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Abstract

Crypto-currency or crypto-assets can provide a unique opportunity to perform a detailed study
on financial transactions and interactions among users. Publicly available and big data accessible by
the recent technology of distributed ledger, blockchain, help us to understand statistical properties
and dynamics of economic network, in which users are interconnected with each other through
money flow of transactions among each other and also in the exchange markets of crypto-currencies
as well as fiat currencies. Users, who play dominant roles with respect to their frequencies and
amounts of transactions, must have vital roles in the entire system of crypto-currencies. While
anonymity of users is a core technology of blockchain, de-anonymization, if possible and even
partially, helps to reveal various aspects in the ledger system of blockchain.

The purpose of this thesis is the de-anonymization of users, in particular, what we call big
players and persistently-active ones, and the understanding significant properties in the dynamics
of crypto-currency flow. I employ the blockchain of Bitcoin, in which all the transactions are
recorded with a list of addresses, which are anonymous wallets, but can be partially identified as
individual users. I constructed graphs or networks comprising of users or addresses as nodes and
transactions or money flow as edges. Then I performed exploratory data analysis and network
analysis in order to find significant patterns and interesting dynamics of the activities in the money
flow. The thesis has the following three parts.

First I studied the daily time-series of transactions in their daily numbers and volumes during
2013 to 2018, when the generation of Bitcoin mining blocks was relatively stable. I focus on
significant spikes in the transactions in the total number of transactions and total sum of volumes.
By using smoothed periodogram or power-spectrum analysis for the time series, I found weekly
pattern of these two variables, which implies that the financial organizations’ trading systems are
dominant roles giving higher activities during weekdays compared to weekends, which is similar
to the exchange market of fiat currencies.

Second, following the above observation, I constructed daily networks and analyzed the net-
work properties of the users as nodes and money flow attributed as edge flow circulated among users
to focus on weekdays and weekends activities. I then performed an analysis using threshold for the
flow of Bitcoin to define ”big players” by proposing a method to identify financial institutions as
those users satisfying certain criteria. The criteria concern about high frequency of appearance, in
other words, appearing persistently on daily big transactions and showing a distinct weekly pattern
of total average network flow. We were actually able to find known financial institutions as well as
others.

Third I applied the method of non-negative matrix factorization (NMF) which can decompose
the matrix of numbers and volumes of transactions into a certain number of components with rel-
ative weights. The purpose of such an analysis is to reveal hidden components in which users play
different patterns of sending and/or receiving money. I proved that the NMF can be interpreted by
a stochastic model. Then I performed simulations for a toy problem and estimated the parameters
involved in the stochastic model in a framework of Bayesian estimation. From this result of simu-
lation, one can understand that the results of NMF can be interpreted as the probabilities of relative
weights and the vectors corresponding to main senders and receivers. In the real data of Bitcoin,
I found that there are actually big players that were already identified as financial institutions and
also as others in the second part above. Moreover, I applied the method to temporal change of the
network and found that the dynamics has a stable structure corresponding to the same components
as well as a slowly changing dynamics.
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1 Introduction
Money circulates in the economy as income turns into savings and investment and back again.

A bookkeeping ledger is used to record the history of transactions that occur between entities [1].
Money, in the real sense, has no actual value, it is just a piece of paper or a metal coin. Its

importance is conveyed when financial governing bodies acknowledge its acceptance value among
users. The value of money is derived by its functions: a way of transactions, a unit of quantification,
and an asset value.

Money allows people to trade goods and services indirectly; it helps communicate the price of
goods. Prices are given in Yen/Dollar/Euro or other units of currency that correspond to a numerical
amount in one’s possession, that is, in one’s pocket, purse, or wallet, and it provides individuals
with a way to store their wealth in the long-term.

The increase in economic and financial network analysis has enabled the emergence and evo-
lution of rich theories and methodologies [2], which have a distinct effect on human decision-
making and are pervasive. Thus, they are becoming the link between societies and economies.
Methodologically, graph theory has refined into a potent and compelling tool for complex prob-
lems. Cryptocurrency, also known as cryptoassets, which is based on the blockchain technology of
non-centralized ledgers (e.g., see [3]), provides an exhaustive record of transactions in the ledger.
It offers a quite unique opportunity to study how money flows among users.

Although it was difficult to construct financial networks at the start of this decade, the rise
of cryptoassets has enabled significant available fortuity, for network the rise of crypto-assets has
enabled significant opportunity, for network related research and analysis. Previously, information
about transaction details was usually considered sensitive and not available for research [4]. The
cryptoasset system comprised of a repeatedly expanding list of information reserved in a chain is
publicly accessible, and enables scope to analyze transaction networks in detail.

It would be of interest to examine the structure and temporal growth of user graph, where users
are nodes and the flow of Bitcoin between nodes are links, and the transaction graph, where the
transactions are nodes and connection to the next transaction from the previous ones are called
links. These kinds of dynamics are linked to the users’ behaviors during quiet and active periods
of the market value of the cryptoasset.

This study determines the identity, that is, de-anonymizing of large “wallets” and their network
of peers in the Bitcoin blockchain by focusing on the structural change and flow dynamics of Bit-
coin volume transacted. This study conducted rigorous exploratory data analyses on the different
variables of the blockchain data. Among these, the distribution of the users’ input and output,
transactions, and volume transacted were significant variables.

This research utilized time-series analyses and the lowest time change used was daily times-
tamped data. Real-world networks have a common feature of temporal change, which means their
nature deviates over time [5]. This study revealed that users’ behavior or activity changes from
weekdays to weekends, which compromised the security of their identity inside the blockchain. A
sophisticated machine learning algorithm was implemented to classify their peer networks. Before
we present the analysis, we provide a brief discussion of the background and features of Bitcoin as
a cryptocurrency.

1.1 Background of Bitcoin blockchain:
Bitcoin is the pioneer of the most popular cryptocurrencies to date and also a unique example

of a large-scale sustainable payment system, in which all the financial transactions are publicly
available (see [6]). It is not issued by any government, bank, or organization, but rather by mathe-
matical cryptographic protocols in a distributed network system, where users pseudo-anonymously
exchange and sometimes mint bitcoins. To date, economic literature on the Bitcoin issue is quite
limited. Researchers such as [7] and [8] have successfully drawn attention to the analytical aspects
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related to the information contained in the blockchain. Due to its still relatively low acceptance
in the foreign exchange market and its poor performance as a medium of the store of value, there
has been some discussion in academia on whether Bitcoin can be considered a currency. However,
the trust in this currency totally is not based on the belief in central monetary authority but rather
computer technology and cryptography [9].

The blockchain is one of the revolutionary database that has evolved over the last decade. It
stores any information in a decentralized computing system and once stored, data can never be
altered or manipulated. It is transparently accessible to all the users logged in the database and
they can view all the information published in the blockchain. Bitcoin cryptocurrency, along with
the sender and receivers addresses in form of a ledger, is the financial monetary information that is
stored inside a blockchain. Bitcoin is world’s first successfully implemented fully-digital cryptocur-
rency [3]. It solved two real-world problems, double-spending [10] and “duplication problem” and
created an alternative way to establish a fully functional virtual currency based financial system.

Who invented Bitcoin?
The global financial crisis in 2008 exposed financial inequalities throughout the world’s
economies. In January 2009, a mysterious figure named “Satoshi Nakamoto” introduced
a virtual currency system called “Bitcoin”, which functioned over a cryptography frame-
work called “Blockchain” with an incentive scheme known as “Proof of work”[6]. Bitcoin
is a digital currency that archives transactions and autonomously administers the generation
of new units of currency inside the blockchain frame of reference. No centralized authority
dominates the operation and logging in a distributed system with a private key proves the
user’s ownership of Bitcoins. A consensus algorithm and a public history of transactions
has strengthened security to prevent duplication and double-spending [11].

In 2009, Nakamoto circulated his finished code for Bitcoin within the cryptographic com-
munity and made it open source for more development. He mined the first block, referred
to as the ”genesis block” on the 3rd January 2009. His identity has always remained anony-
mous and after some collaboration with peers, he was mysteriously vanished after the genesis
block had been published. His Bitcoin account worth around $19 Billion US dollars and he
is considered the 44th richest man in the world. There is lot of speculation in the cryptoas-
set community about the true identity of Satoshi Nakamoto. One thing for sure is that he
is the first to successfully fully digitize the concept of fiat money and solve key problems
experienced by traditional centralized monetary systems.

The shortcomings of fiat currency
Let us investigate the problems of traditional currency formally known as fiat currency and
how Bitcoin was able to solve some of the key issues.

To buy a box of chocolate, we normally withdraw cash from a bank or ATM. We need to
determine how and why these transactions work in our day-to-day life. Everyone accepts
the metal disks known as coins and strips of paper called money, but how do these gain such
value? Looking back to 1900 as an example, money or currency was traditionally considered
to be equivalent to certain valuable items, for example, gold. During this period, 1 ounce of
gold was valued as equivalent to 20.67$. This means that US government banks backed the
currency with equivalent ounces of gold in their central reserve. Over the course of time,
this system became inefficient and was ended in the US in 1971. President Nixon cancelled
the direct exchange of the United States dollar to gold. This shift of policy was known as the
Nixon Shock. Standardizing the way of use and the possibility of producing infinite quantity
has improved the system from the previous one. The newly introduced American dollar had
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no intrinsic value, but any exchange of this paper or coins between two entities is legalized
by the third party, in this case the central body of the government bank. Gradually, all the
world’s other major economies have converted their monetary system to the fiat currency
system.

One of the main problems of traditional currency is hyperinflation. This occurs when the
government prints increasing amount of money, which results in devaluation of the currency.
This situation occurs during times of economic crisis and when commodity prices surge.
Thus, the value of the currency is determined by its supply demand. This promotes the
government to ensure economic stability by monitoring, evaluating, and taking action on the
credit supply, interest rates, and liquidity.

Another crucial problem is that, as the system is centralized, extensive regulation and policies
are needed, which are very common in a top-down organizational structure. Alternatively,
it can be said that extensive documentation is required to audit every financial transaction
that involves a monetary transaction. Accordingly, when a person uses an ATM that does
not belong to their bank, or when they transfer money from their account to a friend’s, they
often pay a fee. This transaction fee pays a key role in the financial activities of our daily
lives that involve exchanging money for goods and services.

Bitcoin solves the problems faced by centralized currencies
Bitcoin was the pioneer of fully digitized currency that was envisioned to solve some of the
key problems linked with the fiat currencies system. By using Bitcoin, transactions are fully
digital and the fees are minimal. This is possible because the system is decentralized.

Bitcoin is a decentralized and distributed system where all the historical transactions that took
place among financial agents are stored after validation. Once stored in the ledger framework
technology known as blockchain, the information is totally immutable. The blocks inside the
blockchain are building blocks comprised of a number of transactions validated and adver-
tised by some super users called ”miners” in the decentralized network. All the network
activities and ledger system are publicly available and secured, which offers some key fea-
tures.

Finite supply:
The total number of Bitcoin mined from the Bitcoin system is restricted to 21 million.
In a centralized fiat currency system, government banks can print as much as currency
as possible. As previously mentioned, this causes inflation, whereas the Bitcoin cur-
rency is theoretically an efficient deflationary currency.

Secured immutable information:
Immutability of information is one of the key feature of blockchain. This underlying
technology ensures the information validated once in the ledger system published in the
block is unalterable Even though both senders and receivers of Bitcoin may be cautious
about the transaction, the information is protected in the decentralized system and thus
it is theoretically impossible tasks for hackers to alter the data stored in the blockchain.

Anonymity:
In the traditional system, the sender and receiver’s information is stored in the banks
they are affiliated to. Bitcoin works with a completely different philosophy. It requires
only the Bitcoin addresses assigned by the system to transfer money from the sender
to the receiver. Although this reduces information maintenance tasks compared to the
traditional system, it also has some shortcomings.
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Decentralization:
This has no single information storage center, rather the full blockchain is stored on each
client’s device, making it a decentralized and distributively connected system of com-
puters. Thus, it is neither controlled by a single authority, nor can any of the records be
destroyed at one or a few centralized points in the blockchain. This makes the network
very trustworthy and transparent for secured flow of sensitive financial information.

The protocol of Bitcoin
In this part, we explain the technology behind the bitcoin blockchain and how it solved the
real world issues successfully to become the pioneer of first plausible fully digitized currency.

Concept of digital signature When we perform a bank transaction, it needs us to authenti-
cate ourselves to the system. We may identify ourselves by our national ID card, pass-
port or handwritten signature. In any cases, this personalized authentication system
is in place so that we can verify ourselves to transfer and withdraw by ourselves only.
Not by an imposter to steal our valuable financial asset from us. We have discussed
above that, Bitcoin is publicly available record system and all the transactions inside
are stored in chain of blocks. How Bitcoin make sure the users are authenticated by
the system is achieved by the encryption technique popularly known by the term digital
Signature. In the cryptographic world the technique is the implication of ”Asymmetric
encryption”. Let us clearly understand what digital signature offers us to secure our
identity.
A digital signature normally ensures the message comes to the receiver from authenti-
cated designated sender and also confirms while reaching the receiver it has not been
tampered by hackers. To understand digital signatures, two concepts of cryptography
are important. One is a hashing algorithm, and the other is asymmetric encryption. A
hashing algorithm ensures that an input of string or text is irrevocably converted into
an output that is unique and also has fixed length. Bitcoin uses standard SHA256 as a
hash algorithm [12]. The main concept of that hash algorithm can be metaphorically
explained by the example of baking a pie. All the ingredients such as flour, milk, wa-
ter, salt, baking powder and so on can be considered the input message. The SHA256
algorithm can be considered the pie dish, and the pie is then the output hash encrypted
text. The only difference is that if a single input ingredient is changed even a fraction,
then the output a completely different output product than a pie. By processing the pie,
we cannot convert it into the input ingredients; the output binary hash message also has
the same irreversible property. SHA256 is a mathematical tool that converts any plain
text into a 256-bit fixed-length irrevocable hash text consisting of binary digits of zeros
and ones.
To create a digital signature, the message broadcast to the Bitcoin blockchain network
first needs to be hashed. Asymmetric encryption is then applied to the hash. It can
be conceptualized with two terms called public key and private key. In this encryption
method, each user has a public key and private key that complement each other. There-
fore, if person 1 encrypts a message by person 2’s public key and sends the encrypted
message to person 2, then person 2 can decrypt the message using their own private
key and vice versa. This is a similar scenario as sending email. We send a message to
someone’s email address, which is their public key that is known to us, and they can
log in to their mailbox by using their private key to read the message.
In the Bitcoin scenario, the ledger is public. Asymmetric encryption plus hashing still
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contributes to ensuring the proof of the sender’s authenticity to the receiver and also
the proof of the message not being tampered with.
Let us explain the Bitcoin blockchain scenario, where Alice wants to send some Bit-
coin to Bob as an exchange of goods or services. In the network, Alice sends two pieces
of information, one is the hashed version of transaction information, which is digitally
signed with her private key, and the other is the transaction details, which remains
unencrypted and contains the transaction information of the current and the previous
transaction information that ensures there are sufficient funds available. Both pieces
of information are sent to Bob, who receives both the message and normally does two
things. First, he decrypts the digitally signed message with Alice’s public key. If the
action is successful, it proves the sender’s identity is authentic and generates a Hash A
output message. Bob also simultaneously imposes a hashing algorithm for the unen-
crypted transaction message sent by Alice and generates the output Hash B. If Hash A
and Hash B are found to be identical, then it is verified that the message is not altered
between the transmission because both hashes are originated from the same message.
Furthermore, only Bob can access the messages sent to him using his private key and
confirms the transmission of an authentic message from Alice through his actions.

How information are stored in blockchain The scaling problem is one of the shortcom-
ings of the decentralized network. As there are no centralized repositories, it is difficult
for each and every user to store the entire blockchain in their devices, which is a system
requirement once the network starts to sync. On the contrary, by compromising with the
scaling issue, it enhances the security by creating millions of copies of the blockchain
and also making the network much faster. In conventional centralized systems, finan-
cial institutions, such as banks, own dedicated servers that can comprehensibly store all
users’ personal and ledger data. Although this central administration of data is highly
secured and confidential, several examples of hacking as well as conflict of interest
from the central governing body have compromised the security of the network. The
Bitcoin network is distributed and decentralized. The ledger or the information inside
the network is peer-to-peer based and publicly available. The network achieves this
by connecting and creating a distributed network making the data available by deploy-
ing peer-to-peer sharing technology where all the participant computers considered as
nodes download the entire blockchain once they enter the network; hence, there is the
need to deal with the scaling issue of its information repositories.

How transactions are formed inside the blocks In our Alice-Bob case, verification is needed
as to whether Alice has sufficient funds to send to Bob. In the Bitcoin blockchain, there
is no alternative way to calculate the current balance, rather it is done by total Bitcoin
flow coming from all previous transactions. In the system when a user creates their
wallet for the first time, they receive a complete historical copy beginning from the
current block of transactions to the first or genesis block. After calculating the balance,
if it is clear that Alice can proceed with the current transaction, a transaction message
containing the amount that going to be transferred to Bob broadcasts hash or public
addresses of Alice and Bob and lastly the digital signature created by Alice. As the
message is broadcast, any user can observe and collect information for mining. Along
with other transactions to be verified, this transaction is temporarily stored in a pool,
which is known as a mempool or memory pool of non-validated transactions. This is
the place where miners pick up transactions to confirm and participate in the ”Proof
of work”(PoW) process. Miners are normally special users with larger computation
powered computers and they participate in the PoW process to confirm the unverified
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transactions in the mempool. In the PoW process, all the miners participate to solve
a puzzle, whoever wins the competition gets the privilege of putting the current block
of transactions into the live blockchain. They also receive all the transaction fee and
the PoW fee summed up in the first transaction of this published block. In a normal
scenario, miners are free to pick any transactions. Even though most miners attempt to
pick transactions with higher transaction fees, there is no guarantee that they will solve
the crypto puzzle competition, which is still proven to be completely bias free.
The amount of PoW fee updates every four years. It becomes exactly half of the pre-
vious quarter’s block reward. For example, from 2009-2013 the block reward was 50
BTC, which decreased to 25 BTC from 2013-2017. In current block reward is 6.25
BTC. This is the only standard way to generate new Bitcoins from the system. Internet
sources claim that 88% of 21 million Bitcoin has already been minted [13].

How blocks are verified in the blockchain In the previous section, we presented a brief
overview of PoW as a verification process of blocks involving miners. Here, we discuss
it as a step-by-step process.
The PoW method ensures the verification process is done before the inclusion of every
new block tagged to the blockchain. The process has consensus, and it is bias free.
Furthermore, as it is somewhat time consuming, there is almost no chance of double
spending.
An important term in the blockchain network is ”hash rate”, which means the rate at
which the puzzle for PoW needs to be solved. In every four-year cycle, the hash rate also
increases as the network grows to restrict the ”51% attack.” The increase of the hash
rate forces miners to upgrade to more competitive computational power to participate in
the PoW process. During the competition, miners need to use their computation power
to solve a puzzle in which they guess a pseudo-random number, known as a ”Nonce”
value. Whoever guesses it first wins the reward from the PoW process.
For instance, a miner is processing a block. There are three pieces information they
to put in their block. The first the hash of the previous block. Then, they need to add
all the transactions they just picked to add to this block. They also need to verify the
”Nonce” value that their computer needs to guess for the current block’s hash value,
which begins with specific number of zeros. Here, we have to recall the hashing algo-
rithm that we discussed earlier. To achieve the goal, recall that a slight change in the
input will swap in an entirely changed output. Hence, to determine a specific number,
the miner needs to correctly guess the nonce value. Their computer attempts to achieve
this while competing with other miners’ computers. A very high computational power
is required to guess this magic number, which is why specific investments are needed to
engage in mining activities. The Fig. 1 shows the block verification process in general.
According to the Bitcoin protocol, this process of inserting a new block or as popu-
larly termed, ”mining a new block,” normally takes no more than 10 minutes. As the
hash rates changes in a periodic manner and so does the number of zeros in the new
block’s hash, This hash rate increases in course of time resulting continuous upgra-
dation of computational hardware and increasing utility cost in terms of electricity. It
discourages old miners to keep in control for longer period of time. From an economic
perspective, this ensures the impartiality of the entire system.
We can see that each block possesses the hash of the previous block as a referral chain.
Hence, if an imposter attempts to change a transaction from a published block, they have
to recalculate the not only the current hash but also all the previous hashes starting from
genesis block hash. This is because the slight change in the hashing algorithm results
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Figure 1: Block validation process

in a completely different output. Furthermore, it has to be done in 10 minutes, which
makes it an almost impossible task to achieve. It also suggests that each time a new
block is added, and as the hash rate is updated at regular intervals, network security
becomes tighter. With the rise of quantum computing, there is a buzz in the computer
science world that such computing may achieve the impossible task of gaining control
over the blockchain network, but this is yet to be proven.

How bitcoin solved double spending problem We now focus on the real-world conflict
scenario of buyers and sellers. In this section. . .we discuss the consequences of double-
spending in the Bitcoin blockchain. . For example, Bob wants to buy an iPhone from
Alice’s store, which supports Bitcoin payment. Bob placed the order online and then
sends the Bitcoin to Alice’s wallet. The deal is Alice would ship the iPhone once she
sees the payment from Bob and it is reflected in the blockchain. However, Bob knows
it takes 10 minutes for every transaction to be approved and he attempts to create one
transaction to send the Bitcoin to Alice and another transaction in which he sends the
money to himself. We examine what happens if the illegitimate transaction is created
just before the legitimate transaction is confirmed so that Bob in fact gets the iPhone for
free. The best and safest practice for Alice is to wait until only the legitimate transac-
tion survives to be added to the blockchain. In reality, sometimes more than one block
is added in the chain, creating a fork. In these instances, the following blocks are added
into the forked chains chosen by the miner. At some point, one branch becomes longer
than the other and at that time, all the illegitimate transactions break from the shorter
chain and swerve back to the memory pool or mempool. It is therefore recommended
to wait for at least six more blocks to be published to obtain confirmation of the validity
of the transactions in the current block. Recent transactions added in the current blocks
are occasionally called ”hot transactions”. Imposing higher computational power by
miners and higher probability of selecting only legitimate transactions thus ensures the
transparency of the PoW process. Let us discuss another possibility, in which Bob be-

7



comes the miner, and he adds the legitimate transaction in one branch the fraudulent
one in another. He attempts to continue the fraudulent chain at a same rate along with
the legitimate one. However, at some point his legitimate transaction from the branch
will shunted back to the mempool and thus would become invalid as it gets conflicted
with the fraudulent branch transaction. Furthermore, as it has the same signature as
the fraudulent transaction, even if it is picked up one more time, it will be considered
invalid. Theoretically, it is a possible scenario, but in reality, Bob needs to obtain con-
trol of 51% of the computational power of the full network just to attempt this. This is
called the ”51% attack” and is very difficult to achieve. In addition, it is even harder as
the time duration for the consecutive block creation process is kept to 10 minutes. The
bottom line of this scenario is that the fraudulent transaction will eventually be dropped
down to the mempool and the authentic chain with valid transaction would keep getting
longer. Ultimately, is not worth Bob investing such a significant amount of resources
and effort to attempt this fraudulent transaction.

1.2 Purpose of our research
In this section, we discuss the purpose of our research focused on the Bitcoin blockchain net-

work. Publicly attainable transaction data is the main motivation of analyzing financial networks.
Several studies have examined the descriptive statistics, network expansion, network topology, and
the dynamics of the Bitcoin blockchain network. The current study is motivated by the already
extensive research in this area. The “User Graph” creation and analysis was based on the famous
heuristic rule that states that every input in a multi-input transaction must be linked to a single user
as it knows all the private addresses of those input public addresses. This was elaborated upon in
[7] and also in a later section of this paper. These researchers also discussed unusual big data flows
and temporal analyses for the Bitcoin blockchain. [14] performed an elaborate quantitative analy-
sis on the major wallet exchange markets , which have a large number of public addresses, and by
pinpointing the chain with a high range of threshold incoming Bitcoin value. Finally, in a detailed
investigation using extensive analysis of transaction networks, a group of Hungarian researchers
[15, 16] applied linear preferential attachment. In their extended work, they proposed a model that
shows how structural changes in the network accompany significant changes in crypto-exchange
prices. This Hungarian research group has uploaded blockchain data from 2009-2018 [17], which
is also the main data source of our research. Our research mainly focuses on particular aspects of a
closed economic system such as blockchain.. These are mainly concentrated on the total amount of
generated cryptocurrency and the transaction patterns demonstrated by the money flow inside the
blockchain. For the last 4/5 years, the Bitcoin market has gradually received increasing and sig-
nificant attention from investors, technology entrepreneurs, and currency enthusiasts, which lead
temporal growth of this special financial network.

In the beginning part of research, we have plans to come up with some stylized findings by our
investigation on the bitcoin time-series transaction patterns. We wanted to investigate on who are
the outliers’ in this financial system? We also had interest on the transactions pattern. The main
implication of these findings in the time-series situation provided us insights about the cryptocur-
rency based fully digital financial system which contributes in the field of socio-economic study.
Besides in our analysis, we also keep our eyes on the cryptocurrency real world major historical
events in order to link those with their impact on the network.

We have mentioned that main focus about our research is unveiling the anonymity of important
users inside blockchain network. The goal is not to attack on the cryptography rather to investigate
on the transaction patterns and users’ activity behavior. We have found out that there are weekly
patterns in a bitcoin volume to the price per day graph and there is a clear sign of economic financial
trading of bitcoin flow among the transactions. The distinctive nature of transactions impulses in
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the blockchain especially focused in different time slot leads to special network effect. We would
like to investigate on these scenario to understand the dynamics of behavioral change of users.

Price analysis was out of the scope of our research as it is an exogenous factor of the blockchain
network. In spite of that we investigated the effect of this factor on the endogenous attributes of
the bitcoin blockchain. Furthermore, there are also real world users who for the nature of their
businesses compromises their user identity by publishing it bitcoin addresses publicly. For exam-
ple, most of the exchange markets expose their pubic bitcoin addresses in order to promote their
services to the customers. In our research we also were interested about their activities inside the
blockchain network and how it is reflected with their daily activities. This revealed new ways to un-
derstand the topological structure and flow dynamics among the exchange markets and the linkage
with their portfolio evolutionary growth.

Another goal of our research was to understand the money flow inside the blockchain. Money
flow and price mechanism are the fundamentals of the economic activities in the financial arena.
How flow of money inside a enclosed financial system where the supply is limited is an interesting
question to understand . This could be interpreted by understanding the bitcoin flow dynamics
on the complex network of bitcoin blockchain transactions. We analyzed bitcoin blockchain data
for the period between the year 2013 to 2018. Bitcoin flow attributed as edge flow circulated
among users in daily/weekly/monthly and how users are located in the entire flow would be very
interesting. Finally, we targeted to propose a methodology to identify the exchange market or
financial institutions and distinctively classify their activities in the bitcoin blockchain on the basis
of fulfilling some key criteria.

1.3 Outline of the thesis
This thesis is structured as follows: In this section 1, The basic concepts of bitcoin and blockchain

in terms of technological point of view are explained . In section 2, the related previous works have
been discussed. In section 3, the definitions of the important terminologies has been depicted using
mathematical expressions. In section 4, the main source of data and the important variables and
their statistical distribution has been analyzed. In section 5, the transaction graph analysis and the
weekly pattern of number of daily transactions and daily volume sum have been investigated. In
section 6, the standard user graph analysis done. Novel criteria of ”Big players” has been intro-
duced to identify the financial institutions and non-financial institutions inside blockchain among
the top frequent and daily persistently active users showing the weekly pattern for normalized BTC
flow on average days of week. Finally, in , section 7, the clustering of the big players’ peers has
been tracked with the implementation of non-negative matrix factorization(NMF) technique and
simulation result have been analyzed.
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2 Literature review
In this section we will discuss about most of the research works that have been conducted till

date focusing specifically on the de-anonymization of users’ identity in the blockchain, complex
network analysis and price analysis of the exchange market.

2.1 The de-anonymization of Bitcoin blockchain
In 1983, David Chaum, an American cryptographer envisioned ecash, a cryptographic anony-

mous electronic crypto-currency [18]. In 1995, he led the implementation of Digicash [19], an
early structure of electronic payment system which required user software that ensured crypto-
graphic withdraw of bank notes. This was the first step to withdraw a digital currency without the
authorization from third parties like governments and banks.

In 1996, the Cryptography of Anonymous Electronic Cash, describing a Cryptocurrency sys-
tem, first published by National Security Agency in an MIT mailing list[20]. An anonymous,
distributed electronic cash system named ”b-money” was introduced in 1998 [21].

The first successful, decentralized, anonymous cryptocurrency, Bitcoin, was introduced in 2009
that we discussed earlier that by the cryptography expert Satoshi Nakamoto. We also came to know
that, the hash algorithm it used was SHA-256 (Secure Hash Algorithm 256), which is the standard
cryptographic hash functions created in 2001 by the United States National Security Agency (NSA).

Bitcoin is pseudonymous, that is, not completely anonymous. We already have discussed that,
the currency inside the wallet is tied to some particular keys (or ”cryptography generated hash
addresses”). Anonymity in Bitcoin is a complex issue. In the Bitcoin blockchain system the users
are hidden behind their public hash keys. One of the very popular approach of unveiling these
users under the public keys are mapping the multiple inputs or sender keys when used in a single
transactions linked to one user or entity [7]. The heuristic got very popular in the research world
and in our work we have used this famous algorithm to contract addresses to users.

Meikle et el. had explored Bitcoin network and by network analysis he found that the identity
of user inside blockchain is not totally anonymous and their activities can be observed by their
currency flow [22]. The researcher group also collected evidence by purchasing goods and services
from real world crypto-markets and categorized those into groups. This helped to cluster the crypto-
market based supplier-consumer heuristic users. This technique they implemented was termed in
their work as ”re-identification attack” in order to do classification. Apart from the crypto-currency
exchanges as a third party user’s personal information are not shared but the transaction details are
available globally. The de-anonymization is an important research topic which as a consequence
would understand the money flow among users with their peers.

The popular heuristics of Bitcoin anonymity:
There are mainly two popular heuristics of clustering public addresses or hash keys to identify
a user or entity: change address detection heuristic and common input ownership heuristic.
In our research, we will discuss about the later one as it is one of the technique we used in our
data processing to create the “user graph” also adopted by the handful of other researchers
(see [7, 23, 8, 16, 15, 4, 24, 25, 26, 27, 28, 29, 30, 31, 32] for example, and references therein).
The heuristics goes like this:

”In a single transaction, the input address is all from one entity. If one of these addresses
along with others participate in a different transaction, then all of the input addresses which
belong to both of the transactions can be clustered to the same entity or user.”

This is also known as common input ownership heuristic. There could be possibility that in-
put addresses link to the multiple entities in real world. But as they share the same ownership
they are treated as one, see Fig. 2.
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Many blockchain analysis has been done with the address cluster heuristic. This is written
in the white paper of Bitcoin as multi-input heuristic[6]. Reid and Harrigan [7] utilize this
heuristic in order to attack on the anonymity of the Bitcoin users. With the inclusion of
change heuristics, the de-anonymization technique has been expanded [33, 22, 34], to study
the temporal nature of the network growth [35, 36] and transaction graph Bitcoin flow [24].
The analyses that has been done in our research are based on the multi-input heuristic only,
we have extended that heuristic with some added assumptions and have created our own
version of address-to-user database.
Ober et al. [23] researched about the lifetime and size of user community and important
finding is that these community follows the scale-free distribution. Lischke and Fabian [26]
showed that in the first four years the major hubs and authorities of the user graphs are ex-
changes, gambling sites, dark net users, and mining pools.
Maxwell introduced CoinJoin [37], a protocol that works as a counter measure of attacking
with address-user heuristics for trust-less but mixing of Bitcoin transactions with a central
authority. Multi-input heuristic becomes false positive after applying this protocol. CoinJoin
needs a third party centralized server that makes the mixing of transactions. Similar protocols
with same functionality are Blindcoin [38] and Mixcoin [39]. There is option available with
decentralized mixing that does not require trust of third party. In this category CoinShuffle
[40], CoinSwap [41], CoinParty [42] are such Bitcoin protocols. Shentu and Yu et el. [43]
also have investigated on similar Bitcoin protocols.
Imwinkelreid [44] described connection of users doing crimes on the digital world by net-
work analysis of the user graph. Similar research was done by Moser et al. [45, 46], who
explored the anti-money laundering issue of the Bitcoin users by analyzing the user graph.

Figure 2: Bitcoin common-input-ownership heuristic

”Silkroad”: revealing of an anonymous illegal marketplace:
Nicolas [47] in his research, gathered and analyzed the blockchain data constituted for the
users who are the enjoyers of ”Silkroad”, an online market place of illegal substance and
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utilized the anonymity features of Bitcoin to hide their buying and selling activities. He ob-
tained a detailed six months’ data of the year 2012 and merged those with the blockchain
address-to-user data in order to track the users behind the anonymous hash addresses. The
website administrator was the main architect of using both Bitcoin blockchain and Tor soft-
ware [48] in order to hide the identity of the shoppers. The researcher showed that silk road
is the market place of 24,400 separate substances related to drugs and narcotics that are sold
in the site within a very busy 3 weeks of time interval. Inside the time interval of six months
the researcher had tracked 120 regular users who were actively participating as buyers and
sellers. A large number of commissions in Bitcoin, which is equivalent to around 92,000
USD/per month, were transacted to the site operators’ wallets. A comprehensive analysis on
the daily sales and revenues generated were also shown by analyzing and cross checking of
the website and blockchain data.

During the researched time period of six months around 1.3 million BTC has been exchanged
among the buyers and sellers in the silk road. Over this entire period the total number of
Bitcoin transacted by crypto-exchange market is around 29,553,384 BTC. Comparing both, it
was found that the number of BTC flown in the silk road market is 4.5%−9% of total crypto-
exchange flow inside the blockchain within the same period of time. As same coin transacted
several times in different transactions the transaction flow inside silk road was higher than
the entire BTC supply volume in same period. The estimation in the research was not very
robust as it is hard to detect how much of the actual transactions done by exchanging fiat
currency, but still the blockchain quantification of total value was almost accurate calculated
from the digital footprints as evidences. The result of this research was interesting. The scope
of this research actually opens up our research goal to understand the economic activities of
important users’ network structure and their currency flow among their community.

Silk road in the Bitcoin economy operated like an anonymous service, but later when the
webmaster was arrested, it has been an established fact that Bitcoin blockchain is not entirely
anonymous rather it’s anonymity can be hacked partially. But on the other hand, new ways of
using Bitcoin with extra anonymity strategies have also been introduced in the course of time
as the network grows which made the security stronger. Putting all these into considerations
in our research, in order to understand the economic activities behind the secured wall, we
took the challenge of computing the other important big users like silk road in the overall
Bitcoin blockchain economy.

2.2 The research work on Bitcoin blockchain network analysis
Complex network analysis [49, 50, 51], has gained an increasing recognition in financial eco-

nomics as it provides further insights to understanding hidden factors. Even though a large amount
of financial data, e.g., exchange market price is available, but to understand the user activities
and analyses on structure of the financial network, information about transaction details is usually
considered sensitive. Blockchain, where a consistently growing list of financial records stored in
secured ledgers are accessible publicly in a cryptographic framework called blockchain, provides
researchers a unique opportunity in this regard.

Many other crypto-currencies along with different features and algorithm have surfaced, some
died and some still prevailing in the crypto world. With their rises in the fin-tech world we are
gradually moving to the cashless arena. At the time of writing this thesis, there are over 6,955
cryptocurrencies in existence as of September 2020 currencies in the market. Thus, to gather
proper knowledge and insights this is a high time to create research foundation on fintech data.

This subsection is all about the research work done in the Bitcoin blockchain network analysis.
Transaction graph and user graph created from publicly available Bitcoin data in light of network
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science are the main tools to understand Bitcoin economy. The complex network science discusses
the structures and dynamics of networks or graphs mainly focusing on the exploratory statistical
analysis, statistical mechanics, evolution of different attributes and parameters [52]. There are also
studies on the robustness against failures and attacks, spreading processes and synchronization [5].
Econonophysics is a multidisciplinary field where complex network is studied with the help of
probability theory and mathematical models developed. The complex networks consist of firms,
banks, families and households governed by humans. Statistical physics and mathematical statistics
are two main focus to extract socio-economic findings which helps to make macro-level policies
and decisions [53, 54, 55].

Ober et el. [23] had done an empirical research on network structure of transaction graph
and network dynamics. Most important finding was, several parameters of the Bitcoin transaction
graph seemed to have become inactive over half years of time.

Statistical approaches to find behavioral patterns of users have been investigated in one of the
most renowned research of Ron et el. and Bauman et el. [8, 4]. After the genesis block of Bitcoin
network had launched the currency were used only for experimental purpose and did not have the
attention for commercial use case. That is why researchers found its use case densified compared to
the later in first four years [26]. Some of the key network properties of user graph such as clustering,
degree distribution and power law were found by Baumann et el. [4] in their extended research. The
researcher group successfully proved that like many other real world networks Bitcoin blockchain
also follows a scale-free distribution and has a ”small world” effect.

One of the leading network analysis of Bitcoin blockchain Hungarian research group Kondor
et al. [16, 15, 56] empirically demonstrated that Bitcoin system shows the preferential attachment
or ”Rich get richer” phenomenon in their complete analysis of transaction and user graph. Using
their own reconstructed blockchain data set, they discovered the relationship between structure of
the active users’ network changes with the price change in exchange. In our research work we had
used their data set to construct time stamped user graph and transaction graph.

Christian et el. [29] has explored the properties of transaction graph modeling for the directed
acyclic graphs of bitcoin blockchain network. They proposed the TDAG model which describes
the nature of transactions focused on assets and their transfer among different entities.

Maesa et el. [31, 25, 57] in their data driven analysis for user graph considered in a network
up to till December 2015, after bitcoin getting popularized and attained financial acceptance value
among renowned global organizations. The set of analyses they defined includes, the dynamics
and the validation of the ”preferential attachment” conjecture and the detection of the key nodes
which are important for network expansion.

2.3 The research work on Bitcoin exchange market analysis
Among all other currency Bitcoin is the most valuable and has the largest crypto-currency

business. After launching in 2009 it experienced a jump in price value from 1 dollar to 19k dollar
within just 7 years’ time. The underlying technology also attracted huge interest and prospects.
With the help of econophysics the reason behind price variations and predicting future price and
the market effects can be focused [58, 59, 60].

There had been some work done in correlation with the blockchain network data to market
price. The network usage with Bitcoin exchange price rate is the main theme of Baumann’s research
[4]. There was a work done also related to predicting the price of Bitcoin with latest novel machine
learning technology [61]. But, in our research the exchange market analysis part was not focused
completely. Price of Bitcoin is an exogenous factor among the attributes of blockchain. There is
no information of price inside blockchain. In our work we had used third party websites [62] to
collect daily price data for our time series analysis of the endogenous factors like daily number of
transactions and daily volume of BTC transacted. As the price formation mechanism influenced
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largely by outside factors of the network [63], we avoided to take deep dive in the market data rather
keeping our research goals more with the blockchain data. By the way, exchange market data gave
us directions in different stages of our research to infer the reasons behind the structural changes
of networks.
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3 Mathematical notations and methods
This section constitutes the definitions of basic terminologies we will be encountering to ex-

plaining our data analysis for Bitcoin blockchain in network science perspective. There are other
mathematical definitions and derivations are mentioned in the later part of the thesis. But, this
chapter has the basic ones clearly mathematically defined.

3.1 Definitions and notations
The set of all the transactions recorded in the data of blockchain, can be regarded as a giant

graph or network, in which vertices or nodes are “users” mapped from addresses (see the preceding
section), and links or edges are transactions among users. Let us denote by Tx : i→ j a transaction
from user i to j. Note that there are multiple transactions for a same pair i→ j. In addition, self-
loops i→ i can be present, corresponding to various cases, including the change in a transaction.
We call this giant graph a transaction graph, and construct it for the period 2013 to 2018 after
deleting all self-loops. For the transaction graph, we define frequency of individual users as follows:

f(i) := number of Tx’s such that Tx: i→ j or Tx: j → i . (1)

The frequency f(i) can measure how frequent the user i appeared in the transactions that took
place during the whole period.
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Figure 3: Complementary CDF for frequency of users(acted as input or output) from 2013 to 2018

Figure 3 shows the complementary cumulative distribution function (complementary CDF) for
the frequency. One can see that the distribution has a heavy tail with approximately a power-law.
We listed the top 20 users in the Table 1. We shall use the frequency to define big players.

To investigate a much shorter time-scale than years, let us construct what we call daily graphs
from the transaction graph. A daily graph is an aggregation of all the transactions that took place in
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Table 1: Top 20 users’ total frequency count as input/output during 2013-2018

UserID frequency

3366757 30329366
109540 30078473
14382265 13710199
27888617 10596775
25703559 9583373
3491614 8118837
6188061 8046046
76589853 6986710
135111428 5815920
18307826 5479502
45976983 4799924
19459450 4321546
62504973 4207824
190362585 4048302
45452467 3732724
65608404 3664173
41633902 3142230
59826853 2786511
11031719 2749122
3959839 2675207

one day. One could define weekly or monthly graphs; however, we would like to use daily graphs
for our study, because we shall focus on the weekly pattern of daily activities of users. Let us denote
byGt = (Vt, Et) the daily graph at time t, where t is assumed to be a day (unless otherwise stated),
Vt is the set of vertices of nodes, and Et is the set of links or edges. An edge eij is an ordered pair
(i, j), which represents all the transactions Tx : i → j during the day t. The set of all the users
appearing at either end of eij is Vt such that i, j ∈ Vt. Each edge eij has the information about
the amount of money transferred from i to j in the units of satoshi (= 1/100,000,000 BTC = 10−8

BTC). Note that on day t, there can be more than one transaction Tx : i → j. We aggregated
those multiple transactions, if present, into a single edge, and associated the sum of money flow
to the edge. Let us denote the amount of money flow for the edge eij by gij . This completes
the construction of daily graphs from the transaction graph. We remark that Gt does not include
multiple edges nor self-loops.

Denoting the number of elements of a setA by |A|, in general, we can define |Vt| for the number
of nodes, and |Et| for the number of edges. Regarding time t, we consider two periods, as explained
in the preceding section:

t ∈ Tquiet := [1 January 2015, 30 June 2015] , (2)
t ∈ Tactive := [1 July 2017, 31 December 2017] . (3)

Subscript t for variables to be defined in what follows may be omitted when the dependence on t is
obvious. Gt is a directed network in the sense that each edge has a specific direction. It is sometimes
useful to ignore the direction; in such a case, we shall use the same notation Gt = (Vt, Et) for the

16



undirected version of Gt. In-degree din(i) and out-degree dout(i) for a node i ∈ Vt are defined by

din
t (i) := #nodes j’s such that eji ∈ Et , (4)

dout
t (i) := #nodes j’s such that eij ∈ Et , (5)

respectively. For the undirected version, one can define degree dt(i) by

dt(i) := din
t (i) + dout

t (i) . (6)

Average degree is then defined by

d̄t :=
1

|Vt|
∑
i∈Vt

dt(i) =
2|Et|
|Vt|

, (7)

where the last equality follows from the fact that each undirected edge appears twice for the two
nodes at the ends of the edge. The numbers of nodes and edges, and the average degree in the two
periods are shown in Figure 4 (active period) and Figure 5 (quiet period). One can observe that
the average degree is relatively stable, around 3.0, much smaller than the number of nodes, which
means that the network is sparse and has a small number of nodes with large degrees, namely hubs.

The network Gt is changing in time. For different times t1 and t2, even if they are successive
in time, Vt1 is different from Vt2 as a set. However, examining the data, we found that there exist
users i that i ∈ Vt frequently at many temporal points t ∈ T for a given period of time T . In other
words, there are persistent users.

3.2 Connected components
A daily graph Gt is not necessarily connected as an undirected graph. In general, a connected

component Ca of an undirected graph Gt is defined by

Ca := {i ∈ Vt such that for any i, j ∈ Ca
there exists at least one path from i to j} ,

(8)

where a path is a set of edges, eik1 , ek1k2 , . . . eknj connecting between i and j. One can introduce
an equivalence relationship between any pair of nodes, namely, i is defined to be equivalent to j
if and only if there exists a path between i and j. It is a mathematical consequence that the set of
nodes Vt can be decomposed into mutually disjoint equivalence class as follows:

Vt = C1 t C2 t · · ·Cp , (9)

such that Ca ∩Cb = ∅ for any a, b. Ca is called a connected component, and is denoted by C1(Gt)
when we express the dependence on Gt explicitly. p is the number of connected components. It
follows from the decomposition that

|Vt| =
p∑
a=1

|Ca| . (10)

Suppose that Ca’s are ordered according to size, that is,

|C1| ≥ |C2| ≥ · · · |Cp| (11)

C1 is called largest (max) connected component. We denote |C1|/|Vt| as the relative size of the
largest connected component. We find that often |C1|/|Vt| is relatively large, typically 0.5, or even
larger.
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Figure 4: Node-edge statistics in active period; (a) Daily node-edge count (b) Average degree

3.3 Filtered daily graphs
To focus on large amounts of flows in the daily graphs, we shall filter Gt to obtain a subgraph

Ht ⊂ Gt = (Vt, Et) as follows: Each edge has a certain amount of flow gij as stated above. We
define a certain threshold g∗, which will be determined in the next section, and filter the edges by
the following condition: gij ≥ g∗, that is, by deleting all the edges that do not satisfy the condition.
Let the set of remaining edges be Ft ⊂ Et. Collecting all the nodes that appear at either ends of
each edge, one has the set of remaining nodes Ut ⊂ Vt. This completes the construction of the
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Figure 5: Node-edge statistics in quiet period

filtered daily graph Ht = (Ut, Ft).
A filtered graph Ht can be decomposed into connected components, as described above. Let

the largest (max) connected component be C1(Ht). Let the set of nodes in C1(Ht) be U ′t , and that
of edge be F ′t , which is

C1(Ht) = (U ′t , F
′
t) (12)

In the next section, we will compare the total amount of flows on Ht with that on C1(Ht). The
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former is denoted by

φ0(t) =
∑
eij∈Ft

gij , (13)

while the latter is

φ1(t) =
∑
eij∈F ′

t

gij . (14)

We will also compare the size |Ht| with |C1(Ht)|.

20



4 Dataset
4.1 The Hungarian researchers’ data set

The data set used in this research work has been downloaded from publicly available Bitcoin
blockchain by a group of Hungarian researchers and was restructured by them for their own re-
search analyses and later was uploaded in their website[64]. The timeline of the historical Bitcoin
transaction data set was compiled from 1st of January of 2009 to 9th February 2018. The num-
ber last blocks were updated was 508,241. In the initial phase of our work we have analyzed the
daily transaction graph which will be discussed in Sec. 5 and in the second phase we have further
reconstructed the data to construct user graph discussed in Sec. 6. But, in this section we have
shared the information of the data set of Hungarian research group and their own techniques of
representing the blockchain data only. It is mentioned in the website that the data set comprises of
several number of text files that contains the key parameter of each transaction of blocks along with
senders and receivers’ information and amount of Bitcoin flow among them. The researchers had
marked all these mapped as the long hash strings of Addresses ID, block ID, transaction ID and
user ID with randomly generated unique numbers for convenience for their analysis. This made the
computation much efficient and less memory space required to load the data.

Even though the data files description is mentioned we would like to share it here as well in
order to explain the parameters more clearly to the readers.

This data set contains the following files:

1. bh.dat.gz ( 20 MiB): This file contains the long hash of the block ID and the mapped numer-
ical unique identifier of each block. This also contains the POSIX timestamp of publishing
the blocks.

2. txh.dat.gz ( 12 GiB): This is the list of all the transaction hash ID mapped to the unique
numerical identifier called as TxID(transaction ID).

3. addresses.dat.gz ( 9.9 GiB): All the number of addresses hash ID used as inputs(sender)
and outputs(receiver) in the transactions are linked to the numerical unique identifier called
AddrID(address ID). The address ID are the main security that ensures transactions done
anonymously by users shadowed by addresses.

4. txin.dat.xz ( 7.1 GiB): The transaction inputs meaning the addresses that sends Bitcoins.
It also contains the previous transaction ID that helps to create the transaction graph. The
volume of satoshi represents the amount the sender transacted.

5. txout.dat.xz ( 4.8 GiB): It contains the transactions that lists the addresses that receive the
satoshi as outputs.

6. addr sccs.dat.gz ( 1.6 GiB): This file contains all the identified addresses to users utilizing
the heuristics that are mentioned in the previous research work [7].

4.2 Some statistical stylized facts about Hungarian data attributes
Our research data has been reconstructed from original Hungarian data[64] to each phases of

our research. All the phases of dataset originate from the Hungarian research group data. We have
included data processing subsections for each of the phases mentioned in Sec. 5, Sec. 6 and Sec. 7.
In this section we would like to share some insight of the data attributes and familiarize the readers
in broader sense with some statistical observations of the original data.

The genesis block of Bitcoin blockchain was first launched on 1st January, 2009. The Hun-
garian research data has downloaded 508,240 blocks on a cutoff date of 8th February, 2018. The
number of unique output transactions, including mining transactions, is 298,325,122. The number
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of unique input transactions is 297,816,881. Therefore, the mining transactions from 2009-2018
are (298,325,122-297,816,881=) 508,241, which equals the number of blocks published from 2009
to 2018. This is natural because the mining transactions have only outputs, which are rewarded by
the blockchain system without having any inputs. These special transactions appeared at the first
transaction of each block, summing up all mining rewards and all the transaction fees directed as
an output to the miner.

In this data set, the total number of unique input address (sender) is 347,791,724. The total
number of unique output address(receiver) is 369,980,378. The unique input addresses are a sub-
set of the output address, as the structure of blockchain supports that each output of a transaction
has the chance to become the input of another transaction if its spent for some purpose. Therefore,
6% of output addresses never appear as input
(369,980,378-347,791,724)/369,980,378 =0.06). These are plausibly the change addresses men-
tioned in the heuristics [8]. The total number of addresses contracted to users by strongly connected
component method or the most popular heuristic [8] was 226,302,814, which is 65% of the total
addresses (=226,302,814/347,791,724). The total number of users contracted from addresses was
35,660,272. This is understandable, as the backbone of the publicly available blockchain system
is anonymity, which restricts us to map 100% addresses to users. The number of uncontracted
addresses by the researcher group were (347,791,724- 226,302,814=) 121,488,910. Some of these
uncontracted addresses have very large frequency of appearing in the network.

The address.dat file contains the list of hash (using SHA-256 cryptography algorithm) that
represents the addresses that hides the identity making the users anonymous. The Hungarian re-
search group represented these long size address hashes, transaction hashes and block hashes with
numeric numbers for achieving faster computational processes and less memory spaces. The tx-
out.dat file to merge with this address to user files. total number of 369,980,378 unique output
addresses have been merged. similar way, then we choose the txin.dat file to merge address to user
file which completed 347,791,724 of unique input address. The unique input addresses are subset
of output address as the structure of blockchain supports that each output of a transaction has a
chance to become as input of another transaction if its spent for some purpose.

After merging the input address to user we found out that, there are only 1 input user per trans-
actions. The famous heuristics of address to user contraction [8] states all the multiple addresses
involved in the inputs of a transactions are linked to one input. So after merging the address to
users to inputs we got 297,816,881 unique input users. So these unique users list act as a key-value
pair to merge with the output of 811,201,513 number of records of output transactions that has
369,980,378 numbers of unique output users.

The Total number of all the input addresses are output addresses at the same time, while there
are output addresses that never appear as input (6% of output addresses; 0.06 (= (369,980,378-
347,791,724)/369,980,378). So these were discarded from their analysis. The total number of
address to user by Strongly connected component method total number of addresses contracted are
equal to 226,302,814 which is 65% of the total addresses (=226,302,814/347,791,724). The total
number of users contracted was 35,660,272.

in Fig. 6 we have shown the PDF of the frequency of input and output addresses. In both cases
the heavy tailed distribution suggests that there are addresses have a very large usage records in the
network. In the later sections there are more analysis done for the networks reconstructed from the
original data sets.

In our research, there are pre-processing of daily data for individual phases in order to mea-
sure the temporal change. We presented the detailed individual network analysis in those sections
respectively. We also added some monthly network analysis in the Appendix Sec A.
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(a) Input addresses or Sender

(b) Output address or receiver address

Figure 6: The PDF distribution measured in histogram (a) Input addresses (b) Output addresses
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5 Transaction graph analysis and weekly pattern of BTC volume and transactions
This section constitutes the phase one of our research work. In this section we presented some

findings of analysis of outliers’ activities. We also found the behavioral pattern of the BTC volume
and number of transactions attributes in weekdays and weekends.

5.1 Data set of daily total transactions and BTC volume sum
The data used for this part of the research have been downloaded from the website of the Hun-

garian bitcoin research group [64]. Their reconstructed database comprises transaction data (send-
ing and receiving bitcoins) with sending and receiving addresses extracted from the blockchain
network constituting the time duration from January 2009 to February 2018. The available data
have been uploaded on the website in text files and some of the blockchain’s extracted parameters
have been mapped with randomly generated numbers in order to allocate those efficiently by the
research group. Long characters of hashes have been mapped to random indicators, for example,
BlockID which starts from numerical 0 value, representing the genesis block (first block of the
bitcoin blockchain), and ends up to the value of 501418, which is the last block to download on the
cutoff date of the month of February 2018. For our research purpose, we have further restructured
the data. The structure of the data has been shown in Figure 7.

Figure 7: The final reconstructed database that generates the summation of bitcoin volume for inputs
and outputs of the transactions recorded during Jan 2009 to Feb 2018 with the block time UTC
timestamp.

After reconstructing the database, we had fixed our timestamp units into each day from time
duration of 1st of January 2009, when the bitcoin blockchain first initiated, to the cut of date of 8th
of February 2018. We summed up the transaction count for each of those days and also summed
up the input volume of bitcoin for each transaction. In each block, each bitcoin transaction follows
either of the two rules as an input–output relationship in terms of bitcoin volume, i.e., input = output
or input = output + transaction fees. This is the reason we have summed up the bitcoin volume of
each input of transactions which represents the actual volume of bitcoin exchanged through one
transaction to another. Our database excludes the transactions of the miner’s bitcoin generation
which are called the coinbase transactions, having no inputs, which were filtered out separately to
form a separate database to merge into our analysis.

A glance at final data for our analysis has been shown in Table 2.
In Table Table 3, we had the sampled price data with time duration of 9 years since bitcoin

genesis block published from the beginning of January 2009. We have downloaded the market
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Table 2: The sample of final data for transaction count and Bitcoin volume involved in each day
transaction from a data compiled from Jan 2009 to Feb 2018

Data Exchanged bitcoin volume/day (1 BTC=108 satoshi) # transactions/day
2009-01-12 17900000000 7
2009-01-14 6100000000 1
2009-01-15 50000000000 8
2009-01-16 20000000000 2
2009-01-18 15000000000 1
2009-01-19 77500000000 2
2009-01-20 40000000000 1

Table 3: The sample of Market price in USD per BTC had been compiled from Jan 2009 to Feb 2018
Source:[65]

Data Price/BTC (in USD)
2011-01-21 0.44
2011-01-23 0.4443
2011-01-25 0.425
2011-01-27 0.4174
2011-01-29 0.446
2011-01-31 0.5
2011-02-02 0.840099
2011-02-04 0.88
2011-02-06 0.92
2011-02-08 0.9
2011-02-10 1.1

price data from blockchaininfo website [65] and used in our analysis.

5.2 Auto-correlation function of BTC volume, price and number of transactions
In this part, using auto-correlation function to see if we could predict the direction of daily log

returns. The log return can be defined as:

x(t) = log
z(t)

z(t− 1)
(15)

where x(t) denoted log return of a variable z(t) on day t. We measured the log return in order
to make the series stationary for the empirical analysis. Now in our case, we calculated the log
return of the BTC volume v(t), and the number of transaction TX(t) and the daily price data P(t),
downloaded from the blockchaininfo website.

We see in the Fig. 8 the stationary time-series log return plots of volume, the number of daily
transaction and price data. The time-series data have been selected from 2013-01-01 to 2018-02-
08 in order to maintain the consistency. We plotted the auto-correlation function of the three daily
returns with the previous lags. The dotted line is the 95% confidence interval.

For the BTC volume and number of transactions, the time-scale for relaxation was found ap-
proximately a week as shown in Fig. 9a and Fig. 9b For price data, in Fig. 9c the ACF vanished at

25



the lag of 1 day. This is reasonable as otherwise, one can do a linear prediction for up or down of
tomorrow’s price based on that of today.

5.3 The evolution of bitcoin transactions (a bird-eye view)
The distribution of transaction count to volume with the evolution of time has been plotted. An

interesting set of observable to better understand the underlying
evolution of a unique financial system has been demonstrated. We found that there is some

impulse of the volume of bitcoin transaction in the different time slots. Our research focused on
this evolution of the financial system is after 2013 when bitcoin is a full-fledged matured currency
used by people by trading goods and services. Fig. 10 shows that the daily exchange of bitcoin
volume substantially increased after 2013 and on wards. In Fig. 11, we have plotted the same
graph in log scale and showed the average volume quantity flowing through the number of daily
transactions. The weekly pattern of volume flow observed in the graph proves bitcoin having a solid
real economic financial system that we have statistically derived in the next section. In Fig. 12, we
have portrayed the volume of BTC compared with price and observed the high price volatility.We
have plotted another graph in Fig. 13 where we showed the time evolution of price, the number of
mined transactions and BTC volume. We observed that the number of supply mining transaction
has quite stable throughout the time series.

5.4 The weekly pattern of bitcoin volume sum and number of transactions
We had observed that the volume per transaction became relatively stable after 2013, while it

was so volatile before the year. Also, it is known that bitcoin mining to generate blocks has been
quite stable since the year 2013. So let us use data from January 1, 2013, in the following analysis
of power spectrum. Consider a time-series xn with n = 0, 1, . . . , N − 1, where N is the length of
the time-series. Discrete Fourier transform of xn is given by

Xk =

N−1∑
n=0

xn e
−2πi nk/N (16)

where k = 0, 1, . . . , N − 1, and i =
√
−1, i.e. the unit of imaginary number. Obviously Eq.(16)

is periodic in k with period N , so one can adopt the convention that X−k = XN−k. Because
xn is real, it follows that X−k = X∗k , where ∗ denotes the complex conjugate. Frequency fk
corresponding to k is defined by

fk = k/N (17)

The range of frequency can be regarded as −0.5 ≤ fk ≤ 0.5.
Power-spectrum or periodogram is defined by

P (fk) =
1

N
|Xk|2 (18)

where |Xk| denotes modulus or magnitude ofXk. BecauseX−k = X∗k , one can focus on the range
0.0 ≤ fk ≤ 0.5. P (f) represents how much oscillating or harmonic movement with the frequency
f and, equivalently, the periodicity T = 1/f is contained in the original time-series xn. Therefore,
f = 0.5 corresponds to T = 2, namely the most highly oscillating movement; f → 0 is T →∞.
One often uses smoothed periodogram by applying a filter to the raw periodogram. See standard
textbook such as [66] and [67].

We apply the method of smoothed periodogram for the time-series of daily volume Vn and
daily number of transactions Tn (where n denotes time in day) in order to find periodicity in them.
From Fig.4 and Fig.5, it is obvious that the time-series of volume and transactions have a trend of

26



exponentially growth, it would be natural to take logarithms of them and to consider the time-series,
xn = log Vn and xn = log Tn.

First, we segment the data into different days of week, namely n = Sun,Mon, . . . Sat, and
calculated averages and standard error (defined by standard deviation divided by the square root of
number of data in each collection). The result is given in Figure 14. One can see that the level of
volume or transaction is higher during weekday than weekend; in other words, there exits a weekly
pattern that is not obvious in Fig. 10 and Fig. 11.

Additionally, we performed the above method of periodogram for each of the time-series. We
employed a detrending by removing the mean of the series and subtracting a linear trend, a tapering
with 10% at the beginning and end of the series, and a modified Daniell smoothing with successive
simple moving averages of lengths 6 and 12 (see [66] for the details of estimate spectral density of
a time series by a smoothed periodogram).

The result is given in Figure 15. For both of volume and number of transactions, one can
observe an obvious periodicity at f = 1/7 or equivalently T = 7 days as denoted by the dot-
ted vertical line. Also present are higher order harmonics at f = 2/7 and so on. On the other
hand, there is an overall increase of power spectrum towards f → 0, corresponding the trend of
exponential growth which one already observed inFig. 8c and Fig. 9c.

5.5 The outliers’ transaction patterns
In our analysis, we had concentrated on two of the timeslots to find the outliers transaction

pattern. Both the patterns have an unusually high spike of bitcoin volume within 1 month recorded
from January 2016 to February 2016 shown in Fig. 16 and even though the there was not much
variation of price there was a very big volume bitcoin circulated during the last week of January
2016. There was an interesting finding in Fig. 17. The number of transaction appeared in January
stayed in a range of 0.18–0.24 million and the BTC volume spike

cropped up in the last week of January. This indicates that there must be some big volume of
BTC fow happened on each of some specifc numbers of transactions as the total number of the
daily transactions are within the regular range. This resulted in the existence of some outliers’
transactions, which are responsible for the big volume of BTC transacted during that last week. By
selecting this transaction pattern timeslot of 1 week (from 21st to 28th January 2016), we recalled
our main reconstructed database to find out the list of individual transactions involved in that time
frame.

We have created a volume to rank distribution log–log plot in Fig. 19 to understand more about
the outliers activities. From the plot, it has been clearly observed that a considerable number of
transactions possess the low ranks at the tail of the distribution. Besides, the steep shape of the
tail suggested that there is the large rank of transactions that contained a large volume of bitcoin
flow. But which are those outliers’ transactions that were distinctively traceable among the rest?
The most direct method we applied is to use quantiles. The quantiles are values which divide the
distribution such that there is a given proportion of observations below the quantile. Mathemati-
cally, we estimate the quantile, the value such that a proportion q will be below it, as follows. We
have n ordered observations which divide the scale into n +1 parts: below the lowest observation,
above the highest and between each adjacent pair. We set this equal to q and get.

i = q(n+ 1) (19)

If i is an integer, the ith observation is the required quantile estimate. If not, let j be the integer
part of i, the part before the decimal point. The quantile will lie between the jth and (j + 1)th
observations. The proportion of the distribution which lies below the ith observation is estimated
by i/((n+ 1). We estimated it by xj+(xj+1- xj) times (i− j).
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Now focusing on the individual transactions of the whole month of January–February 2016, we
had calculated the quantile of BTC volume for each transaction which gave us the statistical insight
of what percentage of daily transactions have a certain limit of BTC volume involved. As shown in
Fig. 18 99% and 100% quantiles on 21st–24th January have very interesting and have a statistical
outlier pattern. For example, there is a transaction on 22nd January that has 40000 bitcoin involved
in it.

On 24th January, 1% of total daily transactions has 6000–10000 BTC volume at each transac-
tion.

5.6 Directed transaction graph and degree correlation to visualize outliers’ activities
The directed transaction graph represents the f;ow of BTC between transactions [7]. Each

node represents transactions and each directed edge between the source that is an input (previous
transaction) and a target represents an output of transactions (current transactions) as shown in the
Fig. 20 Each directed edge also includes a value of BTC flow [24]. Thus, a transaction graph table
can be constructed for each transaction as a node having a number of incoming connections called
in-degree and outgoing connections called out-degree. Mathematically, the in-degree of node i is
the total number of connections onto node i and is the sum of the ith row of the adjacency matrix:

kini =
∑
j

aij (20)

On the contrary, i, the out-degree of node, is the sum of connections coming out from node i and
is the total number of the ith column of the adjacency matrix

kouti =
∑
j

aji (21)

The degree correlation is the relation between kini and kouti and sometimes can make a large dif-
ference to the effective properties of the complex network. In our analysis, after considering the
outcomes of the quantile plot, we have constructed a transaction graph. It includes all the transac-
tions occurred in between 21st to 24th January 2016.

All the transactions are represented as the nodes and links are represented as the input con-
nections from the previous transactions to the current one. We measured the degree correlation of
the graph by plotting the in-degree vs out-degree of each transaction node as shown in Fig. 21 .
The degree correlation graph visually described important network properties such as how many
addresses involved as in-degree from the previous transactions and out-degree to the next ones. We
came across an important finding that there was a transaction which has 3033 out-degrees with only
1 in-degree and also there was transaction with 633 in-degrees with 1 out-degree. This leads to the
possible explanation of historical events soft fork of Bitcoin improvement protocol up-gradation
called BIP-144 that was taking place during that period of time. These outlier transactions could
be the result of the bitcoin developers’ experiment.

We investigated on the unique transaction volume patterns and based on that we developed a
methodology to extract interesting findings from a reconstructed database that has been extracted
from blockchain system. We have found out that there are weekly patterns in a bitcoin volume to
the price per day graph and there is a clear sign of economic financial trading of bitcoin flow among
the transactions. The pattern of weekly trading shown in our analysis helped to investigate more on
the specific impulses of transactions in a more focused timeslot. We have analyzed each transaction
and bitcoin volume involved in that timeslot. The volume rank distribution helped us to identify
outliers transactions with the largest volume of bitcoin involved in it. The SegWit (Segregated
Witness) and its effect in terms of the soft fork and hard fork debate were heating up during the
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beginning of January 2016 that might be one of the causes of this large amount of bitcoin flow in
some outlier transactions.

The bitcoin system has historically gone through a lot of up-gradation which was termed as
BIP (Bitcoin improvement proposal). In our focused tenure of January 2016, there was a big buzz
in the bitcoin community that the size of block in blockchain needed to be increased. The result
would make the transactions per second become faster. So BIP-144 Proposal to increase maximum
possible block size starting at 8 MB was proposed in January 2016. Increasing the block size would
increase the scalability but it will reduce the transaction fee which in turn would not profitable
for miners since a block can hold more data and transactions that can use that new space and
thus may be resulted in cheaper fees. So, there was a big debate going on between the miners
and developers’ community. There was a debate even for adopting either a hard fork or soft fork.
Soft forks allow compatible changes. With soft forks, the old and new software can co-exist on
the network. Hard forks break compatibility of all previous Bitcoin software and require every
participant to upgrade to the same rules by a deadline or risk losing money. Such events can also
harm network effects. After long debate and discussion, it was never merged. So, one conjecture we
can make by observing these outlier transaction patterns of January 2016 that, there might be a lot
of experimentation going on by the system developer community to observe network performances
which might have caused this spike of the huge daily transacted bitcoin volumes.

The next research goal was to interconnect the flow of bitcoin with users and transactions and
find out more results that reveal new ways to understand the topological structure linkage with
cryptocurrency evolutionary growth.
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(a)

(b)

(c)

Figure 8: The log return of (a) daily BTC volume (b) daily number of transactions (c) daily price
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(a)

(b)

(c)

Figure 9: Auto-correlation function of (a) daily BTC volume (b) daily number of transactions (c)
daily price
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Figure 10: Price evolution of bitcoin volume transacted per day

Figure 11: Log scale plot to understand the weekly pattern of exchange of bitcoin transaction.
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Figure 12: The time-series data of BTC volume and number of transactions per day

Figure 13: Price evolution of bitcoin volume transacted and mined per day in log scale
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Figure 14: Average of (a) logarithm of daily volume, (b) logarithm of daily numer of transaction for
each day of week. Error bar is the standard error.
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Figure 15: Power spectrum as smoothed periodogram for the time-series of (a) logarithm of daily
volume, (b) logarithm of daily numer of transaction. See the main text for the details of the method
of smoothed periodogram.
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Figure 16: A closer look at the unusually high volume of transaction happened on last week of
January 2016

Figure 17: A closer look of BTC volume to the number of transactions during the month of January
2016

35



Figure 18: Quantile calculation for BTC volume/transaction for the January–February 2016

Figure 19: Bitcoin volume rank distribution (log–log scale) from 21st Jan 2016 to 28th Jan 2016
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Figure 20: Transaction graph
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(a) (b)

Figure 21: The degree correlation of in-degree and out-degree (a) heat map(b) 3D plot for transaction
graph constructed in time series of 21st to 24th
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6 Identifying Big players in the bitcoin blockchain: (A new approach)
This is the second phase of the research where we introduce a new approach of finding the

activities of Big players inside Bitcoin blockchain.

6.1 Dataset for daily users’ network flow graph
The research data for this paper has been collected from the web repository contributed by

the Hungarian bitcoin research group [17]. The research group created a reconstructed database
after downloading the publicly available bitcoin blockchain, where compilation of transaction in-
formation (sending and receiving of bitcoins among traders) are in secured and anonymous format
holding the timestamp information from January 2009 to February 2018. They have used existing
techniques [7, 22] to map addresses to user. They have marked all these mapped users with ran-
domly generated unique numbers for analysis conveniences. Other long string ID in the blockchain
has been marked with randomly generated numerical IDs for the same reason. In the blockchain
there were 501,418 number of blocks which comprised of verified numbers of transactions com-
passed by the miners. Some statistical findings on the Hungarian research group’s existing database
of January 2009 to February 2018 is shared in the Appendix Sec A.

In our analysis, we have created our own address to user hash dictionary, which includes the
uncontracted addresses that were filtered by the Hungarian research group. For that, we used each
uncontracted address’s hash as their user ID, so that we could distinguish between the two. The
blockchain data contains some of the records that has non-standard transactions (that has addresses
which can not be decoded by system). We had filtered out those transactions as those might lead to
ambiguous results. Then we included the timestamp information to analyze the temporal change.
We only used the output satoshi values as edge attributes which represents the flow of Bitcoin from
input nodes to output nodes.

Between the year of 2011-2012 Bitcoin had gained commercial values and had been used more
globally and acknowledged economically. Before that time, it was limited to be used as a financial
innovation and were circulated only experimentally among its pioneer users.Furthermore, the first
4-5 years data after the launch were more frequently analyzed by the researchers. Considering all
these, we had only focused on the data within the period from 1st January 2013 to 8th February
2018.We filtered out the nonstandard transactions that had contained incomplete information in
order to avoid ambiguous statistical results. After separating 113,492,656 self-loops records and
summing up all the multi-edges the total number of edges of our final graph during the year from
2013 to 2018 had been reduced to 432,853,828. The number of nodes of this large data set had
reduced to 174,250,450.

The monthly node-edge statistics of the 2013-2018 has been demonstrated in the Fig.22.
As discussed in the previous sections, one of the main focus of this research was to investigate

on the weekly pattern of the network flow, the daily timestamped data for specific duration would
provide us sufficient exploratory results and would also be computationally beneficial. From the
Fig.22, we divided our analysis into two periods. First one is, ’Active period’, that is represented by
the days between 1st July, 2017 to 31st December 2017. Bitcoin gained its maximum price hikes
in the history during this period. The second one termed as ’Quiet Period’ is comprised of the days
between 1st January, 2015 to 30th June 2015. So, the main network has been segregated into daily
snapshot of graphs where at any daily time t, the graph can be denote by the Eq.(22),

Gt = (Vt, Et) (22)

Where Vt and Et are the vertices and edges of the graph at time t respectively. The amount
of satoshi (= 1/100,000,000 BTC = 1/108 BTC) flow as weight is denoted by w. Now, in order to
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Figure 22: Monthly node-edge count from 2013 to 2018

represent the edge flow, if we consider vi and vj are two vertices and then weight or satoshi flow
between them can be represented by wij for an edge eij = (vi, vj).

The node-edge count and average degree on active period are shown in Fig.23 . The same
calculation for quiet period is demonstrated in the Fig.24 .

The average degree for the directed graph in both period is around 3. There are no drastic
changes in the average degree in both cases. The total number of existing links existed in both
cases are much smaller than the maximum possible links . Sparse linkages can be recognized in
networks in which the nodes are strenuous to be linked, as shown in Eq.(23) :

L < Lmax where Lmax = N(N − 1)/2 (23)

Like most of the real world networks our reconstructed graphs for both time periods also
demonstrated sparsity as topological property. This means the existence of few extremely linked
nodes and many sparsely linked nodes within the same network.

Node frequency : The frequency distribution of the users had a key role to play in our analysis.
It is one of criteria of defining ’Big players’ activity which we would like to discuss in the later
section of this paper. Now, we share the results of calculating the total frequency of each node
being active either as input or as output. The advantage of excluding all the self-loops gave us total
frequency count for each individual node appearing as input or output uniquely for each transaction.
The top 20 users’ frequency list shown in Table 4. We will use the information in the later section.

6.2 Significant difference between weekdays and weekend
We sub-divided the data into active and quiet period. We cleft these two period networks into

daily images and dissertated the basic statistical properties of nodes and edges. Now, in this section,
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Table 4: Top 20 users’ total frequency count as input/output during 2013-2018

UserID frequency

3366757 30329366
109540 30078473
14382265 13710199
27888617 10596775
25703559 9583373
3491614 8118837
6188061 8046046
76589853 6986710
135111428 5815920
18307826 5479502
45976983 4799924
19459450 4321546
62504973 4207824
190362585 4048302
45452467 3732724
65608404 3664173
41633902 3142230
59826853 2786511
11031719 2749122
3959839 2675207

in the two time domain we discuss the network properties change with the transition from weekdays
to weekends for specifically for large edge flows. This converged our analysis of defining the ”Big
players”. In order to scrutinize the Big players’ activities and their network we target to find a
threshold point to identify the comparatively larger edge flows.

6.3 Threshold and network Size
The ”Big players” in a financial system in general case are the users or wallets which are in-

volved in transacting very large daily volume of bitcoin and also have a tendency of frequently
appearing in the network compared to normal users. The node-edge statistics gave us some insight
of the difference between

size of the daily network in active and quiet period and the normalized number of nodes and
edges with respect to different threshold edge flow had been shown in Figure 25 and Figure 26
respectively. Readers can also take a look at the Appendix Sec D to know the daily total flow of
the subgraph for active and quiet period.

There were perceptible difference in reduction of network size which happened due to the dras-
tic change of emulated threshold point range. In order to cynosure the large edge flows we were
interested about the 20 BTC threshold point. Above this point, not only the size of the network are
confined to the large flows only, but it would also give us widened opportunity to fixate the topolog-
ical differences of the Big players’ between weekdays and weekends. Please see Appendix Sec B
which justifies our assumptions.

6.4 Sum of edge-flow and average edge-flow
In our previous research work[68], we had shown by calculating the average and standard er-

ror(standard deviation divided by the square root of recorded data) of number of daily transaction
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and volume sum of transacted BTC between the period from 2011 to 2018. The both parameters
had distinct proneness to follow a weekly pattern. That means the quantified volume or number of
transactions is higher during weekdays than weekend. We had calculated the daily average edge
flow of satoshi(lowest unit of bitcoin/edge, where 1 satoshi = 0.00000001 BTC (= 1/100,000,000
BTC = 1/108 BTC). By the term “average edge flow” we meant to say the number of satoshi outflow
for each unique pair of users or nodes of our graph.

From Figure 27, we can clearly observe that there is clear indication of divergence from week-
ends rate of flow than that of the weekdays in both active and quiet period. But even though, the
weekly pattern is clear for the main graph the consistency of the pattern actually diminishes for
higher edge flows as shown in the Figure 28. At different smaller threshold point the dissemblance
among Sundays and Mondays were indistinguishable .

So, in our final analysis the sum of daily edge flow were taken in to consideration for big players
weekly patterned activities rather than the average edge flow. In the Appendix Sec C we showed
some valid reasoning for not considering the average edge flow attributes.

6.5 Connected components of sub-graph and the BTC flow inside
The ”Big players” in Bitcoin exchange market are connected every day of the week with other

exchanges based on transferring big volume of BTC in order to balance the demand and supply
from the customers’ end. For this, we analyze connected components size and the normalized
BTC circulation inside the maximum connected components. We expect a deterministic differences
among the weekdays and weekdays and we quantify it.

The connected components of an undirected graph G=(V,E) are the maximum subsets C1, C2,
. . . ., Ck such that V = C1 ∪ C2 ∪ C3 ∪. . . . . . ∪ Ck, and u,v ε Ci if and only if u is reachable
from v and vice versa . The size of connected components represents the number of nodes, who
are connected with the rest at least a path. In our analysis, we concentrated on two of the aspects
to explore this structural properties of our graphs. Firstly, we used the 20 BTC threshold to create
daily snapshot of the undirected sub-graphs. Secondly we calculated the normalized maximum
connected components and the normalized BTC flow inside the maximum connected components.

The Figure 29 shows that the daily average maximum connected components normalized size
for both active and quiet periods having weekly patterns. We can explain this in terms of big edge
flows and connectivity of the largest components. On weekends there were less number of nodes
which remained active in the network. In real world, business certainly takes time off particularly
on weekends. All the largest stock exchanges in the world maintains trading hour that follows bank’s
operating hours.Because of this stock markets are closed on weekdays. The crypto-asset exchanges
have technical upper hand as investors are able to make trades on Saturdays and Sundays. But there
are additional challenges and risks are there. The outside operational hours trading activities leads
to lot of problems. As there are small number of users with relatively small volume of BTC traded,
prices are more influenced by single trades and moreover, the volatility factor is always there.
The mismatching between sellers’ asking price and buyers’ bids lead to uncertainty to complete
negotiations. On the contrary on weekdays, scenario improves quiet in an extent. The main reason
is, the size of maximum connected components grow on weekdays when there are more nodes to
participate. The buyers and sellers have much more information and options.

In terms of flow inside the maximum connected components we quantified the circulation by
taking proportion of the flow inside the maximum connected component of the daily 20 BTC sub-
graph to the total flow inside the total connected components . The daily total flow of the sub-graph
was calculated in order to understand the flow inside the maximum connected components and is
shown in the Figure 30. We can approximate the average daily total flow in spite of having some
larger fluctuation in quiet period than active period. The active period has daily total BTC flow
twice as larger than that of the quiet period.
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Prices quoted during after-hours sessions are not ”official” and don’t reflect credibility among
the traders’ mind. As the Figure 31 shows on every weekdays the approximately 65% or more
of total flow of all connected components circulates inside the maximum connected components,
where as on weekends its less than 55% approximately in active period. In the quiet period, due
to some spikes of daily weekend flow push the average Saturdays’ flow a bit higher but the weekly
pattern still holds. So, both the size and flow inside the maximum connected components disclosed
the difference among weekdays’ and weekends’ activities .

The sub-graph of threshold greater than 20 BTC filtered out all the small flows. The maximum
connected components of this sub-graph include all the users who are persistently involved in the
exchange market. Even though there might be other relatively less persistent users’ influences in-
volved in this sub-network, the quantification of currency stream inside the maximum connected
components gave us good insight of flow pattern. In that context, we planned to measure some in-
dividual renowned crypto-exchanges’ daily total average flow and research their seasonality weekly
behavior. In that way, we can emphasize similar behavior be the identifying criteria of other active
anonymous financial institutions inside blockchain.

6.6 Examining some exchange’s activities : The ”Big players” market scenario
In this final section, we finalize the definition of ”Big players”. In order to make the definition

compatible we use available on line open source data of crypto-exchange markets to correlate our
blockchain restructured data. In practical world, many transactions in the exchange market that has
liquidity of bitcoin supply sufficient enough that customer can disengage their crypto-asset at any
moment. customer can buy and sell bitcoin with equivalent exchange of fiat currency by making a
bank transfer to the market’s bank accounts. The purchaser’s account then credited by that exchange
market on their system with that fiat money. This gives a clear indication of the market’s public
key’s daily use with very high recurrences. Besides, there are also chance of high volume of BTC
flow to and from these market’s wallet.

While exploring for the open source crypto-exchange data we found a website (https://bitinfocharts.
com/top-100-richest-bitcoin-addresses. html) where we collected the publick key of 1000 top rich
bitcoin wallets. We had merged the hash public keys to Hungary research groups list of addresses
database and then consecutively merged with our restructured address to User database . In Table.
1 we have shown the public wallets that were contracted with our user database .

We found that, till the cutoff date of 9th February 2018, Xapo and bitstamp wallets have very
large number of edges. These two wallets were also discovered in the Table 4 of our top 20 frequent
wallets that we found earlier. These two exchanges were the prime specimens to observe the money
flow .

Finally, we define ”Big Player” as follows : ”The users that have the criteria of (1)being highly
frequent in the blockchain network (2)having persistent activity (3) showing weekly pattern of
total network flow”. In order to authenticate the definition we present the result of applying the
criteria on the top 20 frequent users in Table 6 We took both exchanges’ user ID and weighed the
daily average sum of inflows and outflows. In both cases the results followed the weekly pattern as
shown in Figure 32 and Figure 33 .

Along with these two exchanges we calculated the average daily total inflows, outflows and total
flows (In+out) of average weekdays and weekends of the other top 18 frequent users . Out of 20
users 12 users showed daily activities, very large daily in/out/total BTC volume and weekly pattern
of in/out/total BTC flow. These can be identified as similar financial institution or exchange market.
The rest were not shown similar results because of insufficient daily activities, no distinction of
weekdays and weekend activities. These Big players can be example of crowd funding or donation
accounts, gambling, gaming sites or other non-financial services.

In our previous study, we identified the weekly pattern of the daily total sum of transaction
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Table 5: The contraction of some exchange with our restructured address to users’ database

AddrID USerID Wallet name

65994621 14382265 Xapo.com-2
65994793 14382265 Xapo.com-2
65995913 14382265 Xapo.com-2
65995953 14382265 Xapo.com-2
65995956 14382265 Xapo.com-2
65995973 14382265 Xapo.com-2
65995979 14382265 Xapo.com-2
65995996 14382265 Xapo.com-2
65995997 14382265 Xapo.com-2
65996056 14382265 Xapo.com-2
65996060 14382265 Xapo.com-2
65996063 14382265 Xapo.com-2
99730379 3Nxwenay9Z8Lc9JBiywExpnEFiLp6Afp8v Bitstamp-coldwallet
108931886 59826853 Bitstamp.net-old2
138715869 138715869 Coincheck-coldwallet
211452559 3D2oetdNuZUqQHPJmcMDDHYoqkyNVsFk9r Bitfinex-coldwallet
219726782 59826853 Bitstamp.net-old2
269720834 59826853 Bitstamp.net-old2
301211876 3Cbq7aT1tY8kMxWLbitaG7yT6bPbKChq64 Huobi-wallet

Table 6: Revealing crypto-exchange market among top 20 frequent users

Nodes Wallet identity Frequency (in million) Weekly pattern? Persistent activity? Financial institution?

598268531 Bitstamp 30 Yes Yes Yes
1432265 Xapo.com 13 Yes Yes Yes
109540 Unknown 30 Yes Yes Yes
11031719 Unknown 2 Yes Yes Yes
3366757 Unknown 30 Yes Yes Yes
13511148 Unknown 5 Yes,Only active period Yes,only active period Yes, new institution
25703559 Unknown 9 Yes Yes Yes
41633902 Unknown 3 Yes Yes Yes
27888617 Unknown 10 Yes Yes Yes
3959839 Unknown 2.6 Yes Yes Yes
65608404 Unknown 3.6 Yes Yes Yes
62504973 Unknown 4.2 Yes Yes Yes
45976983 Unknown 4.7 No Yes No
19459450 Unknown 4.3 No Yes No
18307826 Unknown 5.4 No Yes No
45452467 Unknown 3.7 No Yes No
190362585 Unknown 4.04 No Yes,only active period No
6188061 Unknown 8 No No No
3491614 Unknown 8 No No No
76589853 Unknown 6.9 No No No
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and bitcoin volume. In this present study, we first checked whether the weekly pattern could be
explained by the dynamically changing network properties. To understand this, we performed a
threshold analysis aimed to identify the big flows.

The connected component analysis of threshold sub-graph showed that the size of the maxi-
mum connected components during weekdays is larger than that of weekends. The result was per
expectation for both active and quiet periods. A primary reason for the observed trends is attributed
to the mismatch in the standard operating hours of banks and the crypto-asset markets. Over the
weekend, not much new money comes in to support prices. In terms of flow, the normalized av-
erage edge flow inside the maximum connected components follows the weekly pattern. The two
crypto-exchange institutions, Xapo.com and Bitstamp, supported the weekly pattern of daily total
circulation in their own networks.

We also found that both Xapo and Bitstamp were among the top 20 frequent users in the net-
work. Thus we defined big players in terms of high frequency, persistent daily activity, and weekly
pattern of total daily average BTC flow. Among the top 20 frequent list, we tried fitting in the two
criteria. The 12 out of 20 users who followed, we identified as crypto-exchange companies or fi-
nancial institutions. We excluded the remaining 8 users because of insufficient persistency and not
following the weekly pattern plausibly being online gambling, crowdfunding, and donation insti-
tution. The cold wallets, despite their random big flows cannot be termed as big players according
to the definition.

The goal of this part was to reveal the identity of some specific users who are involved in big
network flow persistently in the blockchain. We proposed a methodology focusing on behavioral
patterns of those users involved in the daily big circulation of money. Applying this methodology,
we distinguished the big players into two hypothesized categories: financial and non-financial. The
weekly patterns can help us uncover the identity of users we term financial institutions, because
they have more BTC trading activities during weekdays than weekends. Most exchange markets
belong to this category. A second category of big players is those with large frequency but lagging
daily persistent activities and weekly patterns. We conjectured that all the crowd funding, donor
organizations, gambling, or betting sites could be examples of non-financial institutions.

This part of the research has a contribution to the field of economics. The blockchain technol-
ogy has been arousing a lot of interest from a variety of areas such as trade, finances, government
and policy. However, because of the anonymity, it turns out to be a challenging task to quantify
this engagement and the adoption by financial institutions. In this work, we aimed at understanding
which are the main criteria associated with identification of the financial institutions inside a fully
digitized economy. In order to do this, we applied a new technique along with the existing ones
for deanonymizing the financial institution users having high frequency, appearing persistently on
daily big flow of bitcoin. The financial market of crypto-asset with flow of BTC funds are the rep-
resentation of saving and investing special currency through the intermediary agents like savers and
investors. Like the traditional fiat currency bitcoin does not have intrinsic value. But, unlike the
fiat currency, it has a store of value like nonmonetary assets for example savings accounts, stocks,
bonds and real estate. In our work, the big players’ connected component analysis has given us
the insight of the quantification of the daily big flow of crypto-asset and acknowledges the circu-
lation demonstrates how money moves through society. The big money flows which involves the
conversion of fiat currency to crypto-asset invested by users with the help of intermediary finan-
cial institutions and flows back to them as payment for selling back for profits. In short, a digital
crypto-asset economy is an endless circular flow of money. In our work we have found out that
more than 50% of the total threshold flow (Above 20 BTC) involves the circulation of big flows of
economic activity among the big players. In order to see the crypto-asset to be successful in future
the big players need to engage and embrace reasonable and responsible regulation. The growth
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of this industry depends, in part, on the establishment of safe, fair and reliable market conditions.
Presently, the proper regulatory environment is still uncertain and there are a lot of provisions of
research work for standardized regulatory policies .

46



 0.001

 0.01

 0.1

 1

20
17

-0
7-

01

20
17

-0
8-

01

20
17

-0
9-

01

20
17

-1
0-

01

20
17

-1
1-

01

20
17

-1
2-

01

 0.1

 1

#
n

o
d

e
s
 (

in
 m

ill
io

n
)

#
e

d
g

e
s
(i
n

 m
ill

io
n

)

Time (Year/Month/Day)

Daily number of nodes and edges Active Period(Jul2017-Dec2017) 

#nodes/day
#edges/day

(a) Node-edge count

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

20
17

-0
7-

01

20
17

-0
8-

01

20
17

-0
9-

01

20
17

-1
0-

01

20
17

-1
1-

01

20
17

-1
2-

01

a
v
e

ra
g

e
 D

e
g

re
e

Time (Year/Month/Day)

Daily average degree in active period (Jul-Dec2017) 

Average degree

(b) Average degree

Figure 23: Node-edge statistics in active period; (a) Daily node-edge count (b) Average degree
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Figure 24: Node-edge statistics in quiet period
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Figure 25: Normalized Node-edge count on different threshold in Active period; (a)Node count (b)
Edge count
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Figure 26: Normalized Node-edge count on different threshold in Quiet period
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Figure 27: average edge flow with standard error on average weekdays and weekend for;(a) Active
Period (b) Quiet Period
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Figure 28: average edge flow on average Sundays and Mondays at different threshold for (a) Active
Period (b) Quiet Period

52



 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

Sun Mon Tue Wed Thu Fri Sat

A
v
e

ra
g

e
 w

it
h

 s
ta

n
d

a
rd

 e
rr

o
r

Day of week

(a) Active Period

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

Sun Mon Tue Wed Thu Fri Sat

A
v
e

ra
g

e
 w

it
h

 s
ta

n
d

a
rd

 e
rr

o
r

Day of week

(b) Quiet Period

Figure 29: Normalized Max connected components size with threshold edge flow greater 20 BTC
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Figure 30: The total daily flow of sub graph in (a) Active Period (b) Quiet period
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Figure 31: Normalized Max connected components flow with threshold edge flow greater 20 BTC
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Figure 32: The average daily sum of in and out flow of xapo.com
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Figure 33: The average daily sum of in and out flow of Bitstamp exchange
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7 Simulation, results and interpretations
In this section we would like to use the sophisticated method of non-negative matrix factoriza-

tion (NMF) to extract hidden factors from the user graph to identify big players in terms of their
persistent or regular activities. The hidden factor will be calculated by simple probabilistic method
of Bayesian Information criterion(BIC). Finally, we will apply the NMF technique to understand
the decomposed matrices of the sender/receivers’ to interpret the network analysis.

7.1 Methodology of stochastic model using NMF
Background of NMF: Classification prediction is one of the practical real world issue in modern

complex multidimensional datasets representing the pattern recognition and unsupervised
clustering. Factorization of matrices is one of the techniques that popular decomposition
methods like Principal component analysis(PCA) or independent component analysis(ICA)
uses along with the comparatively new methodology of NMF which is also decompose the
original higher dimensional data to a much lower dimensional basis component. But, it
has a special applicability of the cases where the non-negative entries are constraints, and
components are independent and thus special hidden factors with overlapping and intuitive
relations are expected to be explored in the analysis. The NMF method is implemented in the
recommender systems, natural language processing(NLP), audio signal processing, genetics
etc. cases.

The advantages of NMF: Three properties distinguish NMF from other decomposition methods
[69].

• Non-negativity
• Sparsity
• Overlapping tendency among components.

First of all, NMF is applicable on data that composed of non-negative factors. This in-
stigates the existence of hidden interpretation among the components within the context
defined by the primary data. The decomposed factors can be distributed in different pro-
portions compared to the each observed sample. In topic-document example mentioned in
Appendix Sec E the top frequent words are linked relationships of the determining the topics
of the document.
Secondly, sparse results are very common in NMF, i.e the decomposed basis components
have very small number of nonzero elements. This makes the classifications are very local-
ized and compact compared to other ones [70, 71]. The sparseness of the results is such that
the most dominant components is easily identifiable compared to the less supreme ones.
Lastly, NMF aims for finding underlying relations among the entries irrespective to the or-
thogonality or dependence. For example in case of PCA next component of the highest
variance or the principal components has a chance to be localized to be orthogonal to the
principal ones. So, for cases where unexplored relationships categorization is needed, NMF
is comparatively more effective.

Mathematical definition of NMF: This part of the discussion provides a formulation for NMF.
The problem solving feature of NMF is linear dimensionality reduction (LDR), which is a
key tool in data analysis, and is widely used for example, in the use cases like compression,
visualization, feature selection and noise filtering. The original data matrixX is decomposed
by two low-rank matrix W and H which approximately regenerates the original data when
matrix multiplication of those are implemented. An error or loss is involved in doing so.
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This introduces the concept of Error or Loss function. It indicates the measure of the quality
of approximation. Let X be a n × p non-negative matrix, meaning all the row and column
item are either zero or positive values. This original data source can be in applications such
as audio spectrograms or muscular activity, Netflix users’ movies rating, or in our cases the
users’ currency flow ledgers. Then the Non-negative matrix factorization can be defined as
the approximation of as follows:

X ≈WH where Xij ≥ 0 for all i, j,

Wij ≥ 0 for all i, j,

Hij ≥ 0 for all i, j.

(24)

and can be rewritten as,

Xi,j =
∑
k

WikHkj (25)

where W , H are the decomposed matrices with dimension n × k and k × p respectively.
The term k is a hidden feature positive value, i.e. k > 0. In order to implement the NMF
two important factors needed to be considered.

Optimization: The main target of NMF is to estimate the matricesW andH in such a way
that it reaches to the local minima. It is also called the factorization rank k which is
often chosen in such a manner that k � min(n, p). It takes more computational time
as the main data represented in the matrix form in order to update the rules of NMF.
Instead of converging to global minima it stabilizes in the local minima as per the rules
update which is also based on the randomly initialized for W and H. It is important to
choose the initial condition as because of the stochastic nature of initialization might
produce the same output in every run. The algorithm binds the samples into k features
or components, where k is the pre-specified factorization rank.

min
W,H≥0

[D(X,WH) +R(W,H)] (26)

where

• D is the loss or error function that measures the approximation. There are two
types of loss functions which are based on either the Frobenius distance

DFD(X,WH) =
1

2

∑
||Xij − (WH)ij ||2 (27)

or the Kullback-Leibler divergence.

DKL(X,WH) =
∑
ij

[
Xij log

Xij

(WH)ij
−Xij + (WH)ij

]
(28)

To be minimized, measuring the distance between X and the dot product WH .
Note that, there is another option called ”Itakura-saito” different from ”Frobe-
nius” and ”kullback-leibler” lead to significantly slower fits and have use cases in
the audio signal processing.
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• Here, an optional regularization function isR, which can be imposed to extract de-
sirable outcomes in the matricesW andH , for example smoothness and sparsity[72].
Regularization is very important as it involves some known factors that is observed
with the experience of handling the data and that might influence the outcome. In
our stochastic model development as we are dealing with the unsupervised nature
of our Bitcoin user pool data we were not influenced about using the regularization
parameters. We have done an analysis with the known use case of text-document
NMF analysis based on topic as the hidden factor included in the Appendix Sec E,
where we used the Scikit-learn NMF python library and its builtin NMF package
(more information , please see [73]). In there we showed how the regularization
parameters can be ignored. And for the loss function we had selected the Kullback-
Leibler and multiplicative updater(”mu”) as solver parameter.
The readers will get a basic understanding of NMF in terms of the influence of
both the loss function and no influence of the regulaization with the experimental
analysis done on the topic-document example.

Initialization: As discussed earlier initialization or seeding (i.e. a fixed value forW0 and/or
H0) is important, from which iteration process can be started. It is very crucial to set
the initialization. As the data can be highly dimensional and optimized into only local
minima, the initialization parameter for NMF is in fact very important to ensure mean-
ingful results. Even though there are common methods in our case we have selected
the nndsvd (Nonnegative double singular value decomposition) method. No random-
ization is needed for this run and normally it has two SVD processes. Data matrix is
approximated by one process, the other process focus on rounding up the non-negative
portion producing partial SVD terms by deriving the rank matrices. For sparse matrix
dataset this algorithm is well fitted [74].

NMF with stochastic approach We have seen the basic NMF equation in Eq. (24) and Eq. (25)
where the main matrixX is the approximation of multiplication between the feature matrices
W and H . This is a trivial case. Now we want to see if we can interpret the big players’
network flow in our restructured user graph and whether the factorization approximation of
NMF holds in a probabilistic case.

Now, if we consider the probabilistic context we can define our data as the following,

X̃ := c ·X, where c =

∑
ij

Xij

−1 (29)

here,
∑
Xij represents the total sum of frequency or total flow of BTC from user i to j.

Now, in Eq. (24) can be rewritten by multiplying the scalar quantity c in both side as :

cX = aW · bH where c > 0 and c = a · b (30)

Now,The normalizing the data in accordance with the probabilistic trivial aspect, we can
define that : ∑

i,j

X̃ij := 1 (31)
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from Eq. (25) we can rewrite as :∑
i,j

X̃ij =
∑
i,j

∑
k

WikHkj (32)

=
∑
k

(
∑
i

Wik)(
∑
j

Hkj) (33)

Here, in accordance with Eq. (31) we define W and H in similar stochastic approach:∑
i,j

W̃ij := 1 (34)

∑
i,j

H̃ij := 1 (35)

and thus we can write from that,

W̃ik =

∑
ikWij

ak
(36)

H̃kj =

∑
kj Hij

bk
(37)

So the final equation turns out to be as follows:

X̃ij =
∑
k

(akW̃ik).(bkH̃kj) (38)

=
∑
k

rkW̃ikH̃kj (39)

where rk = ak.bk

And, rk, W̃ik and H̃kj satisfy the following conditions,∑
k

W̃ik = 1 for all k, (40)∑
k

H̃kj = 1 for all k, (41)∑
k

r̃k = 1 for all k. (42)

7.2 Stochastic model of NMF
At this stage, we propose a stochastic model of interpretation backed by simulation that verifies

the reasoning of NMF outcomes. In order to do that, we want to understand NMF in such a way
that could be validated by the way the estimation and simulation is done. The proposed simulation
model is a toy-model for a small set of example which gives some insight to do the interpretation
from the NMF technique. At the end of this discussion we will be able to observe a model that is
identical to NMF.

Poisson’s distribution Let us start with an example. Suppose we have a matrix having dimension
10 × 10, where the number of observations are all positive and denoted by Yij ≥ 0. Here
the Yij represents the frequency of the observation or real data from sender i to receiver
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Figure 34: A user graph of 10x10 matrices of frequency observation from sender to receiver

j as shown in Fig.34. Now, our goal is to construct a probabilistic model where we want
to estimate Xij , which can be defined by Poisson distribution. The Poisson distribution
estimates the probability of a number of independent events occurring a particular period of
time. It can be defined as:

P (Y = y|X) = e−µ.
µy

y!
where

∞∑
y=0

P (Y = y, µ) := 1 (43)

Here, µ is the Poisson distribution parameter. And by the definition of the expected value of
the 10x10 dimension matrix having 100 observations we know by definition, it is equal to
the average of the all probabilities, which in this case is equal to be µ:

E[Y ] := y ·
∞∑
y=0

P (Y = y, µ) = µ (44)

Conditional probability of model parameters: So, if our goal is to find inference from observa-
tions or dataD and construct a modelM , one of the way to achieve this is by doing simulation
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where we can generate artificial data D from model parameter M that supports stochastic
Poisson distribution. From there we can apply Bayes theorem of conditional probability to
gain the reverse outcomes, which can be clarified the following definition of Bayes theorem:

P (M |D) :=
P (D|M) · P (M)

P (D)
(45)

where the terms P (M |D) is the likelihood, P (D|M) is the posterior problem distribution
P (M) is the prior problem distribution and P (D) is the observation. As, our target is to gen-
erate simulated data from the likelihood function which consist of a single model parameter
Xi,j upheld by the above Eq. (45).

Thus we get a framework, where we can look at the Likelihood function and find out the
maximum likelihood estimate, which is a standard estimate to minimize the error function
of our posterior problem distribution. By taking a small example, we can derive the standard
Poisson distribution as mentioned in Eq.(44):

P (Y = y|µ) = e−µ.
µy

y!
where y=0,1,2,.. (46)

log(P (y|µ)) = −µ+ y · log µ (47)
∂[log(P (y|µ))]

∂µ
= −1 +

y

µ
(48)

So, based on the conditions of the maximum log-likelihood (if we take the derivatives of the
left hand side of) it turns out to be the µ becomes exactly equal to the observation:

µ = y (49)

This is trivial case. For example, if we consider the average frequency observation value y is
26 then the log-maximum likelihood is also becoming 26. Now, going back to our main case
mentioned in Fig.34, we would like to predict the occurrence of our observations Y = y and
instead of µ we replace the term with an independent stochastic terms, for example Xij for
all rows and column values of i, j = 0, 1, 2, ..., n where Xij obeys the Poisson distribution.
If the observations are replaced by Yi,j instead of Y = y from the above derivation the
conditional probability for our entire entries of our matrix are assumed to be the product of
all the corresponding observations and parameters because of their nature of independence.
So, in our problem scenario, we have a 100 parameter times 100 observations which are
independent of each other.

P ((yij)ij |(xij)ij) =
∏
i,j

(yij |xij) (50)

By taking the maximum log-likelihood termed as L(xij), we can derive it similar to the
example mentioned earlier:

L(xij) = log[P ((yij)ij |(xij)ij)] (51)

=
∑
i,j

logP (yij |xij) (52)

=
∑
i,j

(yij log xij − xij log yij) (53)
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∂L(xij)

∂ xij
= −xi,j + yi,j log xij − log yij

∂L(xij)

∂ xij
= −1 +

xij
yij

Thus, The condition turns out to be for the maximum likelihood is:

xij = yij (54)

Now, calculating the error function :

Error Function =
∑
i,j

[L(xij = yij)− L(xij)]

=
∑
i,j

[(yi,j log yij − yij + log yij !)− (yi,j log xij − xij + log yij !)]

=
∑
i,j

(xij − yij + yij log
yij
xij

)

So, the equation turn out to be like :

Error function =
∑
i,j

(yij log
yij
xij

+ xij − yij) (55)

which is the same as the Kullback-leibler error function of Eq. (28) mentioned earlier to
discuss about the optimization of NMF.

So, we can finally interpret that, our stochastic model which involved Poisson distribution
is validated by the KL-error function which is exactly equal to the log-likelihood function
and according to the Beysian estimation framework we can use that to estimate the model
parameters Xij . And the final investigated findings in a nutshell is that NMF is trying to
find the local minima for this error function which is exactly identical to the maximum of
the posterior problem distribution or the log likelihood function.

Simulation with Bayesian Information Criterion In this part we would like to do a simulation
trial to estimate some parameters with the framework that we have just discussed. For this
we want to introduce a small toy model. We have taken some assumptions for this example
as shown in Fig. 35.

So, we have a scenario where we have assumed number of sender and receivers of Bitcoin is
n = 10 and for that we have n2 = 100 number of observations. The main issue is to estimate
the number of components for NMF according to this scenario with Bayesian framework.
We found that, for data following Poisson distribution if decomposed with NMF then the
error or loss function is equal to the maximum log-likelihood taken for that distribution.
For simulation purpose our initial estimation for the number of components are 2 which are
normalized by assuming r1 = 0.6 and r2 = 0.4. We have two decomposed matrices of
dimensions [10× 2](W matrix) and [2× 10](H matrix) where all the rows and columns are
normalized(i.e sum is equal 1).To understand the money flow we assumed that 1st user of the
1st component of W sends money that is received by 2nd and 3rd user of 1st component of
H matrix and 2nd and 3rd users of the 2ndcomponent of W matrix sends money to receiving
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Figure 35: A 10x10 matrix decomposed into dimension of 10x2 and 2x10 matrices where no. of
components taken is assumed 2.

users of 4th user of the 2nd component of H matrix. This is arbitrary and can be tested with
random configurations. Now, we transformed this to Poisson distribution observationsXij to
run the simulation. The complete codes and results with graphs are uploaded and available in
Github (readers can take a look, [75]). Now, we explain and discuss about the NMF outcomes
and the estimation of number of components. The NMF decomposition for this scenario is
quite straight forward as we have set everything. But, the main problem is to check whether
our number of component estimation holds or not. We implemented Bayesian Information
Criterion (BIC) to validate this. From Eq. (45) we have to choose different values of P (D)
we need to choose and from that the larger values of P (D) should be preferred [76]. This is
also termed as Laplace Approximation and can be defined as follows:

logP (D)︸ ︷︷ ︸
BIC

≈ log(P (D|θ̂)︸ ︷︷ ︸
BIC 1st

− D
2

logN︸ ︷︷ ︸
BIC 2nd

(56)

where θ̂ is termed as maximum likelihood estimate, D is the number of parameters of the
model and N is the number of observation. Here, the number of parameters are 2∗n∗k = 40
and total number of observations areN = n2 = 100 for our case. The advantage of Eq. (56)
is, it can do a trade-off between maximum likelihood estimate (1st term) and change of model
parameters, observations (2nd term). If we now consider we do not know the ideal number
of components and run NMF with KL error function for 5 times, we found that our result for
estimating the number of components by measuring BIC has a minima when the component
number is 2 as shown in Fig. 36.

Experimentation with BIC toy model We have done some experimentation with this toy model
to predict the higher number of components. The main focus is to observe the performance of
this model and gather important insights. We started our experiments to estimate the number
of components for simple interactions among sender receiver to more complex one. In the
following discussion we demonstrated some experiments on the above toy model and all the
programming codes are available in Github[77].

• Predicting number of components k=3: In the Fig. 37 we showed that the scenario
where the sending and receiving interaction among 6 nodes. The edges defines the in-
teraction between the nodes and the weights defines the normalized frequency of inter-
action or money flow. Like the standard toy model in our experiments there were some
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Figure 36: Estimating number of components with BIC (a) BIC 1st term (b) BIC 2nd term (c)BIC
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assumptions we had taken. In the experiment we have found that, assuming higher
dimension gives us better result while estimating higher number of components. For
example, if we take n=10 and for that the n2=100 number of observation the accuracy
depends on the relative probability rk values speculated for each components. It also
depends on the normalized frequency values taken for the factorized sending and re-
ceiving matrices. But increasing the dimension by taking n=20 and thus n2=400 it
showed that, the prediction of the components number is accurate irrespective to the
change of relative probabilities or sending/receiving normalized frequencies.

(a) Experimental assumptions with interaction between sender receiver
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(b) Successful estimation number of components by BIC

Figure 37: simulation result of estimation of number of components when k=3

• Predicting number of components k=4: In the Fig. 38a the prediction of the number of
components k=4 experimental case has been showed. In this case there are more than
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two inputs and outputs cases have been considered. In Bitcoin blockchain real user or
entity graph data there are most cases single input from one user to multiple outputs
to different users. In this example we assumed and tested this kind of scenario. Like
the previous results in this case the higher dimension of n=30 and n2=900 observation
provides better estimation.

(a) Experimental assumptions with interaction between sender receiver
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Figure 38: simulation result of estimation of number of components when k=4

• Predicting number of components k=5: In Fig. 39 the number of components k=5 has
been estimated with more complex interactions among sender and receiver nodes. Here
the final outputs of group of nodes with their normalized frequency acted as an input of
the main sources(node 1), this is not similar to the user graph of real Bitcoin blockchain
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scenario, but we implied it in this experiment just to check the models performance.
The BIC could successfully could estimate the number of components with higher di-
mension of data. So, from the experiments conducted so far we found that, dimension
of the observation plays a vital role in estimating the model parameter.

Summary: In this section we proposed a stochastic model of NMF that decomposes the observa-
tions that follows the Poisson distribution and as the optimization of NMF error function is
equivalent of the log likelihood function of Bayesian Information Criterion (BIC) which is
helpful estimating the number of components parameter of NMF. Estimation of number of
components is one of the key issue for solving classification problems in real world machine
learning and data analysis.

7.3 Data pre-processing on daily regular user graph for applying NMF
In this part, from simulation we return to real world data analysis with NMF for daily networks

for Bitcoin blockchain. The daily network constitutes of a special user we define as ”regular users”.
For this we recall the definitions of nodes and edges of daily graph that we defined mathematically
in the beginning of Sec 3. We only need to define the V̂ in such as follows:

V̂ := Set of nodes/users who appear in every day persistently such that t ∈ TMonth (57)

To accumulate all the regular nodes, we randomly selected two weekdays of the month of
February of 2017. We would like to create daily graph created among only ”Regular users”. So,
let us create the daily graph which is in this case is Gt = (V̂t, Et), where t is assumed to be each
day of February, 2017. For creating daily network matrix, we chose much smaller time scale, i.e
a consecutive days of a week. For this reason, we selected two days 21st February,2017(Tuesday)
and 22nd February, 2017.

We found that, The total number of overlapping regular users between 21st February,2017
(Tuesday) and 22nd February, 2017 is 3502. And we would like to create the ”Among regular
users only” graph by selecting the edge lists among the regular users. The Et is the set of links
eij or ordered pair (i, j), which represents all the transactions Tx : i → j during the day t. The
set of all the users appearing at either end of eij is V̂t such that i, j ∈ V̂t. Each edge eij has
the information about the amount of money transferred from i to j and number of frequency of
transactions aggregated for unique pair among regular users or mathematically we can say, links
or edges are transactions among users denoted by Tx : i → j total number of transaction from
regular user i to j.

fij := number of Tx’s among unique pair eij (58)
Bij := sum of all BTC in Tx’s among unique pair eij . (59)

where we have considered only the cases like Tx: i→ j or Tx: j → i. There are two justifications
of creating ”Regular Users graph” for NMF analysis. First, regular users are presumably the big
players of the network as one of the criteria of them is they are persistently active. Second, we
expect that the activities of the regular users are stable during weekdays. We will use NMF to
interpret the stability of the temporal change. As the regular users’ edge list are associated with the
frequency of sending BTC from sender to receiver as unique pair we collected this information. So
we have ”Frequency” and ”Amounts” as edge attributes.

We have created two separate matrices for each edge attributes. The total number of edges for
Xij(t21) is 9,196 and for Xij(t22) is 9,247.The total dimension of the both days are kept same , i.e
(3502,3502), same users as senders and receivers to keep the structure stable.
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(a) Experimental assumptions with interaction between sender receiver
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Figure 39: simulation result of estimation of number of components when k=5
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7.4 Results and interpretation of regular user graph with NMF
In this section we discuss and interpret about the final analysis of daily ”Regular Users’” graph

with NMF. The purpose of applying NMF is to find out the hidden factors of the sender/receiver
users where they show common patterns of frequency and money flow distributions. We are also
interested about the stability of temporal changes of the daily network these regular users. We also
like to see whether the financial institutions are actively doing their weekdays’ activities or not.

Both days network has been decomposed by NMF with selecting ”Kullback-Leibler” as opti-
mization parameter and ”nndsvda” as an initialization parameter. And after applying NMF decom-
position the matrices also had daily components, i.e Wik(t21), Hik(t21) and Wkj(t22), Hkj(t22),
respectively. Here the k value has been assumed to be 20.

Temporal change of network: We have decomposed the 21st February and 22nd February daily
matrices constructed with edge attributes as frequency. We have decomposed it with NMF
with the conditions mentioned earlier and we wanted to understand whether the decomposed
components are drastically changing or not. For this we have taken inner product between
W21 andW22 for ”Sender-Component” matrices (6916×20) respectively for those consecu-
tive days. Similarly, inner product betweenH21 andH22 for ”Receiver-Component” matrices
(20× 6916) has been calculated. The result were promising, as shown in the Fig. 40.

Some interpretation can be drawn from these results. We can see that there are quite a number
components which constitute the users (as senders or receivers) have inner product equal to
1. That means, the users of those components behave similarly in the consecutive days of
Tuesday and Wednesday. This is quite natural during weekdays as we have seen in our weekly
pattern analysis. The temporal change is slow, the users doing their regular activities and no
drastic changes.

The relative probability of the components: So we have known about the components that are
matching or unchanged for the consecutive days. We can now find out the relative probability
of the components of the consecutive days as shown in the Fig. 41.

The interpretations we would like to make out of this is, the first component for the con-
secutive days has the highest probability to occur. We would like to see this component
more closely to identify the normalized scores. This is shown in Fig. 42 The first component
constitutes the users that has the highest relative probability (rk, calculated in the Eq. (38)
) of appearing as senders and receivers in the network. It will be interesting to look into
component members’ activities.

Financial institutions are top users in NMF result: We have looked into the top users in terms
of their normalized frequency rank available in the relevant components and got some results
as shown in the figure Fig. 43 and Fig. 44

We found big players acting as financial and non-financial institutions as the topper of all the
components. observing the results we can draw some important interpretations:

• In both days, the top users of most of the NMF decomposed components and based on
their relevant component’s normalized frequency are the big players as they matches in
list we have discussed in Table 6,Table 5 and Table 4.So, frequency criteria that is one
of the criteria of the big players plays a vital role to identify financial institutions that
we can prove at this point.

• As for some of the components of sender W21 and W22 and receiver H21 and H22 has
cosine similarity for example component 1 and component 4 of the both days, we can
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Figure 40: The temporal change of the components in 21st,Feb and 22nd,Feb.
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Figure 41: The relative probability for components of 21st,Feb and 22nd,Feb.
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Figure 42: The First components scores of 21st,Feb 22nd,Feb
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(a) Top 3 senders 21st,Feb

(b) Top 6 receivers 21st,Feb

Figure 43: The top scorer of users having largest normalized frequencies for each components for
21st, Feb
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(a) Top 3 senders 22nd,Feb

(b) Top 6 receivers 22nd,Feb

Figure 44: The top scorer of users having largest normalized frequencies for each components for
22nd, Feb
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say that the top users’ appearing frequency as financial institution during weekdays are
relatively similar. Even though the users are not the same for the components having
the highest cosine similarity(nearly 1), as being at the top at consecutive days but they
have a stable pattern.

• As we have included the self-loops in our analysis we can see that same users are topper
as receiving users as well as the senders. These are natural as for financial institutions
send and receive money behind a pool of addresses, which results self-loops when they
are converted into user graph.

• The money flow attributes would provide more insights about the financial institutions
if the flow matrix of the consecutive days is decomposed.

• One short coming of NMF that we had experienced is that, as the decomposed matrices
consists of very small number of non-zero items the highest scores are way to larger
than the rest lower ones. To overcome this, we used log scale in our analysis.
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8 Conclusion
The Bitcoin blockchain with the historically immutable ledger system provide us a great scope

to analyze big data and extract important insights. In the field of socio-economic complex network
analysis Bitcoin blockchain is one of the researched trusted frontier financial emerging technology
that has evolved recently. The scope of research work of this kind of technology is still immense
as the network is expanding as users’ interest in adopting innovative and trust-worthy technology
are increasing.

In my research tenure, I have tried gathering some understanding about the de-anonymization
and dynamics of Bitcoin blockchain with network science point of view. We have conjectured some
hypothesis about the exchange market who are the outliers inside the network. They have vital roles
to play in terms of their frequent activities and large volume of network flow. We successfully
de-anonymized identity not by breaking cryptographic codes, rather by exposing behavioral pat-
tern they show. In light of dynamics of network science, we showed that, their behavioral pattern
changes from weekdays to weekends. Our simulation techniques, providing scopes to estimate the
value of key parameters of solving clustering problem, in this case, NMF, which we interpreted in
terms of probability. We analyzed regular user graph and found out financial institutions existence
as top users based on NMF scores and found the temporal change of their activities are quite stable
during weekdays.

As the research work has been divided in three phases, a phase by phase research activities and
finding can be discussed in details in this concluding section.

In the first phase, time series analysis of the number of daily transactions and total daily ex-
changed BTC were scrutinized. The significant findings of this phase was the weekly pattern of
the mentioned parameter, which indicates that even if the blockchain based crypto-currency is the-
oretically fully functional on 24/7 days of the week, the activities during weekdays are higher on
average compared to weekends. Besides, when focused on the significant spikes in the transactions
time series data, we found activities of outliers whom I conjectured to be hidden crypto-exchange
markets at that stage.

In second phase, daily users’ graphs were created and network properties with threshold anal-
ysis were conducted for different endogenous attributes. I proposed criteria to identify the ”big
players” and categorized them as financial and non-financial institutions those who are complacent
with the criteria. The criteria are high frequency, persistent activities and weekly pattern of the
daily total average BTC flow. The big players following fully these criteria are speculated to be
identified as financial institutions. Another important finding at this stage was, more than 50% of
the total threshold flow (Above 20 BTC) involves the circulation of economic activity among the
big players.

In the final stage, I had implied decomposition technique known as NMF, that factorizes a
transaction frequency matrix X into certain lower rank matrices W and H, with the characteristics
of all the three matrices having non-negative relative weights. The role of users in the decomposed
sender and receiver matrices are distributed into components revealing hidden features of classi-
fication. I found the financial institutions that I categorized in the second phase of my research
actually exists having top ranked relative weights. This successfully proved our ”big player” hy-
pothesis. I also explained that NMF can be interpreted as a probabilistic model. A simulation toy
model had also been introduced that can successfully estimate model parameter, the number of
components in this context, in Bayesian estimation framework. I had run several experiments with
different transactions pattern scenario n that toy model. The results of the experiments instigated
that NMF outcomes can be explained by probabilities of the relative weights of the main matrix
comprised of interaction frequency. The dimension of the main matrix plays an important role in
estimating the parameter in our experimental findings. I also analyzed the temporal change of the
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consecutive weekdays graph for regular users. I found the dynamics is quite stable as expected and
very slowly indication of change was observed.

There were some caveats experienced while using the NMF. The factorized matrices comprised
of very small number of non-zero scores. In order to overcome this limitation, I had to measure
in log-scale. Another problem I experienced that, the approximation or the reconstruction error of
NMF in our analysis was not satisfactory. Techniques can be implemented in order to improve this.
Other LDR method implementation and comparative performance studies can be explored as well.

The practical real world daily data classification issue was partly resolved for estimating the
model parameter of number components. Our findings regarding that was, in spite of BIC being
very promising in showing accurate experimental results in the simulated data, it has limitation in
correctly estimating in case of the real world data. We need to further investigate this and find out
more sophisticated suited method in solving the problem.

We observed that few big players appeared in different components in multiple times and in-
fluenced their existence in terms of possessing high relative weights. In order to quantify their
influence in the main matrix, in future I can explore TFIDF (Term Frequency-Inverse Document
Frequency).
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A Statistical analysis of monthly user graph variables
This section consists of the monthly user graph formed during 2013-2018. Monthly data in our

research was out of scope. But we would like to share the descriptive analysis of monthly data so
that we can demonstrate the comparative situation.

The unique pair volume of the user graph The unique user pair volume in the user graph shows
the summation of BTC volume in the time series user graph taken from 2013-2018. In the
monthly distribution of unique edge flow distribution shown in Fig. A.1 we can see the maxi-
mum 106 BTC/unique user. This indicates there are consistent big money flow among unique
user pairs throughout the time period. The fat tail PDF distribution shows considerable ex-
istence of big BTC flow.

(a) Quantile

(b) PDF

Figure A.1: Satoshi flow of unique user pair(monthly data)

The degree distribution of monthly user graph The degree distribution of monthly user graph
has been demonstrated in the Fig. A.2. The maximum total degree is increasing over 1
million. If we consider to look at the quantile distribution for nodes whose total degree
larger than 100, we can see the outliers in the monthly user graph has very large total degree.
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(a) Total Degree distribution for monthly node count

(b) Total Degree distribution with node larger than 1000 counts

Figure A.2: Quantile distribution of total degree to node count over monthly data

87



B Threshold and network Size
The node-edge statistics give us some insight on the difference between size of the daily network

in active and quiet periods and the normalized number of nodes and edges with respect to different
threshold edge flow were shown in Fig. B.1 and Fig. B.2, respectively.

There was perceptible difference in the reduction of network size due to the drastic change in
the emulated threshold point range. To cynosure the large edge flows, we focused on the 20 BTC
threshold point. Above this point, not only was the size of the network confined to large flows,
but it would also give us greater opportunity to identify the topological differences among the big
players between weekdays and weekends.
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Figure B.1: Normalized node-edge count on different threshold in active period; (a)Node count (b)
Edge count
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Figure B.2: Normalized node-edge count on different threshold in quiet period
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C Sum of edge-flow and average edge-flow
In our previous study[68], we had shown by calculating the average and standard error (stan-

dard deviation divided by the square root of recorded data) of the number of daily transactions and
the volume sum of transacted BTC between the period 2011 to 2018. Both parameters had distinct
proneness to follow a weekly pattern. Therefore, the quantified volume or the number of transac-
tions is higher during weekdays than weekends. We had calculated the daily average edge flow of
satoshi(lowest unit of Bitcoin/edge, where 1 satoshi = 0.00000001 BTC (= 1/100,000,000 BTC =
1/108 BTC). By the term “average edge flow” we meant to say the number of satoshi outflow for
each unique pair of users or nodes of our graph.

From Fig. C.1, we can clearly observe an indication of divergence from the weekend rate of
flow than that of the weekdays in both active and quiet periods. Although the weekly pattern is
clear for the main graph, the consistency of the pattern actually diminishes for higher edge flows,
as shown in the Fig. C.2. At different smaller threshold points, the dissemblance among Sundays
and Mondays were indistinguishable.

Therefore, in our final analysis, we considered the sum of daily edge flow rather than the average
edge flow for the weekly patterned activities of big players.
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Figure C.1: average edge flow with standard error on average weekdays and weekend for;(a) Active
Period (b) Quiet Period
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Figure C.2: average edge flow on average Sundays and Mondays at different thresholds for (a) Active
Period (b) Quiet Period
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D Total flow of subgraph
The sub-graph was formed by taking all the edge flows that were equal to and greater than the

20 BTC threshold. For quantifying the daily total edge flow, we have added the Fig. D.1. This
helps the reader to calculate the relative daily total flow inside the largest connected component.
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Figure D.1: The total daily flow of sub graph in (a) Active Period (b) Quiet period
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E NMF use case:Topic extraction from text-document analysis
This is an example use case of NMF in the field of Natural Language processing (NLP). In this

section, we discussed in order to give a basic idea of applying NMF with the scikit-learn python
package (class:sklearn.decomposition.NMF) with a tiny example on small number of documents
and understand the inner working of the NMF with some exploration on key factors like error
function and initialization. In case of the error function, Non-negative Matrix Factorization is
applied with two different objective functions, the Frobenius norm, and the generalized Kullback-
Leibler divergence. The latter is equivalent to Probabilistic Latent Semantic Indexing. In case
of the initialization there are several ways, but we utilized the ’nndsvda’ method for our purpose.
The complete codes with analysis has been uploaded in the Github [78]. We provide the readers an
insight of NMF through this small example. It is useful to understand the parameters that influences
the outcomes of this machine learning technique.
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