
Families of canonical curves with genus 5

and the degenerations of the syzygies (II)

Takeshi Usa

Dept. of Math. Univ. of Hyogo ∗

Abstract

We consider a smooth affine curve B in the Hilbert scheme Hilb
A(m)
P of P = P(C)4 associated with

a Hilbert polynomial A(m) = 8m − 4, which includes all the canonical curves (i.e. non-singular

projective and non-hyperelliptic curves of g ≥ 3 embedded into projective spaces by their complete

canonical linear systems) of genus 5 in its universal family. Assume that from the universal family

of Hilb
A(m)
P , the curve B induces a family f : X → B of canonical curves with genus 5 and all the

closed fibers are non-trigonal ones except only one trigonal closed fiber over a closed point b0 ∈ B.

In this article, we give a proof for an affirmative result on Conjecture 2.4 of [10], which claims that

the structure of OB-module T 1,1
3 describing the first syzygies in degree 3 of the fibers can detect the

transversality of the intersection at the point b0 by the base curve B and a smooth branch of the

divisor corresponding to the trigonal ones.
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§0 Introduction.

We slightly improved the results of [9] in the article [11] and found a technique to analyze the degeneration

of q-th syzygies in any degree m by studying a coherent sheaf T 1,q
m on the base scheme, but at the lowest

level on “q” (cf. Theorem 1.7 in [10], or [11]). In principle, this technique can be applied to any flat

family of arithmetic D2 closed subschemes with a limit fiber X(b0) which is a general projective scheme

having the properties : H0(X(b0), OX(b0))
∼= C and dimX(b0) > 0. However, as our first case, we want to

clarify essential difficulties in studying degeneration of syzygies. Thus we restricted ourselves to the case

that the limit fiber X(b0) is a smooth projective variety with the degenerating syzygies, e.g. a trigonal

canonical curve of genus 5. In the previous article [10], we gave a preparatory study on the degeneration

of syzygies for a flat family of canonical curves of genus 5 over a smooth affine curve and presented

Conjecture 2.4 in [10].
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For more precise descrption on this conjecture, let us consider the Hilbert scheme H = Hilb
A(m)
P of

P = P(C)4 associated with a Hilbert polynomial A(m) = 8m − 4. The universal family U → H of H
includes all the canonical curves of genus 5. Take a trigonal canonical curve X ⊆ P and a closed point

b0 = [X] ∈ Hilb
A(m)
P corresponding to the curve X. Then b0 is a smooth point of H. Set D to be a divisor

which is a closure of the set of all the closed points in H corresponding to trigonal canonical curves with

genus 5 in P . The divisor D has a (analytic local) smooth branch D0 at the point b0. Then the normal

direction ND0/H,b0 of the analytic local divisor D0 in H is described by H1(NV ⊗ IX/V ), where V is a

unique cubic surface including the curve X. We take a locally closed affine smooth curve B in H with

the property B ∩ D = {b0} by removing other finite closed points of B ∩ D from B if it is necessary.

Then we obtain a flat and projective family f : X = U ×H B → B of canonical curves with g = 5 over

the curve B. For the projection morphism π : P × B → B, we consider the OB-module structure of

a higher direct image sheaf T p,q
m = Rpπ∗(Ω

q
P×B/B ⊗ IX(m)) for the case p = 1, q = 1, and m = 3,

which describes the degeneration of the first syzygies in degree m = 3. Then Supp(T 1,1
3 ) = {b0} and

(T 1,1
3 ) ⊗ k(b0) ∼= k(b0)

⊗2. Since the tangent space ΘH,b0 of H at the point b0 is described by H0(NX),

the curve B determines a normal vector field σ ∈ H0(NX) as its tangent vector in ΘH,b0 .

The natural map ΘH,b0 → ND0/H,b0 corresponds to the composition map τ : H0(NX) → H0(NV ⊗
OX) → H1(NV ⊗ IX/V ). Conjecture 2.4 in [10] insists that if τ(σ) �= 0, then the sheaf T 1,1

3 itself is

isomorphic to k(b0)
⊕2.

In this article, we give a proof of this conjecture via infinitesimal study of embedded deformation of

the curve X in P . Thus, this work might be considered as a partial review of classical works [4], [5], and

[6] from the view point of infinitesimal study on the Hilbert schemes.

We refer fundamentally to [10], [2] or [1], and often use the terminology and the results in [10], or in

[2] without mentioning except somethings important.

§1 Main results.

On Conjecture 2.4 in [10], we have an affirmative result as follows.

Main Theorem 1.1 Since Supp(T 1,1
3 ) = {b0} and T 1,1

3 ⊗k(b0) ∼= k(b0)
⊕2, we set T 1,1

3
∼= OB,b0/(t

k1)⊕
OB,b0/(t

k2) by using a regular parameter “t” of OB,b0 and a map τ to be a composition map H0(NX) →
H0(NV ⊗ OX) → H1(NV ⊗ IX/V ), where V denotes a unique non-singular cubic surface in P = P

4(C)

which includes the trigonal curve X. Then, k1 = k2 = 1 if and only if τ(σ) �= 0 ∈ H1(NV ⊗ IX/V ) ∼=
ND0/H,b0 .

Proof. In Main Theorem 1.1 above, it is rather easy to show the “only if” part that τ(σ) = 0 implies

that k1 ≥ 2 and k2 ≥ 2. The condition τ(σ) = 0 implies that the section σ can be lifted to a section

σ̃ ∈ H0(N(X,V )), which determines a tangent vector vσ̃ ∈ ΘF ,([X],[V ]) of the flag Hilbert scheme F at the

closed point ([X], [V ]). Since the flag Hilbert scheme F is a projective scheme and is smooth around the

closed point ([X], [V ]), we can easily find a smooth affine curve C passing through the point ([X], [V ]) in

the direction vσ̃. By the universality of the flag Hilbert scheme, we have a flag-family f ′ : X′ → C and

g′ : V′ → C which are compatible with the inclusion X′ ⊆ V′. Replacing the curve C by a sufficiently
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small open set, we may assume that all the fibers of f ′ are smooth and all the fibers of g′ are irreducible

surfaces of degree 3. Hence all the fibers of f ′ are trigonal canonical curves of genus 5, and therefore

the family f ′ : X′ → C is a Betti constant family. Thus, by restricting this flag family f ′ : X′ → C

and g′ : V′ → C to the first infinitesimal neighborhood C1 of the closed point ([X], [V ]), we obtain an

infinitesimal flag family f ′ : X′ → C1 and g′ : V′ → C1 which are compatible with the inclusion X′ ⊆ V′,
which is isomorphic to the flag family induced from the section σ̃ ∈ H0(N(X,V )). Since the section σ̃ is

a lift of the section σ ∈ H0(NX), the infinitesimal families f ′ : X′ → C1 and f : X → B1 are isomorphic

with each other. Then, the Betti constancy of the family f ′ : X′ → C implies that of the infinitesimal

family f : X → B1. This shows that the module T 1,1
3 ⊗ OB1

∼= T
1,1

3,1 is an OB1
-(locally) free module

OB1
⊕OB1

, namely T 1,1
3

∼= OB,b0/(t
k1)⊕OB,b0/(t

k2) with k1, k2 ≥ 2.

On the other hand, the converse direction, namely to show that τ(σ) �= 0 implies k1 = k2 = 1 is a

rather troublesome part in our proof. Now we recall our results in [8]. From the first row in the diagram

(#-3) of OP×B1
-modules in [8], namely the sequence :

0 −−−−→ IX
×ε−−−−→ IX −−−−→ IX −−−−→ 0 (#-1)

with tensoring the OP×B1
-locally free module Ω1

P×B1/B1
(3), we get a long exact sequence :

0 → T 0,1
3 (b0) → (T

0,1

3,1)b0
λ→ T 0,1

3 (b0)
obσ→ T 1,1

3 (b0)
μ→ (T

1,1

3,1)b0 → T 1,1
3 (b0) → 0. (#-2)

Following the principle of Theorem 1.4 in [10], it is enough to show the surjectivity of the obstruction map

obσ in the sequence (#-2). From the sequence (#-1) and a canonical injective homomorphism IV → IX

of sheaves, we take a fiber product sheaf IX×IX IV , which induces a natural exact commutative diagram:

0 0
�⏐⏐

�⏐⏐

IX/V IX/V�⏐⏐
�⏐⏐

0 −−−−→ IX
×ε−−−−→
α1

IX −−−−→
β1

IX −−−−→ 0
∥∥∥ s

�⏐⏐
�⏐⏐s′′=incl.

0 −−−−→ IX −−−−→
α2

IX ×IX IV −−−−→
β2

IV −−−−→ 0
�⏐⏐

�⏐⏐

0 0.

(#-3)

Tensoring an OP×B1
-locally free sheaf Ω1

P×B1/B1
(3) to the diagram (#-3) above, we have:
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0 −−−−→ H0(IV ⊗ Ω1
P (3))

∼=−−−−→ H0(IX ⊗ Ω1
P (3)) = T 0,1

3 (b0) −−−−→ H0(IX/V ⊗ Ω1
P (3)) = 0

δII

⏐⏐�
⏐⏐�δI :=obσ

H1(IX ⊗ Ω1
P (3)) H1(IX ⊗ Ω1

P (3)) = T 1,1
3 (b0),

(#-4)

which implies Coker(obσ) ∼= Coker(δII). Here, to see H0(IX/V ⊗Ω1
P (3)) = 0, we only need to recall the

facts that H0(IX/V ⊗ Ω1
P (3)) ⊆ ⊕H0(IX/V (2)), the surface V is arithmetically Cohen-Macaulay, hence

H1(IV (∗)) = 0, and the surface V is a quadric hull of X, namely H0(IV (2)) ∼= H0(IX(2)), and therefore

H0(IX/V (2)) = 0.

As the next step, starting from the sequence 0 → IX → IX ×IX IV → IV → 0 in the diagram (#-3),

we set the OP×B1
-submodule M to be Coker[IV → IX ×IX IV ] via IV ⊂ IX ⊂ IX ×IX IV and obtain an

exact commutative diagram:

0 0
�⏐⏐

�⏐⏐

0 −−−−→ IX/V
α3−−−−→ M

β3−−−−→ IV −−−−→ 0

r′
�⏐⏐

�⏐⏐r

∥∥∥

0 −−−−→ IX −−−−→
α2

IX ×IX IV −−−−→
β2

IV −−−−→ 0.

incl.=u′
�⏐⏐

�⏐⏐u

IV IV
�⏐⏐

�⏐⏐

0 0

(#-5)

Now we have to make a remark that all the modules in (#-5) except the module IX×IX IV are annihilated

by ×ε, and therefore they are OP -modules via OP
∼= OP×B1

/εOP×B1
. Again tensoring the OP×B1

-locally

free sheaf Ω1
P×B1/B1

(3) to the diagram (#-5), we get :

H0(IV ⊗ Ω1
P (3)) H0(IV ⊗ Ω1

P (3))

δII

⏐⏐�
⏐⏐�δIII

0 = H1(IV ⊗ Ω1
P (3)) −−−−→ H1(IX ⊗ Ω1

P (3))
βX/V−−−−→∼=

H1(IX/V ⊗ Ω1
P (3)) −−−−→ 0

(#-6)

This shows that Coker(δII) ∼= Coker(δIII). Here, the surjectivity of the map βX/V is ensured by the fact

that the surface V is a homological shell of X. To see H1(IV ⊗Ω1
P (3)) = 0, we have only to remind that

the surface V is arithmetically Cohen-Macaulay and its ideal is generated only by quadric equations.

From the construction of the module M , we can see that the module M is a submodule of IV ·1⊕OV ·ε
and has a stalk-wise expression:
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M = {(a, cε) ∈ IV · 1⊕OV · ε | a ∈ IV , c ∈ OV , s.t. c = −σ|V (a) in OX}. (#-7)

Then, a homomorphism of sheaves g : I2V 
 x �→ (x · 1, 0 · ε) ∈ IV · 1⊕ OV · ε in a stalk-wise expression

has its image in M , which induces an exact commutative diagram of OP -modules:

0 0
�⏐⏐

�⏐⏐

0 −−−−→ IX/V
α4−−−−→ M

β4−−−−→ IV /I
2
V −−−−→ 0

∥∥∥ h

�⏐⏐
�⏐⏐h′′

0 −−−−→ IX/V −−−−→
α3

M −−−−→
β3

IV −−−−→ 0.

g

�⏐⏐
�⏐⏐g′′

I2V I2V�⏐⏐
�⏐⏐

0 0

(#-8)

By tensoring Ω1
P (3) to the diagram (#-8) above, we have

0 = H0(Ω1
P (3)⊗ I2V ) −−−−→ H0(Ω1

P (3)⊗ IV )
∼=−−−−→ H0(Ω1

P (3)⊗ IV /I
2
V ) −−−−→ H1(Ω1

P (3)⊗ I2V ) = 0

δIII

⏐⏐�
⏐⏐�δIV

H1(Ω1
P (3)⊗ IX/V ) H1(Ω1

P (3)⊗ IX/V )⏐⏐�

H1(Ω1
P (3)⊗M).

(#-9)

By Claim 1.5 and Claim 1.8 below, we see that Coker(δIII) ∼= Coker(δIV ) and Coker(δIV ) ⊆ H1(Ω1
P (3)⊗

M). Then, Claim 1.9 shows that H1(Ω1
P (3) ⊗ M) = 0, which implies Coker(obσ) ∼= Coker(δIV ) = 0,

namely the surjectivity of the map obσ.

Claim 1.2 For the conormal bundle IV /I
2
V of the surface V , we have a short exact sequence:

0 ←−−−− IV /I
2
V ←−−−− OV (−2)⊕3 ←−−−− OV (−5ξ − 3ε) ←−−−− 0. (#-10)

Proof. Since the surface V is a Hirzebruch surface F1, namely a one point blow-up of P
2, which is

arithmetically Cohen-Macaulay and a variety of minimal degree in P
4 = Proj(S), whose homogeneous

ideal IV is generated by three quadric equations {G1, G2, G3}, we have a short exact sequence of the

sheaves :

0 ←−−−− IV ←−−−− OP (−2)⊕3 ←−−−− OP (−3)⊕2 ←−−−− 0 (#-11)
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from a minimal graded S-free resolution of IV . Tensoring OV to the sequence (#-11) and putting

L := Im[OV (−3)⊕2 → OV (−2)⊕3], we see that the sheaf L is a line bundle on V and c1(L) = −5ξ − 3ε

by the reason that OV (1) ∼= OV (2ξ + ε) and det(IV /I
2
V ) = OV (−7ξ − 3ε).

Claim 1.3

H0(IV (2))
∼=−−−−→ H0((IV /I

2
V )(2)), (#-12)

Proof. Compare the two exact sequences (#-10) and (#-11) after tensoring OP (2).

0 ←−−−− IV (2) ←−−−− O⊕3
P ←−−−− OP (−1)⊕2 ←−−−− 0

⏐⏐�
⏐⏐�

⏐⏐�

0 ←−−−− (IV /I
2
V )(2) ←−−−− O⊕3

V ←−−−− OV (−ξ − ε) ←−−−− 0.

(#-13)

Take the cohomologies of the sheaves in (#-13) and see the result (#-12) from the exact commutative

diagram:

0 = H1(OP (−1))⊕2 ←−−−− H0(IV (2))
∼=←−−−− H0(OP )

⊕3 ←−−−− H0(OP (−1))⊕2 = 0
⏐⏐�

⏐⏐�∼=

0 = H1(OV (−ξ − ε)) ←−−−− H0((IV /I
2
V )(2)) ←−−−−∼=

H0(OV )
⊕3 ←−−−− H0(OV (−ξ − ε)) = 0.

(#-14)

Claim 1.4

H0(I2V (2)) = H1(I2V (2)) = 0 (#-15)

Proof. Consider the exact commutative diagram of sheaves :

0 −−−−→ IV (2) −−−−→ OP (2) −−−−→ OV (2) −−−−→ 0
⏐⏐�

⏐⏐�
⏐⏐�

0 −−−−→ (IV /I
2
V )(2) −−−−→ (OP /I

2
V )(2) −−−−→ OV (2) −−−−→ 0.

(#-16)

Taking their cohomologies with using Claim 1.3 :

0 −−−−→ H0(IV (2)) −−−−→ H0(OP (2)) −−−−→ H0(OV (2)) −−−−→ 0,

∼=
⏐⏐�

⏐⏐�
∥∥∥

0 −−−−→ H0((IV /I
2
V )(2)) −−−−→ H0(OP /I

2
V )(2)) −−−−→ H0(OV (2))

(#-17)

we obtain H0(OP (2)) ∼= H0(OP /I
2
V )(2)). Then the long exact sequence :
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0 −−−−→ H0(I2V (2)) −−−−→ H0(OP (2))
∼=−−−−→ H0((OP /I

2
V )(2))

−−−−→ H1(I2V (2)) −−−−→ H1(OP (2)) = 0

brings the result (#-15).

Claim 1.5

H0(Ω1
P (3)⊗ I2V ) = 0 (#-18)

Proof. Now it is easy to see Claim 1.5 since H0(Ω1
P (3)⊗ I2V ) ⊆ ⊕H0(I2V (2)) by the Euler sequence and

Claim 1.4.

We recall the notation in [7] and use them in our proves of the following several claims.

Claim 1.6 For an ideal sheaf J of OP and a non-negative integer m, in the following exact commutative

diagram (#-19), we have

−m · δEN = δLFT ◦ dJ ◦ canl. ,

where the map “canl.” denotes the canonical homomorphism.

H0(J(m))
−m·δEN−−−−−−→ H1(Ω1

P (m)⊗ J) −−−−→ ⊕H1(J(m− 1))

canl.

⏐⏐�
�⏐⏐δLFT

H0(J/J3/2(m)) −−−−→
dJ

H0(Ω1
P (m)⊗OP /J)

�⏐⏐βLFT

H0(Ω1
P (m))

(#-19)

Here J3/2 denotes the kernel sheaf of the natural OP -linear sheaf homomorphism dJ : J → Ω1
P ⊗OP /J .

Proof. See (2.2) Lemma in [7].

Claim 1.7

H1(IV /I
2
V (ξ)) = 0. (#-20)

Proof. Recall the sequence (#-10) with tensoring OV (ξ) :

0 ←−−−− IV /I
2
V (ξ) ←−−−− ⊕3OV (−3ξ − 2ε) ←−−−− OV (−4ξ − 3ε) ←−−−− 0, (#-21)

which induces a cohomology exact sequence :
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H1(IV /I
2
V (ξ)) ←−−−− ⊕3H1(OV (−3ξ − 2ε)) = 0

⊕3H2(OV (−3ξ − 2ε)) ←−−−−
μ

H2(OV (−4ξ − 3ε)) ←−−−−
(#-22)

where H1(OV (−3ξ − 2ε)) = 0 is shown by the Serre duality and H1(OV ) = 0. Thus, it is enough to

see the injectivity of the map μ : H2(OV (−4ξ − 3ε)) → ⊕3H2(OV (−3ξ − 2ε)). It is equivalent to show

the surjectivity of the map μ∨ ⊕3 H0(OV ) → H0(OV (ξ + ε)) by the Serre duality. Take the dual of the

sequence (#-21) with tensoring OV (KV ), we have

0 −−−−→ NV (−4ξ − 2ε) −−−−→ ⊕3OV −−−−→
βV

OV (ξ + ε) −−−−→ 0. (#-23)

The map μ∨ arises from the sheaf homomorphism βV which is given by three sections 	1, 	2, 	3 ∈
H0(OV (ξ + ε)).

Since the surface V is a one point blow up of the projective plane Y = P
2, the three sections 	1, 	2, 	3

comes from three lines in P
2 via H0(OV (ξ + ε)) ∼= H0(OY (1)). The three sections 	1, 	2, 	3 have to

generate the line bundle OV (ξ + ε), or have no base point. Thus three sections 	1, 	2, 	3 are linearly

independent sections in H0(OV (ξ + ε)), which implies the surjectivity of the map μ∨.

Claim 1.8

H1(Ω1
P (3)⊗ I2V ) = 0 (#-24)

Proof. We apply Claim 1.6 by putting J = I2V and m = 3. Then J3/2 = I3V and Claim 1.4 show that

0 = ⊕H0(I2V (2))
βEN−−−−→ H0(I2V (3))

−3·δEN−−−−−→∼=
H1(Ω1

P (3)⊗ I2V )
αEN−−−−→ ⊕H1(I2V (2)) = 0

canl.

⏐⏐�
�⏐⏐δLFT

H0(I2V /I
3
V (3)) −−−−→

d
I2
V

H0(Ω1
P (3)⊗OP /I

2
V ).

(#-25)

If we see that H0(I2V /I
3
V (3)) = 0, then Claim 1.6 implies that the map −3 · δEN is a zero map, namely

the image Im(−3 · δEN ) = H1(Ω1
P (3)⊗ I2V ) is zero, which was we want to show in Claim 1.8.

Let us showH0(I2V /I
3
V (3)) = 0 in the sequel. Since I2V /I

3
V (3)

∼= Sym2(IV /I
2
V )(3) and Sym2(IV /I

2
V )(3)

is a direct summand of the sheaf IV /I
2
V ⊗ IV /I

2
V (3), it is enough to show H0(IV /I

2
V ⊗ IV /I

2
V (3)) = 0.

Recall the sequence (#-10) with tensoring IV /I
2
V (3)

∼= IV /I
2
V (6ξ + 3ε) :

0 ←−−−− IV /I
2
V ⊗ IV /I

2
V (3) ←−−−− ⊕3IV /I

2
V (1) ←−−−− IV /I

2
V (ξ) ←−−−− 0, (#-26)

which implies an exact sequence : H1(IV /I
2
V (ξ)) ← H0(IV /I

2
V ⊗ IV /I

2
V (3)) ← ⊕3H0(IV /I

2
V (1)) = 0.

Then Claim 1.7 shows H0(IV /I
2
V ⊗ IV /I

2
V (3)) = 0.
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Claim 1.9

M ∼= OV (−2)⊕3, Coker(δIV ) ⊆ H1(Ω1
P (3)⊗M) = 0.

Proof. Let us recall a short exact sequence:

0 −−−−→ IX/V
α4−−−−→ M

β4−−−−→ IV /I
2
V −−−−→ 0 (#-27)

in the exact commutative diagram (#-8). To show that the sequence (#-27) does not split, we assume

that there exists an OP -linear homomorphism ρ : M → IX/V which gives a splitting of the sequence

(#-27), namely ρ ◦α4 = 1IX/V
. Then we set an OP -linear homomorphism ρ : M → IX/V to be ρ := ρ ◦ h

in the diagram (#-8). Then, ρ ◦ α3 = ρ ◦ h ◦ α3 = ρ ◦ α4 = 1IX/V
. Thus we have a splitting of the

sequence:

0 −−−−→ IX/V
α3−−−−→ M

β3−−−−→ IV −−−−→ 0 (#-28)

by the OP -linear homomorphism ρ : M → IX/V . Put an OP -submodule K of M to be K = Ker(ρ) ⊆ M .

Obviously the OP -module K is isomorphic to the OP -module IV via an OP -linear homomorphism βK

which is a restriction of β3 to the OP -submodule K of M . Now we consider the module K to be an

OP×B1
-module which is annihilated by ε. Since the homomorphism “r” in the diagram (#-5) is OP×B1

-

linear, we obtain an OP×B1
-submodule K̃ of IX ×IX IV by K̃ := r−1(K) ∼= (IX ×IX IV ) ×M K, which

induces a commutative diagram:

0 −−−−→ IX
×ε−−−−→
α1

IX −−−−→
β1

IX −−−−→ 0
∥∥∥ s

�⏐⏐
�⏐⏐s′′=incl.

0 −−−−→ IX −−−−→
α2

IX ×IX IV −−−−→
β2

IV −−−−→ 0

incl.=u′
�⏐⏐

∥∥∥
�⏐⏐β3

0 −−−−→ IV −−−−→
u

IX ×IX IV −−−−→
r

M −−−−→ 0
∥∥∥

�⏐⏐ι̃=incl.

�⏐⏐ι=incl.

0 −−−−→ IV −−−−→
u

K̃ −−−−→
r

K −−−−→ 0,

(#-29)

where all the horizontal lines are exact. Since the homomorphism βK = β3 ◦ ι is the OP -linear isomor-

phism, we obtain an OP×B1
-linear exact commutative diagram :
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0 0 0
�⏐⏐

�⏐⏐
�⏐⏐

0 −−−−→ IX/V
×ε−−−−→
α5

IX/K̃ −−−−→
β5

IX/V −−−−→ 0

r′
�⏐⏐

�⏐⏐
�⏐⏐r′

0 −−−−→ IX
×ε−−−−→
α1

IX −−−−→
β1

IX −−−−→ 0

incl.=u′
�⏐⏐ s◦ι̃

�⏐⏐
�⏐⏐s′′=incl.

0 −−−−→ IV −−−−→
u

K̃ −−−−→
β3◦ι◦r

IV −−−−→ 0.
�⏐⏐

�⏐⏐
�⏐⏐

0 0 0

(#-30)

Put IV := K̃ ⊆ IX ⊆ OP×B1
to be an ideal sheaf of a closed subscheme V ⊆ P × B1, which is flat over

B1 by using the flatness of OX and of IX/V = IX/K̃ over B1 (cf. [3] Proposition 2.2) which is guaranteed

by the fact that the natural stalk-wise homomorphism α5,p ⊗ k(b0) : IX/V,p ⊗ k(b0) → (IX/K̃)p ⊗ k(b0)

at each point p ∈ P is zero since α1,p ⊗ k(b0) is zero. Then the pair X ⊆ V gives an 1-st infinitesimal

embedded deformation of the pair X ⊆ V in the space P , which implies that the section σ ∈ H0(NX)

has a lifting σ̃ ∈ H0(N(X,V )), namely τ(σ) = 0 ∈ H1(NV ⊗ IX/V ), which is a contradiction. Thus we see

that the module M in the sequence (#-27) gives a non-trivial OP -module extension of IV /I
2
V by IX/V .

Now we recall the sequence (#-10), which is obviously a non-trivial OP -module extension of IV /I
2
V

by OV (−5ξ − 3ε) ∼= IX/V . Since dimC Ext1OV
(IV /I

2
V , IX/V ) = h1(NV ⊗ IX/V ) = 1 (cf. Theorem 2.1

in [10]), each of the two extension classes of the sequences (#-10) and (#-27) gives a base of the 1-

dimensional vector space, which implies the equivalence of the both extensions and M ∼= OV (−2)⊕3.

Then H1(Ω1
P (3) ⊗M) ∼= ⊕3H1(Ω1

P ⊗ OV (1)), which is zero by using the linear normality coming from

the arithmetically Cohen-Macaulay property of the surface V .
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