few iterations. We use the first iteration

of SUPER-LCC to eliminate the largest {f1, . . . , fl} such that Br(F \ {f1, . . . , fl};C) ≤

44

Br(F ;C) + δ and then apply steepest descent to the remainder of the features, that is,

{fl+1, . . . , fn}.

Solution 2 to Problem 2: Windowing the search. When feature selection is per-

formed using consistency measures, in each iteration of the search we can categorize

features as: indispensable, useless and potential features. Being F̃ the current feature

set, indispensable features must remain in F̃ in order to keep the bayesian risk under the

threshold. That is, a feature fx ∈ F̃ is indispensable if Br(F̃ \ {fx};C) > δ holds. On

the contrary, useless features can be safely removed without degrading the bayesian score
of F̃ . A feature fy is said to be useless when Br(F̃ \ {fy};C) = Br(F̃ ;C) holds. On the

other hand, if a feature is neither of indispensable nor useless then it is a potential feature.

That is, for potential feature f , Br(F̃ \ {f};C) ≤ Br(F̃ ;C) + δ holds. Potential features

are the most interesting type of features: they necessarily become indispensable or useless

at any moment of the search and must be evaluated in the next iteration. Speaking about

efficiency, the worst case scenario, in a given iteration, is that all features are potential.

This means that our version of the steepest-descent algorithm needs |F̃ | evaluations to

remove the one that minimize IR. To overcome this drawback we propose to limit the

search in each iteration to a portion of the features in the current set. This can be done by

applying a mobile window search. Let d be the average of the differences of the individual

relevance of consecutive features in F

d =
1

n− 1

n−1∑
i=1

(
r(fi+1;C)− r(fi;C)

)
=

1

n− 1
(r+ − r−), (3.3)

we define the window search wk in the k−th iteration as:

w1 = r− + ω(r+ − r−) (3.4)

wk = wk−1 + λd, with k > 1, (3.5)

where ω = (0, 1] and λ ∈ R+ are predefined parameters that influence the initial size of

the window search w1 and the acceleration of the expansion of the window search wk in

the k−th iteration respectively. If the relevance score of a feature falls into the region of

the window [r−, wk) then will be evaluated in the k−th iteration.

The number of features evaluated in each iteration is not only determined by the position

of useless features but also by the size of the window search. This may significantly

improve the efficiency of our steepest-descent version in datasets abundant in potential

features. Let F be the entire feature set and δ be the upper bound of the permissible

bayesian risk of the output sets. We combine all the solutions given above as follows.

1. The relevance r(fi;C) of each feature fi ∈ F is computed using the Symmetrical
Uncertainty measure, and F is mapped to F̃ by sorting the features in incremental order of

45

Algorithm 4 SWCFS Algorithm

Input: D: the dataset

δ: inconsistency score threshold

ω: initial size of the window search

λ: windows size coefficient

Output: F̃ suboptimal set

Rank features in F in incremental order according to SU
Fix F̃ = F
Find the maximum l such that Br(F̃ \ {f1, . . . , fl};C) = Br(F̃ ;C)
Update F̃ = F̃ \ {f1, . . . , fl}
Compute r+ = maxfi∈F̃ r(fi;C) and w1 = ωr+

Let d be the average of the difference between SU(fi;C) and SU(fi−1;C) for fi ∈ F̃ ,

k = 1 and IR− = inf

repeatTrue f− = Null
fi ∈ F̃

if SU(fi;C) ≤ wk then δ[fi] = Br(F̃ \ {fi};C)
δ[fi] > δcontinue δ[fi] = Br(F̃ ;C)f− = fi, break IR(F̃ ; fi;C) ≤ IR−f− =
fi, IR

− = IR(F̃ ; fi;C) f− = Nullbreak F̃ = F̃ \ {f−}
k = k + 1
wk = wk−1 + λd

Figure 3.11: The algorithm of SWCFS

SU(fi;C).

2. The maximum set of consecutive useless features {f1, . . . , fl} is identified and removed

by using the binary search.

3. The window size is computed in each iteration.

The steepest-descent algorithm is performed using the interelevance score IR by

evaluating only the features included in the current window and taking into account

the following rules with fi ∈ F̃ :

Rule 1. If fi is an useless feature then it is immediately removed from F̃ (line 13).

Rule 2. Else if fi is indispensable then fi is not evaluated anymore and never will be

removed from F̃ (line 12).

Rule 3. Otherwise the feature fi that minimize IR is removed from F̃ if IR(F̃ ; f ;C) >

IR(F̃ ;∅;C) holds. The algorithm stops when all features have been tested and none of

the features can be removed. Figure 3.11 depicts the entire algorithm.

46

3.6 Experiments of Sddc with the window method

We empirically evaluate the performance of the proposed algorithm and make comparisons

with some state-of-the-art feature selection algorithms: RELIEFF (RF)[33], CFS[22],

FCBF[67] and SUPER-LCC[56] and ASDCC[47]. We exclude from comparison algorithms

SUPER-CWC[56] and FSDCC[47] because we verify they output similar results to SUPER-

LCC and ASDCC respectively.

Figure 3.12: Nemenyi test with α = 0.05

The configuration of the experiments is as follows. First, we run the feature selection

algorithms over the datasets and obtain selected feature subsets for respective algorithms.

To evaluate the classification capability of the selected feature sets, we run ten-fold cross

validation on the reduced data using two classifiers: NAIVE BAYES and C4.5. The

bayesian risk parameter δ of SUPER-LCC and SWCFS algorithms was fixed to 0.01. We

report results about the AUC-ROC values of both classifiers and the number of features

selected by each algorithm. Before running experiments we run SWCFS accross many

datasets with different values of α and verified that

alpha = 0.5 works well. Table 3.3 shows the AUC-ROC values after running the classifiers

on the reduced data and the number of features selected by each algorithm.

Speaking about the size of the output, SWCFS outputs smaller or equal when compared

with SLCC. Furthermore, when compared with all the algorithms it turns out that SWCFS

is ranked top for a half of the datasets. Speaking about AUC-ROC scores, SWCFS is ranked

top for more than the 68% and 62% of the datasets for NAIVE BAYES and C4.5 classifiers

respectively. To statistically compare the algorithms, we run Friedman test and statistical

differences were found. Figure 3.12 shows the Nemenyi’s chart for each classifier. Group

of algorithms that are not significantly different are connected with a thick line.

It is apparent that SLCC and SWCFS are compatible in terms of efficiency in high-

dimensional data since SWCFS takes advantage of the first iteration of SLCC to remove the

less relevant features that are not necessary to create consistency sets. In the case where

47

Table 3.3: Results of AUC-ROC values for the reduced data and number of features selected

by each algorithm

NB-AUC values C4.5-AUC values size

data RF Cfs Fcbf SLcc ASdcc Swcfs RF Cfs Fcbf SLcc Asdcc Swcfs RF Cfs Fcbf SLcc Asdcc Swcfs

OPT. .945 .967 .966 .966 .967 .968 .858 .924 .929 .933 .928 .935 30 38 21 9 10 8

ARR. .468 .850 .854 .848 .850 .848 .464 .738 .737 .733 .733 .733 1 25 12 21 28 21

MAD. .523 .644 .646 .647 .646 .647 .500 .770 .613 .811 .814 .811 1 6 4 15 12 15

MFE .966 .973 .985 .986 .970 .991 .972 .968 .961 .952 .954 .964 360 85 136 7 8 6

SEM .983 .956 .952 .955 .958 .956 .877 .881 .876 .865 .879 .885 175 74 30 31 45 27

AUD .946 .939 .905 .962 .923 .952 .907 .905 .924 .921 .905 .924 10 6 16 12 9 12

KRV .969 .930 .968 .972 .970 .983 .972 .930 .959 .997 .995 .997 5 3 7 21 18 15

MF1 .922 .948 .947 .977 .981 .981 .923 .908 .925 .916 .914 .911 90 67 38 8 9 7

MF2 .961 .969 .968 .969 .968 .970 .903 .905 .899 .906 .905 .910 15 12 37 11 13 11

MF3 .979 .986 .986 .981 .984 .984 .907 .915 .907 .920 .907 .924 7 26 57 7 7 7

MF4 .949 .950 .945 .950 .949 .950 .918 .919 .918 .922 .918 .922 3 4 2 5 4 5

MF5 .964 .965 .969 .967 .937 .969 .903 .904 .911 .901 .904 .906 196 103 27 21 17 17

MF6 .925 .955 .955 .957 .955 .957 .859 .880 .884 .871 .871 .871 7 25 14 12 14 12

PEN .977 .963 .963 .963 .964 .964 .973 .973 .974 .975 .970 .974 16 11 11 7 10 7

SPL .981 .984 .993 .990 .984 .989 .967 .969 .970 .969 .969 .970 19 6 22 9 8 9

WAV .510 .945 .932 .938 .945 .946 .500 .858 .882 .877 .876 .884 1 15 6 10 8 9

AVG. .873 .933 .933 .939 .934 .941 .838 .897 .892 .904 .903 .908 58.5 31.6 .27.5 12.9 13.8 11.8

only small number of features are eliminated in the first step of SWCFS, the numbers of

evaluations depends on the size of the sliding window. However, if the sliding window

is reasonably small then the number of evaluation can be comparable with the number

of evaluations of LCC algorithm. Nevertheless, as Figure 3.10 shows, it turns out that

high-dimensional data are prone to be rich in irrelevant features that can be removed in the

first iteration of SWCFS.

3.7 Simulated-Annealing-based LCC

To the best of our knowledge, SUPER-LCC is one of the fastest and accurate feature

selection algorithm based on consistency measures. SUPER-LCC works under the as-

sumption that high-dimensional datasets are abundant in irrelevant features that can be

removed in mass. By the first to the (i − 1)-th iterations of the algorithm, SUPER-

LCC determines a sequence of indices of features l1 < l2 < · · · < li−1, and defines

F̃ = (F \ {f1, . . . , fli−1
}) ∪ {fl1 , . . . , fli−1

}. In the i-th iteration, the algorithm finds li

such that

li = argmin
j=li−1+1,...,n

Br(F̃ \ {fli−1+1, . . . , fj}) ≤ δ,

by binary search due to the monotonicity property of the bayesian risk. SUPER-LCC out-

puts the same set as LCC but on average has a computational complexity of O(nm(log n+

logm)), where n is the number of features that describes the m instances in D. To the best

of our knowledge, SUPER-LCC is the algorithm with better practical performance in both

of efficiency and accuracy in the field of feature selection. According to the authors of

[56], for data with more than hundred thousand features, SUPER-LCC needs some seconds

48

(a) dermatology (b) arrhythmia

(c) ads (d) pixel

Figure 3.13: AUC-ROC values of c4.5 classifier for the outputed value of LCC/SUPER-LCC

when varying δ. Five-fold cross validation was used to compute AUC-ROC values.

to give a response in an ordinary personal computer. In the remaining of this paper, we

show how to incorporate SUPERLCC and LCC to our approach, but first we present some

important properties of LCC/SUPERLCC.

Let F̃ be a subset with Br(F̃ ;C) = β, with δ = β − ε. For ε > 0, LCC outputs

a different feature set from F̃ . For the output of the i-th iteration of LCC, Fi = (F \
{f1, . . . , fli}) \ {fl1 , . . . , fli},Br(Fi;C) ≤ δ holds.

Figure 3.13 represents a part of the search space of LCC when varying δ.

Theorem 3.7 suggests that, if we run LCC multiple times increasing δ, then the smaller

δ is, the smaller the index of the first feature selected by LCC in F = {fn, . . . , f1} is.

Therefore, if we want to run LCC twice with δ1 and δ2 (being δ1 < δ2) over F , and

assuming fl1 is the first feature selected by LCC with δ1, it is reasonable to run LCC with

δ2 not over F , but over {fl1 , . . . , f1} ∈ F . This is a very important property of LCC to

save computational time. In the next section we state how to use it in our new algorithm.

Another important property of LCC/SUPERLCC is as follows. Being br and F̃ the

Bayesian risk and the outputted set obtained when we run LCC/SUPERLCC with δ, if we

let δ = br − α then LCC/SUPERLCC output a set F̃ ′ different from F̃ . This property

suggests that if we perform multiple running of LCC using different and sorted thresholds

{δm, δm−1, . . . , δ0} with δi > δi−1 and Br(∅;C) ≤ δi ≤ Br(F̃ ;C) then we obtain

{Fδm , Fδm−1 , . . . , Fδ0} different sets. Moreover, if we compute the AUC-ROC values with

49

a given classifier for all these sets then we can see the AUC-ROC function defined by the

interval [δmin, δmax].

Furthermore, given the entire feature set F of a dataset, if we fix δ− = Br(F ;C) and

δ+ = Br(F ;C) + ε and let be Δ = {δ+, δ+ − α, δ+ − 2α, . . . , δ−}, then for a relatively

small value of ε, if we run LCC with the ordered δ values in Δ, then we may expect to

obtain m subsets, which bayesian risk are close to Br(F ;C). Under the assumption these

sets may have very low bayesian risk, they can be used as the search space for the wrapper

search. In the next section we propose a new algorithm that take advantage of Theorem 3.7

to efficiently generate a space of high-quality features given δ− and δ+.

3.7.1 Simulated annealing

Simulated Annealing is a stochastic technique used in optimization problems to efficiently

scape from local optima. Given a current state of the problem cs, the algorithm generates a

candidate (or next) state ns and stochastically decides whether or not the current state is

updated to the candidate state. The probability of passing from one state to another is called

the transition probability p and often is defined as p = exp(nf − cf)/T where nf and cf

are the values of the target function for ns and cs respectively, and T is the temperature

variable. In simulated annealing we keep the temperature variable T to simulate the heating

process on metal.

We initially fix a high temperature, for example: T = 0.1/(log(t+ 1)) with t = 1, and

then allow it to slowly decrease as the algorithm runs. That is, we can increase t in each

iteration. The higher the temperature the more likely to accept solutions that are worse than

the current solution. This gives the algorithm the ability to jump out of any local optimums

found in early iterations. As the temperature is reduced the algorithm gradually focus on

the area of the search space in which hopefully, a close to optimum solution can be found.

This gradual cooling process is what makes the simulated annealing algorithm remarkably

effective when dealing with large problems which contain numerous local optimums such

as the depicted in Figure 1. Figure 2 depicts the general scheme of Simulated Annealing
we will use for our feature selection algorithm where rnd(0, 1) returns a random number

between zero and one according to a uniform distribution and k is an arbitrary constant.

Moreover, continue defines the stopping criterion and can be: a) T > Tmin or/and b)

t < tmax, where Tmin and tmax are predefined constants.

3.7.2 Target function

Now we only need to define the function next(δc) to generate a neighbour state δn of the

current state δc and the target function f(δc). In our problem we state the parameter δ of

LCC algorithm as the space of all possible states. In particular, we generate some of the

50

Algorithm 5 Simulated Annealing
Terminology: cs: current state

ns: next state

next(cs): a function that returns a neighbour state of cs
f(cs): the target function

cs = cs0
cf = f(cso)
t = 1

while continue do ns = next(cs)
nf = f(ns)
T = k/(log(t+ 1))
p = exp(nf − cf)/T

if rnd(0, 1) < p then cs = ns
cf = nf
t = t+ 1
return cs

Figure 3.14: The algorithm of Simulated Annealing

values of δ in the interval of δ+ ≤ δ ≤ δ− to run LCC and obtain a set of feature subsets

F̃δ that can be evaluated by the AUC-ROC function across a fold-cross validation process.

We let AUC(DF̃δ
, �) be the target function for the current state δ. F̃ represents the subset of

features selected by LCC with δ and DF̃ represents the the dataset resulted from projecting

the set F̃ over D. � is the classifier used in the training and testing process of the cross

validation.

3.7.3 Neighbour generator function

The neighbour generation function is crucial in the Simulated Annealing algorithm to

scape from local optima. Given a current value δc of δ, we intend generate a neighbour b

of δc such that AUC(DF̃b
, �) > AUC(DF̃δc

, �). However, since the target function AUC is

unknown this is difficult to achieve.

Another issue in the neighbour generation function is that two different values of δ

can lead to the same output of LCC. In this case we may have duplication of candidate

sets in the search space of the feature selection problem, which lead to compute the same

operations more than once. One way to avoid this is by performing a downward search

over the space of δ-values. That is, we generate the search space of feature subsets for the

51

wrapper evaluator by running LCC(δt) with different values of δ in decreasing order. As an

instance, given δ− and a predefined constant ε we run LCC with δ− ≤ δt ≤ (δ− + ε) = δ+

such that:

δt =

⎧⎨
⎩δ+ − βt if brt−1 ≥ (δ+ − βt)

brt−1 − α if brt−1 < (δ+ − βt)
,

Algorithm 6 next(δc)
Terminology:
δc: current δ
step: a given constant to determine the upper limit of the next state

mv = step ∗ (rnd(0, 1)− 0.5)
brclosest = closestSBrComputed(δc +mv)

if (δc +mv)− brclosest > α then (F, b) = LCC(δc +mv)
list.add((F, b))
return b
return brclosest

Figure 3.15: Algorithm to generate the next candidate Bayesian risk

where βt is a propagation function with respect to t such as: k ∗ t or k/2t (with k as a

constant), α is a value as small as required and brt represents the bayesian risk of the set

obtained by LCC(δt) with δt. t is a counter variable that increase in one in each iteration.

According to the property of LCC exposed in section 2, when we run LCC with different δt

always obtain a different set. Therefore, the problem of duplication of sets is solved by

this procedure. However, iterating downward may lead to miss the global optima behind.

Therefore, we need a mechanism to make a bi-directional search over δ and minimize the

number of sets duplicated. Figure 3.15 depicts the proposed function next(δc) to generate

a neighbour b given the current state δc. In this function, we move δc in the space of δ by

mv, which is a number generated randomly in the interval [step + 0.5, step− 0.5] (line

1). To minimize the duplicity of feature sets when running LCC with similar values of δ:

brclosest and δc +mv, we fix a threshold α, such that, if (δc +mv)− brclosest > α holds,

then we consider LCC(δc+mv) = LCC(brclosest) (line 3), where brclosest is the closest and

smaller Bayesian risk computed so far (closestSBrComputed(δ)) stored in list (line 5).

3.7.4 SALCC: A new algorithm

Now that we have defined some properties of LCC and our scheme for the Simulated
Annealing algorithm, we propose a new feature selection algorithm namely Simulated

52

Annealing for Linear-Consistency-Constrained-based feature selection(SALCC) as follows.

1. First, we rank the features in F in increasing order of Symmetrical Uncertainty (SU)

values.

2. Second, we find the border feature fl such that l is maximum and

Br({fl, . . . , fn};C) = Br(F ;C)

and fix F̃ = {fl+1, . . . , fn}. This is easily and efficiently achieved by running the first

iteration of SUPERLCC described in [56].

At this point, we reduce the search space from F = {f1, . . . , fn} to F̃ = {fl, . . . , fn}.

Note that this does not affect the final solution of our algorithm because of Theorem 3.7.

This step will make our algorithm scalable for high-dimensional datasets. To make sure

this expectation is true, we picked 44 datasets from the UCI machine learning repository
[14] and determine the percentage of features removed in the first iteration of SUPERLCC.

Results are depicted in Figure 3.10 .

3. We run the Simulated Annealing algorithm shown in section 3.1 by using the proposed

target and neighbour generator functions.

3.7.5 Experiments

We empirically evaluate the performance of the proposed algorithm in terms of accuracy,

and number of times the classifier is used and number of features selected. For the

experiments we use the following parameters: δmax = 0.4, Tmin = 0.2, step = 0.1,

α = 0.001 and we use C4.5 as classifier. Datasets were selected from the UCI Machine
learning repository and they represent several areas of current researches [14].

Figure 3.17 shows part of the entire search space of sixteen datasets and the suboptimal

set reached by our algorithm depicted with a black cross. In datasets a, b, f, h, i, j, k and l,

the algorithm found the global optima and in datasets c, d, e, g, m, o and p, the sets found

are very close to the optimal solution in terms of AUC-ROC values.

Althoug these datasets are abundant in local optima, we can conclude that SALCC

can approximately find the optimal set in many cases. We also conclude that Simulated
Annealing works very well in these data and can easily scape from local optima.

To evaluate in a more appropiate way SALCC algorithm we perform a ten-fold

cross validation comparison with some of the state-of-the-art algorithm in eight text-

classification datasets1. The algorithms selected for the comparison are: RELIEFF[29],

CFS[22], FCBF[67] and SLCC. Table 1 shows that SALCC performs well in most of the

datasets when compared with the state-of-the-art algorithms.

1http://tunedit.org/repo/Data/Text-wc

53

(a) HEP (b) DER

(c) OPT (d) ARR

(e) MAD (f) MFE

(g) ADS (h) KRV

Figure 3.16: search space and set found by the proposed algorithm

54

(a) FAC (b) FOUR

(c) FAR (d) MOR

(e) PIX (f) ZER

(g) SEM (h) WAV

Figure 3.17: search space and set found by the proposed algorithm

55

Table 3.4: AUC values comparison among some of the state-of-the-art algorithms and

SALCC.

NB-AUC values C4.5-AUC values

dataset RF Cfs Fcbf SLcc SaLcc RF Cfs Fcbf SLcc SaLcc

tr21 .807 .829 .833 .834 .871 .732 .824 .821 .825 .827

tr41 .612 .721 .794 .748 .748 .587 .741 .788 .714 .714

tr45 .827 .822 .834 .843 .847 .700 .798 .818 .821 .821

wap .902 .963 .945 .945 .948 .932 .981 .961 .962 .974

tr31 .832 .821 .809 .819 .831 .847 .882 .856 .856 .875

fbis .709 .722 .734 .729 .741 .776 .742 .739 .747 .747

la2s .825 .881 .846 .867 .881 .624 .708 .725 .724 .724

la1s .863 .869 .868 .865 .865 .833 .869 .849 .847 .901

AVG. .797 .829 .833 .831 .842 .754 .818 .820 .812 .823

Table 3.5 shows the number of times SALCC use the classifier to evaluate a set (ESets),

the total number of sets in the range of [δ−, δ+] (TSets), number of features selected by

LCC (LCC#f) and SALCC (SALCC#f). As the table depicts, the number of evaluations is

relatively small respect to the total number of sets. Also, the number of features selected

by SALCC is very small when compared with the number of features selected by LCC. In

general we state that SALCC significantly improves the accuracy and size of solutions of

LCC.

56

Table 3.5: Number of times the classifier is used versus the number of all possible sets and

the number of features selected by LCC and SALCC.

DATA ESets TSets LCC#f SALCC#f

HEP 10 18 10 3

DER 31 69 10 9

OPT 14 29 13 5

ARR 35 78 23 11

MAD 31 76 15 11

MFE 13 31 8 4

ADS 46 107 39 21

KRV 28 94 29 23

FAC 12 27 12 4

FOU 19 44 14 6

KAR 8 12 9 4

MOR 5 6 5 4

PIX 37 298 16 21

ZER 24 62 12 7

SEM 33 319 29 23

WAV 20 39 12 8

57

Chapter 4

Second Contribution: Improvement of
Efficiency and Accuracy of Pairwise
Evaluation Methods

4.1 Introduction

In this chapter we focus on the improvement of the pairwise evaluation methods, such

as: CFS and MRMR. We first analyse the algorithm of CFS and exhibit a problem of the

implementation of this algorithm in the weka framework. Next, we propose a mechanism

to avoid unnecessary evaluations in both of MRMR and CFS algorithms. The proposed

algorithms return the same output of their original versions, however, the are much faster.

4.2 Fast CFS

Although CFS was created almost two decades ago, it is still widely used by researchers as

a comparison prototype due to its impressive results in terms of accuracy [57][61][46] and

has been one of the most popular feature selection functions at all times. In addition, it

has been another motivation for many researchers that they can use CFS from the weka

interface [62], a well-known useful toolbox for researchers and practionists of machine

learning.

Nevertheless, it has been also known that the CFS algorithm used from the weka

interface is extremely slow, and this issue has been imposing an unnecessary restriction

to application of CFS to high dimensional datasets for long. The aim of this section is to

clarify the cause of the issue of CFS and to give a concrete solution. In this section, we

reveal the reason why CFS is so slow in the weka framework. In addition, we also propose

a reimplementation of CFS to make it faster and scalable to high-dimensional data.

58

To select k features, in other words, to perform the iteration k times, the greedy forward

search requires evaluation of the CFS fucntion (2n − k + 1)k/2 times, and the number

itself is feasibly small even for high-dimensional datasets: If we assume k ∈ O(n), this

number is a quadratic function of n; if we can assume that k is fixed, it is merely a linear

function.

However, in the reality, if we chose the greedy forward search and the CFS function in

the weka framework, the resulting run-time will become extremely large frequently. The

reason for this problem is because naı̈ve evaluation of the CFS function is time-consuming.

In fact, when the size of S is l, evaluation of the CFS function requires computation of l

SU values for Cs(S) and l(l − 1)/2 SU values for Rs(S). Hence, to select k features by

the greedy forward search strategy, the number of times to compute SU scores turns out to

be

k∑
l=1

(n− l + 1)

(
l +

l(l − 1)

2

)
=

1

24
k(k + 1)(4nk − 3k2 + 8n− 3k + 6),

and is O(n4) if k ∈ O(n). In the weka framework, the CFS function is naı̈vely computed,

and as a result, the resulting run-time can easily become infeasibly large.

This design of weka is mainly because the weka framework equally deals with arbitrary

evaluation function in a uniform manner to use them as a black-box function. To be specific,

when the weka framework calls a feature set evaluation function, it inputs a feature set S

and a dataset D into the function, and no context information can be taken into account

when the function performs evaluation.

Assume that Cs(S) and Rs(S) have been computed. For R ⊂ FD with R ∩ S = ∅, if

the values of Cs(S) and Rs(S) could be additionally input to the function, the number

of times in which the function has to compute SU values to compute Cs(S ∪ R) and

Rs(S ∪R) would be reduced. In fact, the formula

Cfs(S ∪R) =
Cs(S) + Cs(R)√

k + 2(Rs(S) +Rs(R) +
∑

f∈R
∑

f ′∈S SU(f ; f ′)
(4.1)

indicates that only (lR + lR(lR−1)
2

+ lSlR SU values have to be computed newly, when we

let lS = |S| and lR = |R|. We naturally expect that this new interface to the CFS function

would improve the run-time performance of the CFS algorithm drastically.

Note that from now on, for simplicity we use SUi,j to denote SU(fi, fj). To better

understand our proposal, let’s redefine Cfs function for the case where a new candidate

59

feature fp is requested to be evaluated by the greedy forward search, as follows:

Cfs(S, fp) =

1
k

k−1∑
i′=1

SUi′,c +
1
k
SUp,c√√√√k + k(k − 1)

[
k−2∑
i′=1

k−1∑
j′=i′+1

SUi′,j′ +
k−2∑
i′=1

SUi′,p + SUk−1,p

] . (4.2)

Equation 4.2 is equivalent to Cfs(S). Also equation 4.2 suggests that Cfs(S, fp)

performs i) k − 1 sums in the summation of the numerator to compute Cs(S ∪ fp),

ii) (k − 1)(k − 2)/2 sums in the double summation in the denominator, and iii) k − 2

sums in the last summation of the denominator, when evaluating a single feature fp with

|S| = k − 1. We are especially interested in knowing the effect on the efficiency of the

greedy forward search when eliminating all these unnecessary summations. Avoiding such

sums may drastically increase the efficiency of the feature selection search, specially in

high-dimensional datasets. Next, we provide a simple mechanism to store the sums across

all the iterations, so that the computation of the sums is not duplicated.

Let’s define πk as the accumulative sum of all SUi′,c values for all fi′ ∈ S, with

k = {1, 2, . . . , |S|}. That is:

π1 =SU1′,c , with f1′ = argmax
fi∈F

SUi,c (4.3)

πk =πk−1 + SUk,c , with fk = argmax
fi∈F\S

{Cfs(S, fi)} (4.4)

Now we transform the numerator of Cfs(S, fp) in Equation 4.2, based on πk as follows.

1

k

k−1∑
i′=1

SUi′,c +
1

k
SUp,c =

πk−1(k − 1) + SUp,c

k
(4.5)

Consequently, the numerator of Cfs(S, fp) now can be computed through an accumulative

sum πk−1 across iterations of a greedy forward search. This means that with Equation 4.5,

CFS only performs (n− k) sums out of k(n− k) sums performed by the original CFS in

the k-th iteration.

Analogously, let’s define λk as the accumulative sum of the SU values across all the

pair of features in S for the k-th iteration with k = {1, 2, . . . , |S|}. That is:

60

λ1 =0 (4.6)

λ2 =SU1′,2′ , with f2′ = argmax
fi∈F\{f1′}

Cfs({f1′} ∪ {fi}) (4.7)

λk =λk−1 +
k−1∑
i′=1

SUi′,k = λk−1 +
k−2∑
i′=1

SUi′,k + SUk−1,k (4.8)

Also, let’s denote λp
k as the sum of the SU values of feature fp with every feature in S

when we want to evaluate S ∪ {fp}, as:.

λp
k =

k−1∑
i′=1

SUi′,p (4.9)

Therefore, the squared denominator of Cfs(S ∪ {fp}) is equivalent to:

k + k(k − 1)(λk−1 + λp
k−1 + SUk−1,p) (4.10)

Since λk−1 and λp
k−1 are accumulative variables across the iterations, by using this new

denominator CFS function only performs (n − k) sums of SU values. Finally, we can

rewrite CFS function as follows.

Cfs(fp, k, πk−1, λk−1, λ
p
k−1) =

1
k
(πk−1(k − 1) + SUp,c)√

k + k(k − 1)(λk−1 + λp
k−1 + SUk−1,p)

(4.11)

By replacing the original function Cfs(S) by Cfs(fp, k, πk−1, λk−1, λ
p
k−1), we can

avoid recomputing Cs(S) and Rs(S) every time the evaluation of a feature fp is required.

The greedy forward search is in charge of storing and passing all the required parameters

to the new CFS function. For a better understanding of our proposal Algorithm ?? depicts

the new algorithm we call Fast Correlation-based Feature Selection (FCFS).

The first step in FCFS is to compute the SU values for each par 〈fi, C〉 (lines 2-4).

Then we add the feature fi with higher SUi,c to the current solution S (line 5) and update

the accumulative sum of SU values in Cs (line 7) as in Equation 4.4.

61

Algorithm 7 Fcfs

Require: Dataset D described by a feature set F

Ensure: A feature subset S
1: k = 1,m∗ = −∞
2: for all fi ∈ F do
3: SUi,c = SU(fi, C)
4: end for
5: S = {f1′} where f1′ = argmax

fi∈F
SUi,c

6: F = F \ {f1′}
7: Set π1 = SU1′,c
8: Set λi

1 = 0 for all fi ∈ F

9: Set λ1 = 0
10: while k < n do
11: k = k + 1
12: for all fi ∈ F do
13: λi

k = λi
k−1 + SUi,k′−1

14: mi = Cfs(fi, k, πk−1, λk−1, λ
i
k−1)

15: end for
16: fk′ = argmax

fi∈F
mi

17: if mk′ > m∗ then
18: m∗ = mk′

19: S = S ∪ {fk′}, F = F \ {fk′}
20: πk = πk−1 + SUk′,c
21: λk = λk−1 + λk′

k−1

22: else break
23: end if
24: end whilereturn S =0

In the second step (lines 10-24), in each iteration we look for the candidate feature fi

that maximizes Cfs. Note that in each iteration all the accumulative sums: λi
k (line13),

πk (line 20) and λk (line 21) are updated as suggested in Equations 4.9, 4.4 and 4.8

respectively.

4.3 Experimental evaluations of the Fast CFS

The aim of this section is to evaluate the new proposed algorithm in terms of efficiency

with respect to the original in weka. Therefore, we focus on the comparison of CFS and

FCFS in terms of running time. Furthermore, we use a Mac Book Pro (2012, Apple Inc.)

with Intel Core i7 2.9 GHz processor and 8 GB memory. The experiments were conducted

as follows.

First, we run both algorithms in fifteen medium-dimensional datasets and measure the

running time for each. Table 4.1 shows the attributes of the datasets used in the experiments.

62

Table 4.1: Characteristics of the data used in the experiments

Dataset Acronym #Features #Instances #Classes Source

MultiFeature MFE 650 2000 10 [44]

Leukemia LEU 7130 72 2 [60]

CentralNervous CNS 7130 60 2 [60]

Tumors TUM 7130 60 2 [44]

MLL MLL 12583 72 3 [60]

Arcene ARC 10001 39 2 [20]

TR21 T21 7903 336 6 [65]

TR45 T45 8262 690 10 [65]

BreastCancer BRE 24482 97 2 [60]

Dexter DEX 20001 300 2 [20]

StjudeLeukemia STJ 12559 327 7 [60]

Ecml ECM 27680 90 43 [44]

Gcm GCM 16064 144 14 [60]

BurkittLymphoma BUR 22284 220 3 [60]

Data3 DA3 22278 95 5 [63]

Data1 DA1 54676 123 2 [63]

Data4 DA4 54676 113 5 [63]

Data5 DA5 54614 89 4 [63]

Anthracycline ANT 61360 159 2 [60]

Data6 DA6 59005 92 5 [63]

Mouse type MOU 45102 214 7 [60]

Pems PEM 138673 267 7 [44]

Dorothea DOR 100001 800 2 [20]

We consider the first fifteen datasets as medium-dimensional, while the last eight datasets

as high-dimensional. All the datasets where collected from three machine learning data

repositories: Open Machine Learning [60], Machine Learning Data [44] and Tunedit [65];

and two feature selection challenges: NIPS’2003 [20] and RSCTC’2010 [63].

Second, we run FCFS in high-dimensional datasets, where CFS takes more than three

days running without ending. With this experiment we will check whether or not FCFS

is scalable to high-dimensional data. Third, we run both algorithms in each dataset and

measure the running time taken in each iteration. Since the number of sums of SU values

in CFS is related to the number of the current selected features k, we expect that the

running time of CFS increases as k increases. While we expect that the running time of

FCFS remains constant in each k.

Table 4.2 shows the running time in seconds for FCFS and CFS in each dataset. The

difference between both algorithms is more remarkable as the data has larger number of

features. This is because CFS performs, in each iteration, k(n− k)((k − 1)/2 + 1) sums

of SU values, while FCFS only performs 2(n− k) sums.

Furthermore, we attempt to run CFS in high-dimensional datasets. However, after

63

Table 4.2: Running Time (in seconds) of FCFS and CFS in each dataset. AVE. stands for

the average of the running time in the first fifteen datasets.

MFE LEU CNS TUM MLL ARC T21 T45

FCFS 13.76 2.213 1.686 1.917 3.506 5.559 15.09 33.16

CFS 20.44 195.3 243.1 194.2 367.7 547.6 461.5 217.4

BRE DEX STJ ECM GCM BUR DA3 AVE.

FCFS 31.226 43.607 65.492 31.226 19.894 40.506 20.684 20.908

CFS 19309 2913.1 2855.5 19309 6894.8 7050.8 12271 3884.9

DA1 DA4 DA5 ANT DA6 MOU PEM DOR

FCFS 75.305 110.76 153.46 149.03 144.47 162.39 177.03 3521.2

CFS – – – – – – – –

seventy-two hours running in each data we stop it with no results. Nonetheless, FCFS

only took less than three minutes in each dataset, which definitely is a surprising result.

Speaking about Dorothea dataset, besides is very high-dimensional, FCFS took around one

hour in the selection process because 212 features were selected. This means that CFS

may not be applicable to high-dimensional data when there are a large number of relevant

features.

Figure 4.1 shows the ratio between the running time of CFS and FCFS for each medium-

dimensional dataset. For the datasets Breast Cancer and GCM, FCFS is more than three

hundred times faster than CFS, while in the datasets Data3 and ECM, it is more than six

hundred times faster on average. In general, for medium-dimensional datasets, FCFS is

around one hundred eighty times faster than CFS on average.

Figure 4.1: Ratio between running time of CFS and FCFS in different datasets. Gray

shadow represents the standard deviation across six runs.

To see the performance of both algorithms in more detail, Figure 4.3 shows the running

time per iteration in each medium-dimensional dataset. As depicted, running time of FCFS

is constant across iterations. However, running time of CFS increases as k is larger. This

phenomena is more visible in datasets with large number of features (last charts in the

64

figure).

4.4 MRMR+ and CFS+

One of the first feature selection algorithm that attempts to find a solution close to the

ideal set is CFS. However, CFS is quadratic in terms of number of features evaluated. On

the other hand, MRMR is able to select an approximate set of the ideal set by leveraging

the Mutual Information metric and a greedy search that leads to the evaluation of only

(|F| − q
2
)(q + 1) pairs of features to select q features. This makes MRMR one of the most

powerful algorithms in the history of feature selection. Although MRMR and CFS are one

of the most popular algorithms in the field of feature selection, we have discovered that

both are still subject to improvements in terms of efficiency.

The main goal of feature selection is to identify features 1) that have high correlation

to the target class (relevance) but 2) low mutual relevance among them (redundancy).

Although there are more than one methods to evaluate relevance and redundancy, the

following shows a way that uses mutual information I(X, Y) between two random vari-

ables X and Y . Indeed, we view features of a dataset as random variables and assume

that features are associated with the empirical probability distributions derived from the

dataset. For a set S with k features and the class variable C, the class relevance of S can

be evaluated by

S =
1

k

∑
f∈S

I(f, C), (4.12)

while the redundancy of S can be evaluated by

S =
1

k(k − 1)

∑
(f,f ′)∈S(2)

I(f, f ′). (4.13)

We let S(2) = S2 \Δ for Δ = {(f, f) | f ∈ S}. With relevance and redundancy, Peng et

al. [45] have redefined the concept of feature selection as a process to find feature sets that

maximize relevance and minimize redundancy. Because relevance and redundancy are in a

trade off relation in general, this idea can be formulated as the optimization problem to find

S∗ ∈ argmax {S − αS | S ⊆ F} . (4.14)

The coefficient α is a parameter to adjust the balance between relevance and redundancy,

and F represents the entire set of features that describes a dataset D but does not include

the class variable C.

Finding an exact solution to this problem requires investigating the entire 2|F| subsets

of F, and the required computation is an exponential function of the size of F. For this

65

(a) FAC (b) FOUR

(c) FAR (d) MOR

(e) PIX (f) ZER

(g) SEM (h) WAV

Figure 4.2: Running Time required by CFS (bold curve) and FCFS (gray curve) in each

iteration of the greedy forward search. Thick gray curve represents the standard deviation

of the results of CFS across six runs.

66

(a) FAC (b) FOUR

(c) FAR (d) MOR

(e) PIX (f) ZER

(g) SEM

Figure 4.3: Running Time required by CFS (bold curve) and FCFS (gray curve) in each

iteration of the greedy forward search. Thick gray curve represents the standard deviation

of the results of CFS across six runs.

67

reason, it is common in practice to specify the number of features to select, say q. This

reduces the computational complexity of the problem to O(nq), and if q is not too large,

solving the problem is practical.

In the reality, however, we often need to cope with large datasets that include many

features, and such large datasets tend not to be effectively described by a small number

of features. Hence, to select features that sufficiently describe such datasets, we cannot

help specifying a large q. Furthermore, for large datasets that includes many instances,

computing I(f, C) and I(f, f ′) in · and · is time consuming.

In this regard, Peng et al. [45] have proposed the algorithm named the Max-Relevance
and Min-Redundancy algorithm (MRMR), which finds approximate solutions to the afore-

mentioned problem efficiently. Instead of evaluating · and ·, MRMR evaluates the mutual
information difference measure MIDα(·, ·) defined as shown below:

MIDα(f, ∅) = I(f, C); (4.15)

MIDα(f, S) = I(f, C)− 2α

k

∑
f ′∈S

I(f, f ′). (4.16)

The ground of investigating MIDα(·, ·) can be explained as follows. We assume that S

has been determined and look for f ∈ F \ S that minimizes δ(f) defined by δ(f) =

S ∪ {f} − αS ∪ {f} − S + αS. Since we have

δ(f) = − 1

k(k + 1)

∑
f ′∈S

I(f, C) +
1

k + 1
I(f, C)

+
2α

(k − 1)k(k + 1)

∑
(f ′,f ′′)∈S(2)

I(f ′, f ′′)− 2α

k(k + 1)

∑
f ′∈S

I(f, f ′)

=
1

k + 1
·MIDα(f, S) +O(1/k2),

maximizing δ(f) is approximately equivalent to maximizing MIDα(f, S).

Algorithm 11 describes algorithm of MRMR. To be precise, the original algorithm of

MRMR uses α = 1
2
.

Algorithm 8 MRMR [45]

Require: Dataset D described by a feature set F and a number q of features to select.

Ensure: A feature subset {f̄1, . . . , f̄q} ⊂ F.

1: S = ∅
2: for k = 1, . . . , q do
3: f̄k ∈ argmax{MIDα(f, S) | f ∈ F \ S}
4: Add f̄k to S.

5: end for
6: return S

68

MRMR takes the forward search approach, and hence, the variable S that holds the

features selected at each iteration of the for loop (line 2 – 5) is initialized to the empty

set (line 1). Then, for each iteration of the for loop, a single feature f that maximizes

MIDα(f, S) is added to S.

MRMR is also a greedy algorithm, and in fact, a feature that has been selected at an

iteration will never be investigated again in the consequent iterations.

Since computation of mutual information is dominant in the computational complexity

of the algorithm, we count the number of computation of mutual information to evaluate

the computational complexity. At each iteration, the algorithm computes MIDα(f, S) for

(n− k+ 1) features, and MIDα(f, S) includes k values of mutual information. Hence, the

algorithm computes (n− k+1)k mutual information values at each iteration, and the total

number of computing mutual information is

q∑
k=1

(n− k + 1)k =
(3n− 2q + 2)q(q + 1)

6
, (4.17)

where n = |F|. This number is not small enough to perform feature selection on large

datasts. For example, our experiment has shown that the widely used implementation of

MRMR in Weka [62] requires 3,531 seconds, that is, almost an hour, to process a dataset

that includes 100,000 features and 800 instances, which is relatively large but not very

large.

The inefficiency of the current implementation of MRMR is due to duplication and

redundancy when computing mutual information: the algorithm computes the same mutual

information values more than one times; Also, it executes unnecessary computation of

mutual information. In the next section, we will propose a new algorithm, named MRMR+,

that improves the efficiency of the original MRMR significantly by solving the problems of

duplication and redundancy.

4.4.1 The proposed algorithm: MRMR+

4.4.1.1 The ideas to solve the problems

We start with describing the two problems of MRMR of duplication and redundancy. For

a better understanding of the explanation, we introduce the partial mutual information
information functions pMIDα,f,S(i) defined as

pMIDα,f,S(i) = I(f, C)− 1

k

i∑
j=1

I(f, f̄j), (4.18)

where S = {f̄1, . . . , f̄k}. It is evident that pMIDα,f,S(k) = MIDα(f, S) holds.

69

Duplication. When the same feature f is evaluated at the iterations to determine f̄k and

f̄k+1, Algorithm 11 computes the values of I(f, f̄1), . . . , I(f, f̄k−1) duplicatedly.

Redundancy. Assume that the algorithm has determined S = {f̄1, . . . , f̄k} and has also

finished the investigation of the features in T ⊂ F \ S at the iteration to determine

f̄k+1. For m∗ = max{MIDα(f
′, S) | f ′ ∈ T} and f ∈ F \S \T , if pMIDα,f,S(i) <

m∗ holds for i < k, the feature f cannot update m∗, and hence, it is redundant to

compute I(f, f̄j) for j > i, because pMIDα,f,S(j) is a decreasing function with

respect to j. Algorithm 11, nevertheless, computes the entire I(f, f̄1), . . . , I(f, f̄k).

To solve these problems, we introduce a two-dimensional array A[][] to store pairs of

a feature f and a sum
∑j

i=1 I(f, f̄i). For a feature f , if j is the maximum integer such that

s =
∑j

i=1 I(f, f̄i) has been computed, the pair of (f, s) is an element of the array A[j][].

When the value of s′ =
∑j′

i=1 I(f, f̄i) is necessary for j′ > j, we have only to compute∑j′
i=j+1 I(f, f̄i) by leveraging the value (f, s) stored in A[j][]. Thus, we can avoid the

duplicated computation of mutual information. To solve the problem of redundancy, we

skip computing I(f, f̄j+1), . . . , I(f, f̄k), whenever I(f, C) − 2α
k

∑j
i=1 I(f, f̄i) becomes

no greater than the current maximum m∗ of MIDα(f, S). The element (f,
∑j

i=1 I(f, f̄i) is

stored in A[j][].

4.4.1.2 A description of the algorithm

Algorithm 9 shows an algorithm modified by adding the aforementioned mechanism to

Algorithm 11 to avoid duplication and redundancy.

The following is a description of Algorithm 9.

• In the lines 1 to 3, the values of I(f, C) for f ∈ F are computed and stored in the

variables rf .

• Each iteration of the outer for loop (lines 6 to 24) is to find f̄k+1 to add to S =

{f̄1, . . . , f̄k}. The variables f ∗ and m∗ are to the feature that maximizes the MID

value among the features investigated so far and the corresponding maximum MID

value.

• Each iteration of the inner for loop (lines 8 to 22), the features in A[j][] are

investigated.

• The while loop (lines 11 to 13) updates s′ =
∑j′

i=1 I(f, f̄i) until rf − 2αs′/k ≤ m∗

holds.

• If MIDα(f, S) = rf−2αs′/k > m∗ holds (lines 14 to 16), the values of the variables

f ∗ and m∗ are updated.

70

Algorithm 9 MRMR+

Require: Dataset D described by a feature set F and a number of features q to select.

Ensure: A feature subset {f̄1, . . . , f̄q} ⊂ F.

1: for f ∈ F do
2: rf = I(f, C) � Compute mutual information

3: end for
4: f̄1 ∈ argmax{rf | f ∈ F}
5: A[0] = {(f, 0) | f ∈ F \ {f̄1}}
6: for k = 1, . . . , q − 1 do
7: (f∗,m∗) = (null,−∞)
8: for j = A.size()− 1, . . . , 0 do
9: for (f, s) ∈ A[j] do

10: (j′, s′) = (j, s)
11: while j′ < k and rf − 2αs′/k > m∗ do
12: (j′, s′) = (j′ + 1, s′ + I(f, f̄j′+1)) � Compute mutual information

13: end while
14: if rf − 2αs′/k > m∗ then
15: (f∗,m∗) = (f, rf − 2αs′/k)
16: end if
17: if j′ > j then
18: Remove (f, s) from A[j].
19: Add (f, s′) to A[j′].
20: end if
21: end for
22: end for
23: f̄k+1 = f∗

24: end for
25: return {f̄1, . . . , f̄q}

71

• In addition, if j′ > j holds, that is, if at least one new value of I(f, f·) has been

computed (lines 17 to 20), the feature f is moved from A[j][] to A[j′][].

4.4.1.3 A thought experiment

In our experiments using real datasets (Section4.5), we see that our new algorithm MRMR+

can reduce the number of computing mutual information significantly, and as a result, can

improve the run-time performance of MRMR. In this section, on the other hand, we conduct

a simple thought experiment to verify the effectiveness of MRMR+. In the experiment, for

simplicity, we assume the following properties of a dataset.

• All of the features except the class variable are mutually independent, that is,

I(f, f ′) = 0 holds for any distinct features f and f ′.

• No I(f, C) is identical, that is, I(f, C) �= I(f ′, C) holds for any distinct features f

and f ′.

Under these assumptions, pMIDα,f,S(i) = I(f, C) always holds.

When MRMR+ has selected S = {f̄1, . . . , f̄k}, the number of features that the algo-

rithm has to investigate in the iteration to determine f̄k+1 is � = |F|− k = n− k. For some

of them but not for all, the algorithm newly computes mutual information scores I(f, f̄j).

The number of such features is probabilistic depending on the order of investigating

features.

To evaluate the expectation of this number, we let p�,m denote the probability that our

algorithm newly computes mutual information scores for m of the entire � features. To

evaluate p�,m, we consider a random permutation π of � integers {1, . . . , �} and denote

π = (π(1), . . . , π(�)). We convert π into (μ(1), . . . , μ(2)) by letting μ(i) = min{π(j) |
j ≤ i} and determine m(π) = |{μ(1), . . . , μ(�)}|. Then, we have p�,m = Pr[m(π) = m]

assuming a uniform random distribution for π.

The following evidently hold for all � ≥ 1: p�,m = p�−1,m−1 +m · p�−1,m; p�,0 = 0;

and p�,m = 0 for any m > �. Using this notation, the expected number N� of mutual

information scores computed during the current iteration is evaluated by

N� ≤
�∑

m=1

p�,m ·m · k,

because the algorithm computes new mutual information scores for m features with the

probability p�,m and the number of the mutual information scores computed is bounded

above by k. Hence, the expected number of the mutual information scores that the

72

Figure 4.4: A thought experiment: comparison of MRMR+ and MRMR

algorithm computes entirely is bounded above by

N̄n,q = n+

q−1∑
k=1

Nn−k = n+

q−1∑
k=1

n−k∑
m=1

pn−k,m ·m · k.

Figure 4.4 plots N̄n,q as the number of evaluations for MRMR+ for q = 10 and

n = 10, 11, . . . , 99, 100. At the same time, the numbers given by Eq. (5.3) are plotted as

the number of evaluations for MRMR in orange. Note that the y-axis is in a log scale. The

values plotted for MRMR+ are just upper bounds, and the actual values should be smaller.

Nevertheless, the values for MRMR+ is significantly smaller than those for MRMR. For

example, when n = 100, the value for MRMR+ is 330.5, whereas that for MRMR is 5,170.

4.4.2 Extension of our proposal

We realized that the problem of duplication and redundancy are not only proper of MRMR

algorithm. Must of the algorithms, which use greedy searches suffer from these problems.

As an instance, in this section we will analyse the algorithm of Correlation-based Feature
Selection (CFS).

The CFS evaluation function measures a set of features on the basis of: ”A good feature

subset contains features highly correlated with the class variable, yet uncorrelated to each

other” [22]. The following equation determines the Cfs score when S contains k features.

Cfs(S) =
k ∗ Cs(S)√

k + k(k − 1)Rs(S)
, (4.19)

73

where Cs(S) and Rs(S) denotes the average of the correlation between the features in

S and the class variable, and the average of the correlation between each possible pair

of features in S respectively. Cs(S) and Rs(S) in Cfs(S) are computed by using the

Symmetrical Uncertainty correlation function. CFS can be used with a wide variety of

search strategies. However, according to the reviewed literature the basic greedy forward

search is preferred to relieve the computational cost. The main difference between CFS

and MRMR is that the stopping criteria of MRMR is fixed by the number of features to

select while in CFS when there is no improvement of the current CFS score, the search is

stopped.

4.4.2.1 Proposed algorithm: CFS+

With the top priority of developing a new strategy that yields to the reduction of the number

of evaluations of CFS in a greedy forward search, we first define the relevance contribution

of feature f to the current set S as:

Cfs(f, S) =

∑
f ′∈S

SU(f ′, C) + SU(f, C)√
(k + 1) + 2

(
SR(S) +

∑
f ′∈S

SU(f, f ′)
) , (4.20)

where SR(S) is the sum of the redundancy between every pair of features in S and is

defined as:

SR(S) =
k−1∑
j=1

k∑
l=j+1

SU(f ′
j, f

′
l) (4.21)

Note that Cfs(f, S) is equivalent to Cfs(S ∪ {f}). Therefore, Cfs(S)−Cfs(f, S) rep-

resents the effect of adding f to S. Now, we deeper derive the last term in the denominator

of Cfs(f, S) to realize that
∑

f ′∈S SU(f, f ′) represents the sum of the SU values between

f and the features selected in the p+ 1, p+ 2, . . . , k-th iterations.

Cfs(f, S) =

k∑
j=1

SU(f ′
j, C) + SU(f, C)√

(k + 1) + 2
(
SR(S) +

p∑
j=1

SU(f, f ′
j) +

k∑
j=p+1

SU(f, f ′
j)
) (4.22)

Now, if we assume that feature fi is not correlated to any feature in S (i.e.
∑k

j=p+1 SU(fi, f̄j) =

0) then we obtain the upper bound of the Cfs score, in the k-th iteration, when only

SU(fi, f̄0), SU(fi, f̄1), . . . , SU(fi, f̄p) is known.

We define this upper bound as Cfsp,ki . Taking advantage of the knowledge of Cfsp,ki

we can safely avoid evaluating feature fi, in the k-th iteration, when Cfsp,ki ≤ Cfs∗ holds,

74

being Cfs∗ the best Cfs score found so far in the current iteration. Figure 10 depicts the

algorithm of CFS+.

Algorithm 10 Algorithm of CFS+

Require: Dataset D described by a feature set F

Ensure: A feature subset {f̄1, . . . , f̄t} ⊂ F..

1: for f ∈ F do
2: rf = SU(f, C) � Compute symmetrical uncert.

3: end for
4: f̄1 = argmaxf∈F rf
5: A[0] = {(f, 0) | f ∈ F} \ {f̄1}
6: sRel = rf̄1 , sRed = 0
7: for k = 1 . . . , n− 1 do
8: (f∗,m∗) = (null,−∞)
9: for j = A.size()− 1, . . . , 0 do

10: for (f, s) ∈ A[j] do
11: (j′, s′) = (j, s)
12: while j′ < k and (sRel + rf)/

√
(k + 1) + 2(sRed+ s′) > m∗ do

13: (j′, s′) = (j′ + 1, s′ + SU(f̄j′)) � Compute symmetrical uncert.

14: end while
15: temp = (sRel + rf)/

√
(k + 1) + 2(sRed+ s′)

16: if temp > m∗ then
17: (f∗,m∗) = (f, temp)
18: end if
19: if j′ > j then
20: Remove (f, s) from A[j]
21: Add (f, s′) to A[j′]
22: end if
23: end for
24: end for
25: f̄k+1 = f∗

26: end for
27: return S

4.5 Results and Discussion

The aim of this section is to evaluate the new proposed algorithms in terms of efficiency

and accuracy. Although we are very interested in the results of our proposal in microarray

and cancer data anlaysis, we also use some other high-dimensional datasets within the field

of text mining (datasets: Tr21, Tr41, Tr45, wap, Fbis, Tr31, New3s and Ohscal).

We split this section to report the experimental results into three parts: in the first part,

we compare MRMR with MRMR+ in terms of running time and number of evaluations; In

the second part, we compare MRMR+ with some benchmark feature selection algorithms

in terms of running time and accuracy; Lastly, we test the effect of replacing the MRMR

75

Table 4.3: Characteristics of the datasets used in the experiments.

Data Acronym #Features #Instances #Classes Source

Leukemia LEU 7130 72 2 [60]

Central Nervous CNS 7130 60 2 [60]

Tumors TUM 7130 60 2 [44]

Dexter DEX 20001 300 2 [20]

Arcene ARC 10001 100 2 [20]

Tr21 T21 7903 336 6 [65]

Tr41 T41 7455 878 10 [65]

Tr45 T45 8262 690 10 [65]

Wap WAP 8461 1560 20 [65]

Fbis FBI 2001 2463 17 [65]

Stjude Leukemia STJ 12559 327 7 [60]

Breast Cancer BRE 24482 97 2 [60]

ECML ECM 27680 90 43 [44]

Hepatitis C HEP 22278 123 4 [44]

Burkitt Lymphoma BUR 22284 220 3 [60]

La2s LA2 12433 3075 6 [65]

La1s LA1 13196 3204 6 [65]

Ohscal OHS 11466 11162 10 [65]

New3s NEW 26833 9558 44 [65]

Tr31 T31 10129 927 7 [65]

Data1 DA1 54676 123 2 [63]

Data4 DA4 54676 113 5 [63]

Data5 DA5 54614 89 4 [63]

Data6 DA6 59005 92 5 [63]

Anthracycline ANT 61360 159 2 [60]

Mouse type MOU 45102 214 7 [60]

Ovarian tumor OVA 54622 283 3 [60]

Various Cancer VAR 54676 383 10 [60]

Dorothea DOR 100001 800 2 [20]

Pems PEM 138673 267 7 [44]

76

filter with MRMR+ in the two-stage search algorithms.

Table 4.3 shows the attributes of the datasets used in the experiments that where

collected from three machine learning data repositories: Open Machine Learning [60],

Machine Learning Data [44] and Tunedit [65]; and two feature selection challenges:

NIPS’2003 [20] and RSCTC’2010 [63]. Datasets in Table 4.3 are grouped in three groups

according to their number of features and are classified in: low-dimensional, medium-

dimensional and high-dimensional.

4.5.1 Comparing MRMR with MRMR+

We compare the running time and the number of evaluations of MRMR+ and CFS+ with

their respective original versions. For the experiments, we fix the number of features to

select by MRMR to fifty. Table 4.4 depicts the results for the running time and number

of evaluations. Speaking of the running time, MRMR+ shows remarkable improvement

compared with MRMR. In particular, in datasets like LA2, LA1, OHS and NEW, MRMR

needs more than two minutes while MRMR+ only needs a few seconds. Results regarding

CFS+ are not as good as MRMR+. However, it is remarkable that CFS+ outperforms

CFS. Speaking of the number of evaluations, we can state that our method to avoid

unnecessary sums of SU values works very good. However, for most of the datasets,

MRMR+ outperforms CFS+ again.

Figure 4.7 describes (a) how many times the proposed algorithms are faster than their

originals in run-time, and (b) how many percentages of the evaluations of the originals can

be avoided when using the proposed algorithms. We see that the extent of improvement by

MRMR+ to MRMR is significant. For most of the datasets, MRMR+ is more than ten times

faster than MRMR, and MRMR+ executes only a few percentages of the computation that

MRMR has to execute. Although the extent of improvement by CFS+ is less noticeable

compared with the results for MRMR+, CFS+ is still around two to five time faster than

CFS. Also, CFS+ is able to avoid more than forty percentages of the evaluations performed

by CFS.

To go deeper in the results of our proposal, Figure 4.8 and 4.9 depicts the cumulative

number of evaluations performed by the original CFS/MRMR (blue curve), MRMR+(orange

curve) and CFS+(green curve) in each iteration for some of the datasets in Table 4.3. Note

that vertical axes are represented in log10 scale.

In Figure 4.8 and 4.9, the curve CFS-MRMR represents the number of evaluation of

both of MRMR and CFS. It is remarkable a drastic improvement in terms of number

of evaluations when the original MRMR and CFS algorithms are compared with their

improved methods. Another observation is that MRMR+ evaluates less feature sets than

CFS+.

77

Table 4.4: Results for the running time and number of evaluations of the original and the

proposed algorithms. Number of evaluations is expressed in 103 units.

Low-Dimensional Datasets

LEU CNS TUM DEX ARC

RTime NEval RTime NEval RTime NEval RTime NEval RTime NEval

Mrmr 1.95 348 1.32 348 1.27 348 27.3 978 2.98 488

Mrmr+ 0.66 9.65 0.26 10.3 0.19 10.2 4.21 2.85 0.28 3.68

Cfs 2.38 390 1.79 411 1.77 411 44.9 1756 14.4 747

Cfs+ 1.43 106 0.52 88.9 0.69 81.9 5.73 112 4.9 236

T21 T41 T45 WAP FBI

RTime NEval RTime NEval RTime NEval RTime NEval RTime NEval

Mrmr 8.81 385 25.6 364 21.3 403 51.3 413 12.1 96.7

Mrmr+ 0.47 2.99 1.03 1.8 0.85 1.79 1.59 1.57 0.51 1.42

Cfs 26.3 589 4.27 37.2 21.3 370 8.43 16.9 1.71 9.98

Cfs+ 6.14 184 0.75 1.48 1.21 13.2 1.08 .038 0.35 0.02

Medium-Dimensional Datasets

STJ BRE ECM HEP BUR

RTime NEval RTime NEval RTime NEval RTime NEval RTime NEval

Mrmr 17.9 614 15.9 1198 14.8 1355 10.3 1090 20.6 1090

Mrmr+ 1.05 4.47 5.73 14.7 8.95 1.83 6.29 21.3 6.79 30.5

Cfs 45.1 1636 24.3 2394 57.4 4690 87.3 3728 84.2 3220

Cfs+ 25.2 392 12.8 1143 19.2 2805 26.9 2120 47.8 1396

LA2 LA1 OHS NEW T31

RTime NEval RTime NEval RTime NEval RTime NEval RTime NEval

Mrmr 126 607 139 645 320 560 906 1313 37.3 495

Mrmr+ 3.10 1.6 3.29 1.5 9.54 1.22 28.8 1.54 1.43 2.6

Cfs 15.4 49.7 16.1 52.7 8875 16041 30.6 53.6 4.28 20.2

Cfs+ 3.41 9.42 3.29 0.01 2023 6074 8.76 0.005 0.79 0.02

High-Dimensional Datasets

DA1 DA4 DA5 DA6 ANT

RTime NEval RTime NEval RTime NEval RTime NEval RTime NEval

Mrmr 80.8 2677 92.9 2677 89.4 2674 145 2889 119 3005

Mrmr+ 41.7 81.3 56.1 29.1 60.1 67.5 61.3 23.6 51.7 11.8

Cfs 85.1 5789 115 9334 126 11065 144 12603 141 7845

Cfs+ 24.9 1977 33.2 4709 76.5 6030 73.2 6991 41.6 936

MOU OVA VAR DOR PEMS

RTime NEval RTime NEval RTime NEval RTime NEval RTime NEval

Mrmr 176 2208 233 2675 262 2677 3531 4898 2724 1724

Mrmr+ 24.4 31.4 41.8 41.1 50.5 35.9 211 3.39 62.3 4.27

Cfs 193 8865 459 14384 766 14997 3919 21177 192.2 277.3

Cfs+ 126 4911 103 5741 402 8647 752.8 2475 82.34 8.57

78

Table 4.5: Accuracy and Running time of several benchmark feature selection algorithms

SVM Running Time

S3F SFS-LW MRMR S3F SFS-LW MRMR MRMR+

STJ .729 .739 .743 12.9 18.3 22.4 1.03

BRE .845 .889 .889 15.1 20.5 17.8 5.22

ECM .814 .801 .759 17.3 12.1 14.6 8.46

HEP .807 .796 .811 21.2 13.8 13.1 6.54

BUR .902 .934 .910 31.5 17.6 22.5 3.85

LA2 .944 .948 .950 341 89.1 124 3.26

LA1 .863 .857 .861 429 145 131 4.28

OHS .704 .704 .709 521 287 331 8.46

NEW .855 .874 .874 1206 789 906 25.6

T31 .741 .727 .751 128 48.9 32.6 1.23

DA1 .712 .712 .707 391 76.4 83.7 54.2

DA4 .892 .920 .934 207 78.1 93.5 62.6

DA5 .689 .708 .671 408 84.8 88.6 61.9

DA6 .722 .741 .731 213 98.6 137 48.7

ANT .843 .811 .859 789 168 122 51.6

MOU .732 .770 .775 870 178 173 22.2

OVA .842 .758 .758 801 201 237 49.2

VAR .927 .943 .943 798 229 266 50.7

DOR .730 .708 .783 - 4821 3504 208

PEM .924 .917 .921 - 2980 2698 58.9

4.5.2 Comparing Mrmr+ with benchmark algorithms

In this section we compare MRMR+ with two benchmark feature selection algorithms: the

LW-index (SFS-LW) [38] and the Supervised Simplified Silhouette Filter (S3F) [11].

To compare MRMR+ with SFS-LW and S3F algorithms we run experiments and collect

the running time and the accuracy of each algorithm. For each dataset, we generate m pair

of training and test data subset, where m is the number of instances in the data. Each test

data represents an instance in the dataset and the train data is composed by the rest of the

instances. First, we run the feature selection algorithms in the training data and apply then

we reduce the test data according to the features eliminated by the algorithms. Second, we

train the C-SVM-with-RBF-Kernel with the reduced training data and then test it on the

reduced test data to determine the Area Under the Receiver Operating Characteristic curve

(AUC-ROC) score. In addition, the average of the running time taken by each algorithms

when is applied to the train data is collected.

From the results depicted in Table 4.5, we observe that MRMR wins in twelve of the

twenty datasets used, in terms of accuracy. However, MRMR is slower than SFS-LW in the

majority of the datasets. Nonetheless, exhibiting the same results of MRMR, in terms of

accuracy, MRMR+ is on average fourteen times faster than SFS-LW.

79

4.5.3 Testing MRMR+ in the two-stage selection algorithms

A two-stage feature selection algorithm separates its job into two stages that aim at (1)

gradual reduction of number of features using a fast algorithm and (2) final and finer

selection of features using a slow but powerful algorithm. The first stage narrows down the

search space so that even the slow algorithm at the second stage can find answers within a

reasonable time allowance. Usually, a filter-type algorithm is selected for the first stage

algorithm, and in particular, MRMR has been extensively used as in the literature because

of its efficiency and accuracy [4][25][5][17][16]. However, as was shown in Section

4.5.1, when the dataset is high-dimensional, MRMR is likely to be too slow. Therefore,

in this section, we investigate the effect of replacing MRMR with MRMR+ with two

popular instances of the two-stage selection algorithm: Genetic Bee Colony (GBC) [4] and

MRMR-GA [16].

To test the effect of replacing MRMR with MRMR+ in the two-stage selection methods,

we run experiments using both filters. In table 4.6, the results are shown. The columns

labeled with MRMRGB and MRMR+GB specify the running time of MRMR and MRMR+

in the GBC algorithm, while the columns labeled with MRMRGA and MRMR+GA do the

running time of MRMR and MRMR+ in the MRMR-GA algorithm. The columns of GBC,

GBC+, GA and GA+ specify the total running time of the corresponding entire two-stage

algorithms. It is remarkable that in most of the datasets the time required by MRMR

represents more than the fifty percentage of the total running time of GBC and MRMR-GA.

Therefore, introducing MRMR+ to both algorithms results in substantial improvement of

the efficiency in GBC and MRMR-GA. In the context of GBC, for the first eighteen datasets,

GBC+ is approximately three times faster than the original GBC on average. For GBC

we could not have an answer, for the datasets DOT and PEM, after running the algorithm

for more than forty-eight hours. Speaking about MRMR-GA, MRMR-GA+ is around four

times faster than the original MRMR-GA on average. Moreover, in the datasets DOR and

PEM, which are very high-dimensional, MRMR-GA+ is 11 and 3.5 times faster than the

original MRMR-GA, respectively.

80

Table 4.6: Running time taken by MRMR and MRMR+ in GBC and MRMR-GA.

MRMRGB GBC MRMR+GB GBC+ MRMRGA GA MRMR+GA GA+

STJ 31.1 38.9 7.45 16.1 84.3 102 13.5 31.4

BRE 16.2 22.9 4.71 9.64 58.7 72.8 14.02 28.5

ECM 31.1 49.3 19.7 35.3 32.9 53.0 17.81 37.6

HEP 8.01 29.4 4.92 21.6 22.4 52.1 9.34 36.8

BUR 23.3 156 4.87 136 21.4 47.6 5.31 30.4

LA2 1290 1341 83.2 148 132 194 31.7 90.4

LA1 2519 2977 91.6 503 139 201 25.4 83.0

OHS 345 432 17.2 103 215 267 29.3 83.3

NEW 3451 4420 82.7 1029 2437 3012 61.5 686

T31 34.2 64.3 2.54 29.7 89.4 145 6.44 63.2

DA1 934 1271 206 541 203 298 69.9 167

DA4 318 571 51.1 296 221 322 86.4 191

DA5 421 929 32.7 541 184 271 107 203

DA6 1473 2927 219 1782 309 438 103 229

ANT 3732 5213 291 1697 378 522 81.6 221

MOU 1349 2168 154 924 382 471 39.3 146

OVA 569 921 31.7 390 469 635 80.2 240

VAR 2981 3172 149 382 671 789 109 227

DOR - - 619 1134 8701 8994 505 801

PEM - - 514 921 5167 6926 109 1954

81

0.45

Figure 4.5: The factor of improvement in run-time

0.45

Figure 4.6: % of evaluations avoided by the improved algorithms

Figure 4.7: Extent of improvement of MRMR+ and CFS+. The blue curve represents the

comparison between MRMR+ and MRMR, while the orange curve does the comparison

between CFS+ and CFS algorithm. The horizontal axis represents datasets: 1:LEU 2:CNS

3:TUM 4:DEX 5:ARC 6:T21 7:T41 8:T45 9:WAP 10:FBI 11:STJ 12:BRE 13:ECM

14:HEP 15:BUR 16:LA2 17:LA1 18:T31 19:OHS 20:NEW 21:DA1 22:DA4 23:DA5

24:DA6 25:ANT 26:MOU 27:OVA 28:VAR 29:DOR 30:PEMS.

82

5

6

6

7

8

1

(a) FAC

5

6

6

7

8

1

(b) FOUR

5

7

8

1

1

2

(c) FAR

5

6

6

7

8

1

(d) MOR

5

7

9

1

1

2

(e) PIX

5

5

5

5

5

5

(f) ZER

5

8

1

2

4

6

(g) SEM

5

8

1

2

3

4

(h) WAV

Figure 4.8: Cumulative function of the number of evaluations required in each iteration by

CFS/MRMR(blue curve), CFS+(green curve) and MRMR+(orange curve). Vertical axis is

expressed in log10 scale.

83

5

8

1

2

4

6

(a) FAC

5

8

1

2

4

6

(b) FOUR

5

2

6

2

8

(c) FAR

5

1

2

4

8

2

(d) MOR

5

1

2

4

8

2

(e) PIX

5

1

2

4

8

2

(f) ZER

5

8

1

2

4

6

(g) SEM

5

1

2

4

8

2

(h) WAV

Figure 4.9: Cumulative function of the number of evaluations required in each iteration by

CFS/MRMR(blue curve), CFS+(green curve) and MRMR+(orange curve). Vertical axis is

expressed in log10 scale.

84

Chapter 5

Third Contribution: Improvement of
Efficiency and Accuracy of Two-stage
Algorithms

Since we are especially interested in high-dimensional data, we made some modifications

to the GBC algorithm, so that GBC could be effectively use in high-dimensional domains.

In this section, we present some improvements made to the GBC algorithm in terms of

efficiency and accuracy.

5.1 The MRMR algorithm

The main goal of feature selection is to identify features 1) that have high correlation with

the target class (relevance) but 2) low mutual relevance among them (redundancy). Peng

et al. [45] have proposed the algorithm named the Max-Relevance and Min-Redundancy
algorithm (MRMR), which finds approximate solutions to the aforementioned problem

efficiently. MRMR evaluates each subset of genes by the Mutual Information Difference
measure MIDα(·, ·) defined as shown below:

MIDα(f, ∅) = I(f, C); (5.1)

MIDα(f, S) = I(f, C)− 2α

k

∑
f ′∈S

I(f, f ′), (5.2)

where I(f, f ′) represents the Mutual Information between the two genes f and f ′. MRMR

takes the forward search approach, and hence, the variable S that holds the features selected

at each iteration of the for loop (line 2 – 5) is initialized to the empty set (line 1). Then, for

each iteration of the for loop, a single feature f that maximizes MIDα(f, S) is added to S.

MRMR is used in GBC as a filter to remove redundant and irrelevant genes prior to the

85

Algorithm 11 MRMR [45]

Require: Dataset D described by a feature set F and a number q of features to select.

Ensure: A feature subset {f̄1, . . . , f̄q} ⊂ F.

1: S = ∅
2: for k = 1, . . . , q do
3: f̄k ∈ argmax{MIDα(f, S) | f ∈ \S}
4: Add f̄k to S.

5: end for
6: return S

search. Although MRMR drastically reduces the search space, we have found that the time

taken by MRMR is extremely large in relation to the total running time of GBC. Figure

5.1 depicts the percentage of the running time of MRMR in GBC (lighter area), and the

percentage of the running time of the rest of the algorithm (darker area). The datasets

used, are six microarray datasets from the Rough Sets and Current Trends in Computing

conference (RSCTC’2010) discovery challenge [64]. The datasets in Figure 2.13 are sorted

according to their number of genes. As can be seen, for the first three datasets, which

have fewer genes, the running time of MRMR is nearly to the fifty percentage of the entire

running time of the GBC algorithm, while for the remain of the datasets, the running time

of MRMR represents more than the sixty percentage of the total running time.

0%

25%

50%

75%

100%

Figure 5.1: Percentage of time required by MRMR (the lighter area) in the GBC algorithm.

In fact, at each iteration, MRMR computes MIDα(f, S) for (n− k + 1) features, and

MIDα(f, S) includes k values of mutual information. Hence, the algorithm computes

(n−k+1)k mutual information values at each iteration, and the total number of computing

mutual information is

q∑
k=1

(n− k + 1)k =
(3n− 2q + 2)q(q + 1)

6
, (5.3)

where n = |F|. This number is not small enough to perform gene selection on large

86

microarray datasets.

In chapter 4, we present a solution to the inefficiency by proposing the algorithm

MRMR+, which find the same set as MRMR+, but in a significantly shorter time. To

test the effect of replacing MRMR with MRMR+ over GBC, we run experiments in the

RSCTC’2010-challenge-datasets and collect the running time of both versions as shown in

Figure 5.2.

0

45

90

135

180

225

270

Figure 5.2: Comparison in running time (in seconds) in the GBC algorithm when using

the original MRMR and the faster MRMR+ in the filter phase. The area with the + symbol

represents the MRMR+ while the the darker area is the running time of the rest of the GBC

algorithm. Results of the original GBC is on the right of the MRMR+.

In all cases MRMR+ is more than two times faster than the original MRMR, which

significantly improves the running time of GBC.

5.2 Initialization Phase

Most population-based techniques for solving optimization problems in artificial intel-

ligence, generate the first solutions of the population randomly. While this is essential

to ensure diversity at the early stage of the search, it also may affect the convergence

speed of the algorithm. GBC, in the Initialization Phase does not make use of neither

the relevance nor the redundancy scores of each gene to build the SN initial solutions.

Instead, GBC generates the solutions randomly. Since we work with high-dimensional

microarray data, we are very interested in making GBC to converge faster towards the most

promising solutions. Therefore, in the Initialization phase we propose to make use of the

relevance and redundancy score of each gene computed, which are computed by MRMR,

to efficiently create an initial population composed by diverse, but accurate solutions.

We define our proposal as follows. Given a set of all genes sorted according to the

order they were selected by MRMR, we randomly select a feature and test it in the current

solution (initially the empty solution), if the accuracy of the current solution is increased,

87

then we add the gene, otherwise we stop the search and start creating a new solution by

the same procedure. This is in fact, the same procedure GBC uses to create the initial

population. However, additionally we assign to each gene gi a probability Pγj(i) to be

selected when creating the j-th solution, as follows:

Pγj(i) =
1− γj
1− γn

j

× γi−1
j , (5.4)

where n is the number of features in the data and γj is a decreasing function in the range

of (0, 1), as follows:

γj = 1− 1

j + 1
(5.5)

Figure 5.3 represents the shape of the probability function Pγj(i). As can be inferred from

Figure 5.3, Pγj(i) has several properties:

Figure 5.3: Chart representing the probability of choosing feature fi to be tested in the j-th

solution.

• First, as a probability function, Pγj(i) is exhaustive, that is:
∑n

i=1 Pγj(i) = 1.

• Second, Pγj(i) is a decreasing function. Therefore,

Pγj(1) > Pγj(2) > · · · > Pγj(n), (5.6)

always holds. This means that first genes in the ranking are likely to be selected.

Genes will be ranked in the same order they were selected by the MRMR algorithm.

Therefore, the first genes in the ranking, are highly correlated with the class variable

and are not highly correlated with other features in the ranking.

• Third, the larger the number of solutions already built, the more equal are the

probabilities to be chosen for all genes. That is,

Pγt(i) > Pγt+1(i) > · · · > PγSN
(i). (5.7)

88

However, for a sufficiently large value of j, for example with SN/2 ≤ k ≤ SN ,

Pγk(1) ≈ Pγk(2) ≈ · · · ≈ Pγk(n), (5.8)

holds.

Pγj(i) guaranties that the first solutions are likely to contain genes with high correlation

with the class and low correlation with the other genes. Therefore, this solutions may have

high accuracy. For the rest of the solutions the probability of selecting any gene tends to

1/SN . Consequently, we can expect that the initial population will be composed by two

type of solutions: solutions with high accuracy and random solutions. This creates a good

synergy in the search since now we have a diverse population with some accurate solutions

that may make the algorithm converge faster. To evaluate our proposed method, we run

experiments in several datasets and measure the accuracy of the solutions in the population

of the original method (gray curve) and the proposed (black curve). Figure 5.4 depicts

the results. To build the chart we sorted the solutions according to their accuracy for both

method.

5.3 Intensification

Metaheuristic optimization algorithms often performs well approximating solutions be-

cause they first, diversify the search looking for candidate solutions without making any

assumption about the underlying fitness landscape. Second, they intensify the search look-

ing for more promising solutions once they explore diverse regions in the solution space.

In GBC, the intensification process is accomplished by means of the genetic crossover

and mutation operations in the onlooker bee and scout bee phases, respectively. However,

through experiments we realized that in the scout bee phase the mutation operation does not

make any effect in the intensification process due to the extremely low mutation probability

of genes.

To carry out a richer intensification process we adopt the following method.

• First, we determine the goodness of a gene according to its occurrence in the solutions

of the population. A gene fi ∈ S that is in solutions S, with SVM(S) > μ and is

not in solutions R, with SVM(R) ≤ μ, must have high goodness. We define the

goodness �(fi) of feature fi as follows.

�(fi) =

∑
S∈P

δ+fi,μ × SVM(S)

θ+
−

∑
S∈P

δ−fi,μ × SVM(S)

θ−
, (5.9)

where δ+ = 1 if δ+ > μ and δ+ = 0 if δ+ ≤ μ, being μ the average of the fitness

89

(a) FAC (b) FOUR

(c) FAR (d) MOR

(e) PIX (f) ZER

Figure 5.4: Accuracy of the solutions in the population of the original method (black)

and the proposed method (gray curve). Number of selected genes are located over each

solution.

90

of all solutions in the population, δ− has opposite value to δ+, and θ+ and θ− are

the sum of the fitness of all solutions S in the population such that SVM(S) > μ

and SVM(S) ≤ μ,respectively. �(fi) is a normalized coefficient in the range of

[−1, 1]. A value of 1 means gene fi is in all solutions where δ+fi,μ = 1 and is not

in any solution where δ−fi,μ = 1. A value of −1 means fi is present in all solutions

where δ−fi,μ = 1 and not in any solutions with δ+fi,μ = 1.

• Second, we sort the genes according to their goodness � and store them in two

different sets. Genes with �(fi) > 0 are sorted in increasing order and stored in

S+ while genes with �(fi) ≤ 0 are sorted in decreasing order and stored in S−.

Afterwards, we run a greedy forward selection search starting with the Queen Bee
solution and using genes in S+. That is, we test adding to Queen Bee, all genes

in S+, one by one, and the gene that maximize SVM(QueenB ∪ {fi}) is added

to QueenB. We stop searching when neither of the genes improves the current

QueenB. Subsequently, a greedy backward search is performed using the genes

in S−. That is, we start with the current Queen bee, and test eliminating genes in

S− from QueenB, if present. The gene that maximize SVM(QueenB \ {fi}) is

removed from QueenB. The search stops when no feature improves QueenB.

To test our method, we run GBC twice for each dataset: first, we run the original GBC

and second we replace the mutation operation with our proposed intensification method.

Figure 5.5 depicts the results.

5.4 Minor improvements

In addition to the improvements we have proposed in the previous sections, we have

detected some small gaps on the design of the original GBC, that could lead to undesirable

results. Our final proposals is as follows.

• First, we consider two more stopping criteria in the GBC algorithm: i) stopping the

search when SVM(QueenB) ≥ λ, and ii) stopping the search when the current

QueenB remains the same after t consecutive cycles.

• Second, we implement, a lookup table that stores the solutions already evaluated and

their respective accuracy. Every time a candidate solution is going to be evaluated,

first we inspect the lookup table to avoid duplicated evaluations.

These modifications may look naive. However, we run experiments to determine the

evaluations saved by implementing these modifications in the original GBC algorithm and

results were very positive. Table 5.1 shows the results. We report that in neither of the

datasets the accuracy varies with respect to the original GBC.

91

(a) FAC (b) FOUR

(c) FAR (d) MOR

(e) PIX (f) ZER

Figure 5.5: Comparison between the original GBC (Gray points) and GBC with the

proposed method of intensification (black points). The line between two black points

quantifies an improvement in the Queen Bee by the proposed method.

92

Table 5.1: Percentage of time saved by the minor improvements respecto to the original

GBC algorithm. Values are expressed as % of number of evaluation saved / percentage of

running time saved. AVE. stands for average.

stopping criteria
lookup table all

i) ii)

DA1 79 / 41 - 94 / 55 81 / 44

DA2 75 / 73 - 41 / 40 85 / 85

DA3 64 / 62 - 51 /50 84 / 84

DA4 64 / 52 - 72 / 63 88 / 73

DA5 60 / 27 - 76 / 52 73 / 52

DA6 63 / 26 92 / 68 93 / 61 86 / 53

AVE. 67 / 47 92 / 68 71 / 53 83 / 65

Table 5.2: Accuracy of GBC and GBC+ in several datasets.

Alg\Data STJ BRE ECM HEP BUR DA1 DA2 DA3

Gbc 0.76 0.94 1 1 0.96 0.99 0.93 0.97

Gbc+ 0.94 0.96 1 1 0.98 0.99 0.97 1

DA4 DA5 DA6 ANT MOU OVA VAR PEM

Gbc 0.85 0.98 1 0.87 0.68 0.96 0.89 -

Gbc+ 0.98 0.98 1 0.99 0.99 0.98 0.99 0.87

5.5 Experimental evaluation

To compare GBC with GBC+, we run experiments and collect the running time, the

accuracy of each algorithm and the number of genes selected. For each dataset, we

generate m pair of training and test data subset, where m is the number of instances in the

data. Each test data represents an instance in the dataset and the train data is composed by

the rest of the instances. First, we run the feature selection algorithms in the training data

and then we reduce the test data according to the features eliminated by the algorithms.

Second, we train the C-SVM-with-RBF-Kernel and C4.5 classifiers with the reduced

training data and then test them on the reduced test data to determine the Area Under the

Receiver Operating Characteristic curve (AUC-ROC) score. In addition, the average of the

running time taken by each algorithms and the number of genes selected, when is applied

to the train data, is collected.

From the results depicted in Table 5.2, we observe that MRMR wins in twelve of the

twenty datasets used, in terms of accuracy.

93

Table 5.3: Running time of GBC and GBC+.

Alg\Data STJ BRE ECM HEP BUR DA1 DA2 DA3

Gbc 548 50.3 907 87.6 187 196 83.6 88.3

Gbc+ 8.52 16.7 31.1 7.06 51.8 120 35.5 15.7

DA4 DA5 DA6 ANT MOU OVA VAR PEM

Gbc 337 155 157 244 346 331 1704 -

Gbc+ 101 67.9 106 187 42.6 123 387 421

Table 5.4: Number of genes selected by GBC and GBC+ in the experiments.

Alg\Data STJ BRE ECM HEP BUR DA1 DA2 DA3

Gbc 1 7 1 9 10 6 9 7

Gbc+ 22 12 2 11 14 7 13 10

DA4 DA5 DA6 ANT MOU OVA VAR PEM

Gbc 9 10 11 7 1 6 13 -

Gbc+ 20 11 12 19 27 10 39 27

94

Chapter 6

Summary of algorithms proposed in
this research

In this section we briefly describe the algorithms proposed in this research.

6.1 Fast SDCC

The algorithm FSDCC is an improved version of the algorithm SDCC. It has been verified

that SDCC outputs better subsets than INTERACT and LCC in terms of consistency. Never-

theless, because SDCC must evaluate
(
|F|+ |F̃ |

)(
|F| − |F̃|+ 1

)
/2 subsets to output

F̃ , it is not applicable to high-dimensional datasets. FSDCC avoids two main deficiencies of

SDCC. First, SDCC removes arbitrarily any feature f with minBr(F \ {f}). By contrast,

FSDCC evaluates individual correlation of features f and eliminates f with lower relevance

in earlier stages. As a result, the final solution tends to be higher in terms of collective

relevance. Secondly, in the algorithm of SDCC when minBr(F \ {f}) = Br(F) is found,

the algorithm still continues evaluating the rest of the features, which is definitely redun-

dant. To solve this problem, FSDCC sorts the features in increasing order according to

the correlation of the features with the class. Then, when FSDCC find a feature f with

minBr(F \ {f}) = Br(F), f is immediately removed, and a new iteration is started.

In this way, FSDCC guaranties to remove the feature with the lowest loss of consistency

Br(F \ {f}) and the lowest individual correlation with the class. Furthermore, a lot of

unnecessary evaluations is avoided.

6.2 Accurate Sdcc

Although we expect that FSDCC considerably improves the performance of SDCC in terms

of the number of evaluations and consistency rate of the outputs, we think it posses some

95

weakness relating to the accuracy obtained by the machine learning algorithms applied

to the reduced data when compared with LCC. The output of LCC will tend to contain

features more correlated with the class, whereas SDCC tends to select more consistent sets,

but they are not necessarily composed by features highly correlated with the class. ASDCC

solves this problem by establishing a balance between the consistency contribution of each

feature and its respective correlation with the class. With this purpose, the algorithm uses

the combined measure determined by:

ϑ (f, C) = αSU (f, C) + (1− α)
Br(F̃ \ {f} ;C)−Br(F ;C)

δ −Br(F ;C)
. (6.1)

The first SU (symmetrical uncertainty) represents the individual correlation of f to C,

while the second term does the normalized consistency loss when f is removed. 0 ≤ α ≤ 1

is a balance parameter which allows to specify, in a certain level, the preferable type of

feature to seize: those highly correlated with the class, and simultaneously indispensable to

compose a consistent set. When anlyzing all features f ∈ F̃ , since it is suitable to remove

f with small correlation with the class and poor consistency contribution, the main goal

will be to remove feature f = argmin
f∈F̃

ϑ (f, C).

6.3 Sdcc with a sliding window method

The algorithm of LCC evaluates only one feature in each iteration to decide whether or

not it will be removed. On the contrary, the algorithm of SDCC evaluates all the features

to determine which should be removed. SDCC is more accurate than LCC in terms of

Bayesian risk, but LCC is faster than SDCC. The algorithm of the SDCC with a sliding

window technique (SwCfs) can be placed at an intermediate point between LCC and SDCC.

SwCfs uses a windows to determine the number of features to be evaluated in each iteration.

The size of the windows can be one feature, as in LCC, all the features as in SDCC, or any

values in between.

Let F be the entire feature set and δ be the upper bound of the permissible Bayesian
risk of the output sets. Our proposed algorithm follows the following rules:

1.F is converted into F̃ by sorting the features in an incremental order of their symmetrical

uncertainty score SU(fi;C).

2. The maximum set {f1, . . . , fl} with brF \ {f1, . . . ,l } < δ is identified and removed by

using the binary search.

3. The window size is computed in each iteration.

The steepest-descent algorithm is performed using the interelevance score IR by

evaluating only the features included in the current window and taking into account

the following rules with fi ∈ F̃ :

96

Rule 1. If Br(F̃ \ {fi}) = Br(F̃) then fi it is immediately removed from F̃ (line 13).

Rule 2. If Br(F̃ \ {fi}) > δ, then fi will never be evaluated again and never removed

from F̃ (line 12).

Rule 3. Otherwise, the feature fi that minimizes IR is removed from F̃ under the

condition of IR(F̃ ; f ;C) > IR(F̃ ;∅;C) holds. The algorithm stops when all features

have been tested and none of the features can be removed any more.

6.4 Simulated-Annealing-based LCC

To the best of our knowledge, SUPER-LCC is one of the fastest and the most accurate

feature selection algorithm based on consistency measures. However, SUPER-LCC uses

a parameter δ that is critical for the accuracy of outputs, and it is a bothersome job to

determine appropriate δ values. In fact, researchers often choose δ = 0 when running

SUPER-LCC, since the optimal value for δ it is unknown a priori. Simulated-Annealing-

based LCC (SALCC) solves this problem by leveraging the simulated annealing search to

find a suitable value for δ for SUPER-LCC algorithm.

The SALCC algorithm is as follows.

1. First, we rank the features in F in an increasing order of Symmetrical Uncertainty (SU)

values.

2. Second, we find the border feature fl such that l is maximum and

Br(F \ {fl, . . . , fn};C) = Br(F ;C)

and fix F̃ = {fl+1, . . . , fn}. This is easily and efficiently achieved by running the first

iteration of SUPER LCC described in [56].

At this point, we reduce the search space from F = {f1, . . . , fn} to F̃ = {fl, . . . , fn}.

3. We run the Simulated Annealing algorithm shown in Section 3.1 by using the proposed

target and neighbour generator functions.

6.5 MRMR+ and CFS+

The inefficiency of the current implementation of MRMR is due to duplication and redun-

dancy when computing mutual information: the algorithm computes the mutual informa-

tion values for the same features smore than one times. Also, it executes unnecessary

computation of mutual information. To overcome this issues, we propose a new algorithm,

named MRMR+, that improves the efficiency of the original MRMR significantly by solving

the problems of duplication and redundancy.

97

To solve these problems, we introduce a two-dimensional array A[][] to store pairs

of a feature f and a sum
∑j

i=1 I(f, f̄i). For a feature f , if j is the maximum integer

such that s =
∑j

i=1 I(f, f̄i) has been computed, the pair of (f, s) is an element of the

array A[j][]. When the value of s′ =
∑j′

i=1 I(f, f̄i) is necessary for j′ > j, we have

only to compute
∑j′

i=j+1 I(f, f̄i), because s′ = s+
∑j′

i=j+1 I(f, f̄i) and (f, s) is stored in

A[j][]. Thus, we can avoid the duplicated computation of mutual information. To solve the

problem of redundancy, we skip computing I(f, f̄j+1), . . . , I(f, f̄k), whenever I(f, C)−
2α
k

∑j
i=1 I(f, f̄i) becomes no greater than the current maximum m∗ of MIDα(f, S). The

element (f,
∑j

i=1 I(f, f̄i)) is stored in A[j][].

We realized that the problems of duplication and redundancy are not proper of MRMR

algorithm. Most of the algorithms, which use greedy searches suffer from the same

problems. As an instance, the same technique as stated above can be applied to the

algorithm of Correlation-based Feature Selection (CFS).

The CFS evaluation function measures a set of features on the basis of: ”A good feature

subset contains features highly correlated with the class variable, yet uncorrelated to each

other” [22]. The following determines the Cfs evaluation function when S contains k

features.

Cfs(S) =
k ∗ Cs(S)√

k + k(k − 1)Rs(S)
, (6.2)

where Cs(S) and Rs(S) denote the average of the correlation between the features in

S and the class variable, and the average of the correlation between each possible pair

of features in S, respectively. Cs(S) and Rs(S) in Cfs(S) are computed by using the

Symmetrical Uncertainty correlation function. CFS can be used with a wide variety of

search strategies. However, in our review of the literature, the basic greedy forward search

is preferred to relieve the computational cost. Another main difference between CFS and

MRMR is that the stopping criteria of MRMR is fixed by the number of features to select,

while CFS stops when there is no improvement of the current CFS score.

6.6 Improvement of GBG algorithm: GBC+

In Chapter 5, we present some improvements to the GBC algorithm in terms of efficiency

and accuracy. First, we replace MRMR used in GBC to filter the data in the first step by

MRMR+. In our experiments presented in Chapter 4, it is exhibited that MRMR+ is around

30 to 40 times faster than MRMR. Second, the initialization phase in GBC is made totally at

random. In GBC+, we have invented a mechanism to create solutions closer to the optimal

by taking into account the MRMR+ score computed in the previous phase of the algorithm.

This allows to build an initial population of solutions can lead us to faster convergence.

Third, the intensification process in GBC is also made totally at random. In GBC+, we

98

make use of the SVM scores to intensify solutions with higher accuracy. According to

experiments, this step made GBC+ superior to GBC in terms of accuracy.

99

Chapter 7

Conclusion

The main purpose of this research is to build feature selection algorithms that can be applied

to high-dimensional data. Most of the algorithms we provide in this research are fast and

very accurate. We first, propose the FASDD and ASDCC algorithms, which are an improved

version of the SDCC algorithm. SDCC have two main problems: i) the only information

used to select features is the bayesian risk measurement, and ii) even when SDCC reach

the lower-bound value for the bayesian risk, it still continuous evaluating hoping a lower

value will be found. Both of the FSDCC and ASDCC solve such problems. Afterwards,

we propose in this research the SWSDCC, which leverage the binary search to remove a

huge mass of irrelevant features in some seconds. In addition, SWSDCC uses a mobile

window to intensify the search in the more promision region of the search space. This

allows to avoid many evaluations and to maximize the collective relevance in the returned

solution. SWSDCC is considered an improved version of LCC and SDCC algorithms. Then,

we propose the SALCC, which is an improvement of the SUPERLCC algorithm. The basic

idea underlying in SALCC is that the threshold δ, which is the maximum inconsistency

rate allowed for the final solution, plays an important role to improve the selected set. We

discovered that varying the value of δ the quality of the solution can drastically change.

Therefore, we use the simulated annealing algorithm to search across the domain of the

value of δ. At the same time we use a wrapper approach to investigate the variation of the

quality of the solutions why we vary δ. SALCC is fast, and highly accurate.

We also offer some contributions in the scope of the pairwise-evaluation-based algo-

rithms. We propose the CFS+ and the MRMR+ algorithms, which are three and fourteen

times faster that their original version respectively. CFS+ and MRMR+ return the same so-

lution as their original algorithm. However, they are much faster, since they were provided

of a mechanism that can avoid many unnecessary evaluations that harms the efficiency of

their original versions.

Finally, we propose an improvement of the hybrid GBC algorithm, which is one of the

most accurate feature selection algorithms ever created. Although GBC is very accurate,

100

we detect some weak points on its design that makes this algorithm extremely slow. Our

proposal, namely GBC+ is around four time faster than GBC and also is more accurate.

We run experiments in fourteen datasets and GBC+ always was better or equal to GBC in

terms of accuracy.

101

Acknowledgements

I would like to express my very great appreciation to my advisor Professor Dr. Yoshihiro

Shin for his professional and valuable guidance during the planning and development of

this research. At the same time, I also deeply appreciative the Dean Dr. Nishimura for his

extremely precious help and comprehension during these years at the University of Hyogo.

I would also like to thank several Professors who helped me during my research and living

in Japan: Dr. Tetsuji Kuboyama, Dr. Takako Hashimoto and Dr. Basabi Chakraborty. I

would also thank the members in my University, specially the faculty members and the

staff at the secretarial office for their patience and support.

102

Bibliography

[1] Abdallah M. and Elkeelany O. A survey on data acquisition systems daq. In 2009
International Conference on Computing, Engineering and Information, pages 240–

243, April 2009.

[2] Almseidin M., Alzubi M., Kovacs S., and Alkasassbeh M. Evaluation of machine

learning algorithms for intrusion detection system. In 2017 IEEE 15th International
Symposium on Intelligent Systems and Informatics (SISY), 277-282, 2017.

[3] Hussein Almuallim and Thomas G. Dietterich. Efficient algorithms for identifying

relevant features. In In Proceedings of the Ninth Canadian Conference on Artificial
Intelligence, pages 38–45. Morgan Kaufmann, 1992.

[4] Hala M. Alshamlan, Ghada H. Badr, and Yousef A. Alohali. Genetic bee colony

(gbc) algorithm: A new gene selection method for microarray cancer classification.

Computational Biology and Chemistry, 56:49-60, 2015.

[5] Hala M. Alshamlan, Ghada Hany Badr, and Yousef AlOhali. mrmr-abc: A hybrid

gene selection algorithm for cancer classification using microarray gene expression

profiling. In BioMed research international, 76-92, 2015.

[6] Angela Angeleska, Nataa Jonoska, and Masahico Saito. Rewriting rule chains

modeling dna rearrangement pathways. Theor. Comput. Sci., 454:5–22, October

2012.

[7] Taiwo Oladipupo Ayodele. Types of machine learning algorithms. In New advances
in machine learning. InTech, 98-112, 2010.

[8] Rivest Ronald Blum Avrib. Training a 3-node neural network is np-complete. Neural
Networks, 5(1):117 – 127, 1992.

[9] Breiman L., Friedman J., Olshen R., and Stone C. Classification and Regression
Trees. Wadsworth and Brooks, Monterey, CA, 112-122, 1984.

[10] Leo Wang and Kit Cheung. Classification Approaches for Microarray Gene Expres-
sion Data Analysis, pages 73–85. Humana Press, Totowa, NJ, 2012.

103

[11] Thiago F. Coves and Eduardo R. Hruschka. Towards improving cluster-based feature

selection with a simplified silhouette filter. Information Sciences, 181(18):3766 –

3782, 2011.

[12] Dash M. Feature selection via set cover. In Proceedings 1997 IEEE Knowledge and
Data Engineering Exchange Workshop, pages 165–171, Nov 1997.

[13] Dash M. and Liu H. Feature selection for classification. Intelligent Data Analysis,

1(1):131 – 156, 1997.

[14] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.

[15] Ding C. and Peng. H. Minimum redundancy feature selection from microarray gene

expression data. In Computational Systems Bioinformatics. CSB2003. Proceedings
of the 2003 IEEE Bioinformatics Conference. CSB2003, pages 523–528, Aug 2003.

[16] Ali El Akadi, Aouatif Amine, Abdeljalil El Ouardighi, and Driss Aboutajdine. A

two-stage gene selection scheme utilizing mrmr filter and ga wrapper. Knowledge
and Information Systems, 26(3):487–500, Mar 2011.

[17] Elyasigomari V., Lee D.A., Screen H.R.C., and Shaheed M.H. Development of a

two-stage gene selection method that incorporates a novel hybrid approach using the

cuckoo optimization algorithm and harmony search for cancer classification. Journal
of Biomedical Informatics, 67:11 – 20, 2017.

[18] Quanquan Gu, Zhenhui Li, and Jiawei Han. Generalized fisher score for feature

selection. In Proceedings of the Twenty-Seventh Conference on Uncertainty in
Artificial Intelligence, UAI’11, pages 266–273, Arlington, Virginia, United States,

2011. AUAI Press.

[19] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.

J. Mach. Learn. Res., 3:1157–1182, March 2003.

[20] Isabelle Guyon, Steve Gunn, Asa Ben Hur, and Gideon Dror. Result analysis of

the nips 2003 feature selection challenge. In Proceedings of the 17th International
Conference on Neural Information Processing Systems, NIPS’04, pages 545–552,

Cambridge, MA, USA, 2004. MIT Press.

[21] Mark A Hall. Correlation-based feature selection for machine learning. PhD thesis,

The University of Waikato, 1999.

[22] Mark A. Hall. Correlation-based feature selection for discrete and numeric class

machine learning. In Proceedings of the Seventeenth International Conference on

104

Machine Learning, ICML ’00, pages 359–366, San Francisco, CA, USA, 2000.

Morgan Kaufmann Publishers Inc.

[23] Xiaofei He, Deng Cai, and Partha Niyogi. Laplacian score for feature selection. In

Y. Weiss, B. Schölkopf, and J. C. Platt, editors, Advances in Neural Information
Processing Systems 18, pages 507–514. MIT Press, 2006.

[24] Mdlina Hodorog and Josef Schicho. A regularization approach for estimating the

type of a plane curve singularity. Theoretical Computer Science, 479:99 – 119, 2013.

Symbolic-Numerical Algorithms.

[25] Hui-Huang Hsu, Cheng-Wei Hsieh, and Ming-Da Lu. Hybrid feature selection by

combining filters and wrappers. Expert Systems with Applications, 38(7):8144 –

8150, 2011.

[26] Jianglin Huang, Yan-Fu Li, and Min Xie. An empirical analysis of data preprocessing

for machine learning-based software cost estimation. Information and Software
Technology, 67:108 – 127, 2015.

[27] Aleks Jakulin, Ivan Bratko, Dragica Smrke, Janez Demšar, and Blaž Zupan. Attribute

interactions in medical data analysis. In Michel Dojat, Elpida T. Keravnou, and Pedro

Barahona, editors, Artificial Intelligence in Medicine, 229–238, 2003.

[28] Dervis Karaboga and Bahriye Akay. A comparative study of artificial bee colony

algorithm. Applied Mathematics and Computation, 214(1):108 – 132, 2009.

[29] Kenji Kira and Larry A. Rendell. A practical approach to feature selection. In Derek

Sleeman and Edwards, editors, Machine Learning Proceedings 1992, pages 249 –

256. Morgan Kaufmann, San Francisco (CA), 1992.

[30] J. Kittler, P. Somol, and P. Pudil. Fast branch bound algorithms for optimal feature

selection. IEEE Transactions on Pattern Analysis Machine Intelligence, 26:900–912,

2004.

[31] Ron Kohavi and Chia hsin Li. Oblivious decision trees, graphs, and top-down

pruning. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, pages 1071–1077. Morgan Kaufmann, 1995.

[32] Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial
Intelligence, 97(1):273 – 324, 1997. Relevance.

[33] Igor Kononenko. Estimating attributes: Analysis and extensions of relief. In

Francesco Bergadano and Luc De Raedt, editors, Machine Learning: ECML-94,

pages 171–182, 1994.

105

[34] Konstantina Kourou, Themis P. Exarchos, Konstantinos P. Exarchos, Michalis V.

Karamouzis, and Dimitrios I. Fotiadis. Machine learning applications in cancer

prognosis and prediction. Computational and Structural Biotechnology Journal, 13:8

– 17, 2015.

[35] Pat Langley and Stephanie Sage. Induction of selective bayesian classifiers. In

Proceedings of the Tenth International Conference on Uncertainty in Artificial Intelli-
gence, UAI’94, pages 399–406, San Francisco, CA, USA, 1994. Morgan Kaufmann

Publishers Inc.

[36] Thomas W Lee and Terence R Mitchell. An alternative approach: The unfolding

model of voluntary employee turnover. Academy of Management Review, 19(1):51–

89, 1994.

[37] Wan li Xiang and Mei qing An. An efficient and robust artificial bee colony algorithm

for numerical optimization. Computers and Operations Research, 40(5):1256 – 1265,

2013.

[38] Chuan Liu, Wenyong Wang, Qiang Zhao, Xiaoming Shen, and Martin Konan. A

new feature selection method based on a validity index of feature subset. Pattern
Recognition Letters, 92:1 – 8, 2017.

[39] Huan Liu and Rudy Setiono. A probabilistic approach to feature selection - a filter

solution. In Proceedings of the Thirteenth International Conference on International
Conference on Machine Learning, ICML’96, pages 319–327, San Francisco, CA,

USA, 1996. Morgan Kaufmann Publishers Inc.

[40] Elisabetta De Maria, Franois Fages, Aurlien Rizk, and Sylvain Soliman. Design,

optimization and predictions of a coupled model of the cell cycle, circadian clock,

dna repair system, irinotecan metabolism and exposure control under temporal logic

constraints. Theoretical Computer Science, 412(21):2108 – 2127, 2011. Selected

Papers from the 7th International Conference on Computational Methods in Systems

Biology.

[41] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1

edition, 1997.

[42] Molina, L. C. Belanche, L. and Nebot A. Feature selection algorithms: a survey and

experimental evaluation. In 2002 IEEE International Conference on Data Mining,
2002. Proceedings., pages 306–313, 2002.

[43] Narendra P. M. and Fukunaga K. A branch and bound algorithm for feature subset

selection. IEEE Trans. Comput., 26(9):917–922, September 1977.

106

[44] Cheng Soon Ong. Towards open machine learning: Mloss.org and mldata.org. In 2011
IEEE International Workshop on Open-source Software for Scientific Computation,

pages 12–12, October 2011.

[45] Hanchuan Peng, Fuhui Long, and C. Ding. Feature selection based on mutual

information criteria of max-dependency, max-relevance, and min-redundancy. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(8):1226–1238, Aug

2005.

[46] Adrian Pino Angulo. Gene selection for microarray cancer data classification by a

novel rule-based algorithm. Information, 9(1):6, Jan 2018.

[47] Adrian Pino Angulo and Kilho Shin. Fast and accurate steepest-descent consistency-

constrained algorithms for feature selection. In Panos Pardalos, Mario Pavone,

Giovanni Maria Farinella, and Vincenzo Cutello, editors, Machine Learning, Opti-
mization, and Big Data, pages 293–305, Cham, 2015. Springer International Publish-

ing.

[48] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.

Numerical Recipes in C (2Nd Ed.): The Art of Scientific Computing. Cambridge

University Press, New York, NY, USA, 1992.

[49] Quinlan., J.R. Induction of decision trees. Machine Learning, 1(1):81–106, Mar

1986.

[50] Quinlan, J.R. Induction of decision trees. Machine Learning, 1(1):81–106, Mar

1986.

[51] Quinlan J.R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1993.

[52] Gordon Thomas Rohrmair and Gavin Lowe. Using data-independence in the analysis

of intrusion detection systems. Theor. Comput. Sci., 340(1):82–101, June 2005.

[53] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.

[54] Sharma N. and Saroha K. Study of dimension reduction methodologies in data

mining. In International Conference on Computing, Communication Automation,

pages 133–137, May 2015.

[55] Weiguo Sheng and Xiaohui Liu. A hybrid algorithm for k-medoid clustering of large

data sets. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE
Cat. No.04TH8753), volume 1, pages 77–82 Vol.1, June 2004.

107

[56] Shin K., Kuboyama T., Hashimoto T., and Shepard D. Super-cwc and super-lcc:

Super fast feature selection algorithms. In 2015 IEEE International Conference on
Big Data (Big Data), pages 1–7, Oct 2015.

[57] Shin K. and Miyazaki S. A fast and accurate feature selection algorithm based on

binary consistency measure. Comput. Intell., 32(4):646–667, November 2016.

[58] Kilho Shin and Xian Ming Xu. Consistency-based feature selection. In Juan D.

Velásquez, Sebastián A. Rı́os, Robert J. Howlett, and Lakhmi C. Jain, editors,

Knowledge-Based and Intelligent Information and Engineering Systems, pages 342–

350, 2009.

[59] Kilho S. and Xian Ming X. A consistency-constrained feature selection algorithm

with the steepest descent method. In Vicenç Torra, Yasuo Narukawa, and Masahiro

Inuiguchi, editors, Modeling Decisions for Artificial Intelligence, pages 338–350,

2009.

[60] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml:

Networked science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

[61] Guangtao Wang, Qinbao Song, Baowen Xu, and Yuming Zhou. Selecting feature

subset for high dimensional data via the propositional foil rules. Pattern Recognition,

46(1):199 – 214, 2013.

[62] Witten I.H., Frank E., Hall , and Pal C.J. Data Mining: Practical Machine Learning
Tools and Techniques. The Morgan Kaufmann Series in Data Management Systems.

Elsevier Science, 2016.

[63] Marcin Wojnarski. Rsctc’2010 discovery challenge: Mining dna microarray data for

medical diagnosis and treatment. In Rough Sets and Current Trends in Computing,

pages 4–19, 2010.

[64] Marcin Wojnarski, Andrzej Janusz, Hung Son Nguyen, Jan Bazan, ChuanJiang Luo,

Ze Chen, Feng Hu, Guoyin Wang, Lihe Guan, Huan Luo, Juan Gao, Yuanxia Shen,

Vladimir Nikulin, Tian-Hsiang Huang, Geoffrey J. McLachlan, Matko Bošnjak, and

Dragan Gamberger. Rsctc’2010 discovery challenge: Mining dna microarray data for

medical diagnosis and treatment. In Marcin Szczuka, Marzena Kryszkiewicz, Sheela

Ramanna, Richard Jensen, and Qinghua Hu, editors, Rough Sets and Current Trends
in Computing, pages 4–19, 2010.

[65] Marcin Wojnarski, Sebastian Stawicki, and Piotr Wojnarowski. TunedIT.org: System

for automated evaluation of algorithms in repeatable experiments. In Rough Sets and

108

Current Trends in Computing (RSCTC), volume 6086 of Lecture Notes in Artificial
Intelligence (LNAI), pages 20–29. Springer, 2010.

[66] Eric P. Xing, Michael I. Jordan, and Richard M. Karp. Feature selection for high-

dimensional genomic microarray data. In Proceedings of the Eighteenth International
Conference on Machine Learning, ICML ’01, pages 601–608, San Francisco, CA,

USA, 2001. Morgan Kaufmann Publishers Inc.

[67] Lei Yu and Huan Liu. Feature selection for high-dimensional data: A fast correlation-

based filter solution. In T. Fawcett and N. Mishra, editors, Proceedings, Twentieth
International Conference on Machine Learning, volume 2, pages 856–863. Morgan

Kaufmann Publishers Inc., 2003.

[68] Zheng Zhao and Huan Liu. Searching for interacting features. In Proceedings of
the 20th International Joint Conference on Artifical Intelligence, IJCAI’07, pages

1156–1161, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[69] Linling Zhu, Linsong Miao, and Daoqiang Zhang. Iterative laplacian score for feature

selection. In Cheng-Lin Liu, Changshui Zhang, and Liang Wang, editors, Pattern
Recognition, pages 80–87, 2012.

109

