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Abstract 
The frequency of infertility treatment is increasing, but the success rate of such treatment 
is not increasing. A treatment method called assisted reproductive technology (ART) has 
a higher success rate than conventional fertility treatment. However, the success rate 
remains low. This study analyzed uterine features of patients with infertility, and 
developed a medical diagnosis support system for female infertility, to improve the 
success rate of treatment. 

First, features of uterine movements were analyzed by using Cine MRI images. 
The uterus has movements called uterine peristalsis that assist in the transport of sperm. 
The direction and frequency of uterine peristalsis change during the phase of each 
menstrual cycle. However, uterine movements in patients with infertility have not been 
analyzed in detail. Therefore, the current study analyzed detailed features of uterine 
movements in infertile patients. This research found six fundamental uterine movements, 
of which two movements affected infertility. Furthermore, a simulation in this study 
found that uterine peristalsis had a constant propagation velocity of 0.68 mm/s. Using this 
simulation velocity feature, a prediction system for uterine movement types was 
developed by Cine MRI images. This system was composed of a convolutional neural 
network (CNN). An evaluation experiment showed that the system had a 71% prediction 
accuracy for sagittal plane images. A system without velocity information had a 64% 
prediction accuracy for sagittal plane images. These results demonstrated that velocity 
information was important for uterine movement analysis. 

Second, a prediction system for pregnancy outcomes was developed using 
ultrasonic images and the constant velocity feature. In infertility treatment, it is typical to 
evaluate the endometrial shape. The CNN system developed in the current study predicted 
pregnancy outcome by velocity information. Experiments compared the velocity-based 
and shape-based systems. The shape-based systems predict the optimal uterine features 
for pregnancy success based on endometrial shape. In this study, two shape-based systems 
were developed. One used a local binary pattern (LBP), and the other used a CNN. The 
current findings revealed that the velocity-based system provided similar accuracy to the 
shape-based systems. However, the output of the velocity-based system, the area under 
curve (AUC) for the receiver operating characteristic (ROC) curve, provided a higher 
value than the shape-based systems. The AUC values of the LBP shape-based, CNN 
shape-based, and velocity-based systems were 0.62, 0.65, and 0.72, respectively. These 
results showed that the analysis of the velocity of uterine movements was effective for 
pregnancy outcome prediction. Previous clinical evaluation did not target the uterine 
movement but only the endometrial shape. Therefore, this study has revealed a new 
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treatment approach for infertility. 
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Chapter 1 
Introduction 
 
Infertility is a disorder of the reproductive system. One definition of infertility is the 
failure to achieve clinical pregnancy after 12 months or more of regular unprotected 
sexual intercourse [1]. There are two main treatments for infertility: conventional fertility 
treatment and assisted reproductive technology (ART). Conventional fertility treatment 
includes timed intercourse and artificial insemination (AIH) using semen. Timed 
intercourse treatment determines the days with the highest pregnancy rates, by predicting 
ovulation days based on basal body temperature, ultrasound examination, and hormone 
measurements. AIH involves inserting artificially extracted semen into the uterus. 
Conventional fertility treatment is performed as a first step of infertility treatment. When 
a patient does not get pregnant by conventional treatment, ART is performed as the next 
treatment step. ART includes in-vitro fertilization (IVF) and may involve intra-
cytoplasmic sperm injection (ICSI). In IVF, eggs are fertilized artificially by adding 
extracted semen or sperm samples to extracted eggs. The fertilized eggs are cultured in 
the laboratory, and then it returns to the body. In ICSI, egg is fertilized artificially by 
injecting isolated sperm into an extracted egg. The fertilized eggs are cultured in the 
laboratory, and then it returns to the body. Figure 1-1 shows the annual frequency of 
patient treatment and pregnancy rates for ART in Japan [2]. Compared 1990 with 2015, 
the annual number of ART patients has increased more than 10 times, but the pregnancy 
rate has remained constant (Figure 1-1). The pregnancy rate in 2017 was 17.7%. Although 
the pregnancy rate from ART is typically higher than conventional fertility treatment, this 
rate remains low. Table 1-1 shows the success rate of ART for patients of different ages 
in the U.S. [3]. The success rate declines with increasing patient age, and pregnancy 
cannot be guaranteed by a single treatment at these success rates. In general, infertility 
treatment is repeated until a patient gets pregnant or declines further treatment. Some of 
the problems of ART include the high cost and physical burden of the treatment, and these 
problems increase by repeating the treatment. Therefore, improvement of the pregnancy 
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rate is very important for ART. 
ART has four treatment steps: ovulation, sperm retrieval, fertilization, and 

embryo transfer. In the ovulation step, eggs for fertilization are extracted by carefully 
inserting a needle into the vagina then ovarian follicle, then withdrawing follicular fluid 
containing the egg. In the sperm retrieval step, sperm for fertilization are generally 
extracted from semen samples. Sometimes, sperm is extracted from testis samples by 
operation if a male patient has azoospermia. In the fertilization step, collected eggs and 
sperm are combined and fertilized eggs cultured and examined. There are two main 
methods of fertilization. The IVF method coincubates collected sperm samples and eggs, 
and the ICSI method involves direct injection of sperm into the egg. In the embryo 
transfer step, the fertilized egg/embryo is transferred to the uterus. Pregnancy is initiated 
when the fertilized egg implants in the endometrium. Support systems in the ovulation 
and fertilization steps using image processing technology have been reported [4 and 5]. 

 
Figure 1-1 Annual infertility treatment frequency and pregnancy rate in Japan. 

 
Table 1-1 Assisted reproduction technology success rates for patient ages. 

Patient age (years) Success rate 
< 35 51.6% 

35–37 37.5% 
38–40 23.5% 
41–42 11.8% 
≥ 43  3.4% 
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Because embryo transfer is a final requirement for ART, the timing of embryo transfer is 
one of the most important steps in ART. However, this step is the most difficult because 
there is little artificial intervention possible to optimize implantation after the transfer 
procedure. 
 The uterus has movements called uterine peristalsis that assist in the transport of 
semen. The direction and frequency of peristaltic movements change during each 
menstrual cycle [6, 7, 8, and 9]. The upward movement (corpus to fundus) occurs in the 
ovulation phase, and downward movement (fundus to corpus) occurs in the menstrual 
phase, whereas there are no movements in the luteal phase. However, random and mixed 
movements occur in all phases of the cycle in infertile patients. To date, these random and 
mixed movements have not been thoroughly analyzed. Therefore, it is not known which 
movement has a negative effect on the initiation of pregnancy. Peristaltic movements 
during the luteal phase strongly affect the embryo transfer procedure. Therefore, analysis 
of uterine movements may reveal a uterine-derived mechanism of infertility and lead to 
improvement in successful implantation rates. 
 In the embryo transfer step, a physician decides the timing of embryo transfer by 
analyzing endometrial shape using B-mode ultrasonic images. Endometrial shape 
displayed by ultrasonic imaging changes during the menstrual cycle [10, 11, and 12]. The 
physician evaluates images of the endometrial shape to determine the menstrual cycle and 
predict the most effective time for embryo transfer. However, the treatment may fail even 
if the physician determines a good endometrial condition, and the treatment may succeed 
even if the physician determines a bad endometrial condition. It is difficult to correctly 
evaluate a menstrual cycle from endometrial shape. We proposed that the pregnancy 
outcomes can be predicted correctly by analyzing uterine movement. This method was 
based on the known changes to the direction and frequency of peristaltic waves 
throughout each menstrual cycle. A generic changing theory of uterine movement was 
previously established. However, random and mixed movements in patients with 
infertility have not been analyzed to date. Investigation of uterine movements in infertile 
patients may identify features leading to pregnancy failure or success. The frequency of 
uterine peristalsis is approximately one every few minutes, so it is difficult to analyze 
uterine movement by visual observation of ultrasonic images. Uterine movement is 
typically observed using Cine MRI images. During examination, it is difficult to analyze 
this movement by direct observation because the physician observes images in real time 
using an ultrasonic device. If these challenges in measuring uterine movements can be 
solved, we propose that pregnancy outcomes may be predicted from the analysis of 
uterine movements. Such analysis may lead to the development of a new diagnostic 
support system to improve the success rate of infertility treatment. 
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 In this study, we aimed to develop a medical diagnosis support system for female 
infertility based on medical image analysis. This system was composed of a convolutional 
neural network (CNN), a class of deep neural networks that is composed of a convolution 
and pooling layer. The CNN has been widely used in image analysis fields, providing 
high performance analysis in the AlexNet [13], VGGNet [14], and Residual Networks 
(ResNet) [15]. The CNN has also provided high recognition accuracy in medical image 
analysis fields, such as lung pattern classification [16], ultrasound detection of breast 
lesions [17], blood cell image classification by combining a CNN and recursive neural 
network [18], and feature extraction of tumor images [19]. 

This thesis is composed of four chapters. Chapter 1 provides the introduction 
for this study. Chapter 2 describes the analysis of uterine movements in infertile patients 
by Cine MRI images [20]. This chapter reports the identification of new uterine motion 
patterns and the evaluation of these patterns by visualized simulation. The relationship 
between the menstrual cycle and direction of movement was investigated using these new 
patterns. Finally, this chapter details the development of an automated CNN system for 
the analysis of uterine movements detected by Cine MRI. This novel system was based 
on feature values obtained by visualized simulation. Chapter 3 describes the 
development of a diagnostic support system that predicts pregnancy outcomes by the 
analysis of uterine movements detected using ultrasonic images [21 and 22]. The analysis 
of the uterine movements was based on velocity feature values obtained from the 
simulations performed in Chapter 2. The system was composed of a CNN. Chapter 4 
presents the scientific significance and potential contribution of the novel research in this 
thesis. 
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Chapter 2 
Analysis of Uterine Movement in Infertile 
Patients by Cine MRI Images 
 
In this chapter, uterine movements in infertile patients were analyzed using Cine MRI 
images. New motion patterns were defined and evaluated by visualized simulation. The 
relationship between menstrual cycle and the movement direction was investigated using 
the new patterns. Finally, an automated system using a CNN was developed to analyze 
uterine movements detected in Cine MRI images. The automated system was based on 
feature values obtained by visualized simulation. 

2.1 Introduction 
Uterine peristalsis assists in the transport of sperm. The direction and frequency of 
peristaltic movements are known to change throughout each menstrual cycle [6, 7, 8, and 
9]. Figure 2-1 shows the direction of movements at each phase of the menstrual cycle. 
The upward movement (corpus to fundus) occurs in the ovulation phase, the downward 
movement (fundus to corpus) occurs in the menstrual phase, whereas there are no 
movements in the luteal phase. However, random and mixed movements occur in all 
phases of this cycle in infertile patients. These peculiar characteristics of infertile patients 
were observed because of advances in MRI technology in recent years. 

Table 2-1 shows uterine movements of infertile patients obtained by an MRI 
scanner conducted as preliminary research. The phases of the menstrual cycle and 
associated peristaltic directions shown in Table 2-1 were determined by physicians using 
patient data. The frequency shown in Table 2-1 was measured using a semi-automated 
technique [23] and 14 sagittal plane MRI data described in section 2.2.1 Materials. 
Comparisons of uterine movement directions and frequencies between healthy subjects 
and infertile patients are presented in Tables 2-2 and 2-3, respectively. Table 2-2 shows 
the proportion of data with confirmed movement in the datasets. Data from healthy 
subjects were analyzed by three radiologists, as described in reference [9]. Data from 
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infertile patients were analyzed by the author. In the periovulatory phase, data from 
patients with infertility had more movements than healthy subjects. Table 2-3 shows the 
average frequencies of confirmed movements, which were similar in infertile patients and 
healthy subjects. However, the direction of uterine movement in infertile patients was 
different compared with those in healthy subjects, as shown in Table 2-2. These results 
suggest that it is difficult to assess unique characteristics of infertile patients using the 
same movement categories as healthy subjects, because the findings for infertile patients 
were markedly different compared with those from healthy subjects. 

To date, uterine movements in patients with infertility have not been investigated 
in detail. Therefore, it is not known which movement has negative effects on obtaining 
pregnancy. To clarify the characteristic uterine movements in patients with infertility, it 
was necessary to develop a new evaluation technique. The purpose of this study was to 
classify complicated uterine movements obtained by Cine MRI scans and investigate the 
relationship between uterine peristalsis and female infertility. While the direction and 
frequency of uterine peristalsis for healthy subjects were mainly evaluated in previous 
studies [9], this current research aimed to further examine these endpoints by new 
clustering patterns of uterine movements in infertile patients. Furthermore, this study 
aimed to develop a system that automatically analyze and classify movements detected 
from Cine MRI images. 

 
 

  
(a) Ovulation phase (b) Menstrual phase 

 
(c) Luteal phase 

Figure 2-1 Direction of uterine movements at each phase of the menstrual cycle.  
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Table 2-1 Uterine movements in infertile patients [20]. 

No. Menstrual cycle 
Ideal movement 

direction 

Frequency (waves/min) 

Upward Downward Total 

1 luteal phase none 0.7 0.0 0.7 

2 menstrual phase downward 0.0 0.0 0.0 

3 luteal phase none 0.0 0.0 0.0 

4 periovulatory phase upward 0.0 1.0 1.0 

5 follicular phase upward 2.3 0.0 2.3 

6 periovulatory phase upward 0.0 0.0 0.0 

7 periovulatory phase upward 0.0 0.0 0.0 

8 periovulatory phase upward 0.7 0.3 1.0 

9 periovulatory phase upward 0.0 0.0 0.0 

10 periovulatory phase upward 3.7 1.0 4.7 

11 periovulatory phase upward 1.3 1.0 2.3 

12 periovulatory phase upward 0.7 0.7 1.4 

13 luteal phase none 0.0 0.0 0.0 

14 periovulatory phase upward 1.7 0.3 2.0 

Table 2-2 Comparison of direction of uterine movements in menstrual cycle phases 
[20]. 

 Follicular phase 
Periovulatory 

phase 
Luteal phase Menstrual phase 

U 
Healthy [9] 0.36 (5/14) 0.31 (4/13) 0.17 (2/12) 0.20 (3/15) 

Infertile 1.00 (1/1) 0.56 (5/9) 0.33 (1/3) 0.00 (0/1) 

D 
Healthy [9] 0.00 (0/14) 0.00 (0/13) 0.25 (3/12) 0.40 (6/15) 

Infertile 0.00 (0/1) 0.67 (6/9) 0.00 (0/3) 0.00 (0/1) 

U = upward movement, D = downward movement. 
 

Table 2-3 Comparison of average frequency (wave/min) of uterine movements in 
menstrual cycle phases [20]. 

 Follicular phase 
Periovulatory 

phase 
Luteal phase Menstrual phase 

Healthy [9] 
1.2 

(N = 5) 
2.3 

(N = 4) 
1.8 

(N = 4) 
1.3 

(N = 8) 

Infertile 
2.3 

(N = 1) 
2.1 

(N = 6) 
0.7 

(N = 1) 
- 

(N = 0) 
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2.2 Materials and Methods 
2.2.1 Materials 
Cine MRI images were obtained from 11 infertile female patients at different stages of 
the menstrual cycle. Table 2-4 shows the detail of the data of Cine MRI images. These 
images were taken to the SORA no MORI CLINIC. In total, 26 MRI images (14 sagittal 
plane and 12 transverse plane images) were obtained using a “PHILIPS Achieva 1.5T”. 
The detection conditions used for MRI were as follows: repetition time (TR) = 2000 ms, 
echo time (TE) = 85 ms, Fast image = turbo spin echo (TSE), shot mode = single-shot, 
field of view (Fov) = 220 mm, Matrix scan = 188, exposure time = 180 s (90 serial images), 
cine mode display = 30 F/s and image size = 960×819 pixels. All study participants 
provided informed consent, and the study was approved by the ethics committee of SORA 
no MORI CLINIC. 
 
2.2.2 Methods 
Figure 2-2 shows the flowchart of the analysis method. In this thesis, uterine movements 
were analyzed following the procedures in Figure 2-2. The uterine movements detected 
in the 26 Cine MRI images were categorized into classes by visual analysis based on 
characteristic motility forms and directions of the Cine MRI images. To confirm the 
accuracy of clustering results, each class movement was mimicked by visualized 
simulation. The real MRI images were compared with the simulation images, and the 
mimicked movements was evaluated by four physicians. In this study, simulation had a 
visual aspect, and did not involve an energy calculation. The simulation parameter was 
set to appropriate value, and the uterine movements were evaluated using the defined 
classes. The presence or absence of each class of movement was visually analyzed for the 
26 MRI images. Statistical characteristics of the uterine movements were examined. 
Finally, a system was developed that automatically extracts uterine movements of defined 
classes from the Cine MRI images. This system was composed of a CNN and used 
features obtained by the simulation and analysis. 

Table 2-4 Magnetic resonance imaging (MRI) details of the data [20]. 
Number of MRI images for menstrual cycle stages 

Follicular phase Periovulatory phase Luteal phase Menstrual phase 

S T To S T To S T To S T To 

1 1 2 9 7 16 3 3 6 1 1 2 

S = sagittal plane, T = transverse plane, To = total. 
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2.3 Classification of Uterine Movements 
The uterine movements were classified into classes by analysis of characteristic motility 
form and direction found in MRI images. The analysis found that all uterine movements 
in infertile patients consisted of three fundamental classes as follows: (i) a low-intensity 
wave that spread from the myometrium as circular wave; (ii) a low-intensity wave that 
moved between the endometrium and perimetrium as a band wave; (iii) a wave that 
wiggled along the endometrium. Each fundamental movement was classified into two 
types based on the directions of motion for each movement. The direction of motion from 
the corpus to fundus was regarded as a forward direction, and from the fundus to corpus 
as an opposite direction. The notations C1a, C2a and C3a denoted the forward waves of 
class (i), (ii) and (iii) movements, respectively. The notations C1b, C2b and C3b denoted 
the opposite waves of class (i), (ii) and (iii) movements, respectively. These six 
fundamental movements and their images are shown in Figures 2-3 and 2-4, which show 
sagittal and transverse planes, respectively. 

 
Figure 2-2 Flowchart of study. 

Generating classes of movement
for infertile patients

Mimicking each class of movement 
by visualized simulation

Analyzing correctness 
of generated classes

Evaluating uterine movements 
using the classes

Developing automated movement 
analyzing system
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2.4 Visualized Simulation 
Computer simulation was performed to mimic all uterine movements. Comparison of 
MRI images with computer simulation results demonstrated that the above classification 
successfully mimicked all the movements. 
 

   
(a) C1a (b) C2a (c) C3a 

   
(d) C1b (e) C2b (f) C3b 
Figure 2-3 Images of six classes of movement (sagittal plane) [20]. 

 

   

(a) C1a (b) C2a (c) C3a 

   

(d) C1b (e) C2b (f) C3b 
Figure 2-4 Images of six classes of movement (transverse plane) [20]. 
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2.4.1 Simulation Model 
The simulation method was based on the three-dimensional finite difference time domain 
(FDTD) method with a wave equation [24]. Equation (2-1) is the equation of continuity 
and Equation (2-2), (2-3) and (2-4) are the equations of motions. 
 𝜕𝑃(𝑡, 𝑥, 𝑦, 𝑧)

𝜕𝑡
= −𝑘

𝜕𝑢(𝑡, 𝑥, 𝑦, 𝑧)

𝜕𝑥
− 𝑘

𝜕𝑣(𝑡, 𝑥, 𝑦, 𝑧)

𝜕𝑦
− 𝑘

𝜕𝑤(𝑡, 𝑥, 𝑦, 𝑧)

𝜕𝑧
 (2-1) 

 𝜕𝑢(𝑡, 𝑥, 𝑦, 𝑧)

𝜕𝑡
= −

1

𝜌

𝜕𝑃(𝑡, 𝑥, 𝑦, 𝑧)

𝜕𝑥
 (2-2) 

 𝜕𝑣(𝑡, 𝑥, 𝑦, 𝑧)

𝜕𝑡
= −

1

𝜌

𝜕𝑃(𝑡, 𝑥, 𝑦, 𝑧)

𝜕𝑦
 (2-3) 

 𝜕𝑤(𝑡, 𝑥, 𝑦, 𝑧)

𝜕𝑡
= −

1

𝜌

𝜕𝑃(𝑡, 𝑥, 𝑦, 𝑧)

𝜕𝑧
 (2-4) 

P denotes stress, and u, v, and w represent velocity of the x, y and z directions, respectively. 
K represents bulk modulus and ρ signifies density. Figure 2-5 shows the uterine shape 
models in the simulation. Figure 2-5 (a) shows the x-y plane in the center of the z-
coordinate. Figure 2-5 (b) shows the z-y plane in the center of the x-coordinate. The six 
fundamental movements were mimicked by inputting point and surface vibrations at the 
red area shown in Figure 2-6. The point vibration in Figure 2-6 (a) mimics the circle 
waves of C1a and C1b. The surface vibration in Figure 2-6 (b) mimics the band waves of 
C2a and C2b. The surface vibration in Figure 2-6 (c) with different phases and coordinates 
mimics the wiggly movements of C3a and C3b. Figure 2-7 shows the simulation results 
for the six fundamental movements as transverse planes of the x-y plane in the center of 
the z-coordinate. 
 

2.4.2 Comparison of MRI and Simulation Results 
We investigated the ability of the simulation model to mimic all uterine movements by 
the combination of C1a, C2a, C3a, C1b, C2b and C3b movements. The comparison was 

  
(a) x-y plane (b) z-y plane 

Figure 2-5 Simulation models of the uterus [20]. 
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evaluated by four physicians. If evaluators indicated that the simulation result mimicked 
uterine movements, the six movement patterns were considered effective to assess unique 
characteristics of infertile patients. 
 Examples of the MRI images used to compare with the simulation results are 
shown in Figures 2-8, 2-9, 2-10, 2-11 and 2-12. Table 2-5 shows the simulation conditions. 
In this study, energy was not calculated because each simulation was a visual analysis. 
Therefore, the simulation parameters shown in Table 2-5 show define the appropriate 
values without specific physical measures. In Figures 2-8, 2-9, 2-10, 2-11 and 2-12, the 
left MRI images correspond to the simulation images on the right. In the comparisons, 
we used movie files with 3 seconds generated from MRI (sampling cycle: 2 s, FPS: 30 f) 

   
(a) C1a and C1b (b) C2a and C2b (c) C3a and C3b 

Figure 2-6 Input coordinates [20]. 

   
(a) C1a (b) C2a (c) C3a 

   
(d) C1b (e) C2b (f) C3b 

Figure 2-7 The six classes of movement by simulation [20]. 
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and simulation (sampling cycle: 4 us, FPS: 30 f) images. The 3D movies are not shown 
in this thesis. A time series of the simulation results is shown in the Appendix section. 
Four physicians compared the Cine MRI and simulated images by direct observation, and 
found that the simulated images successfully mimicked all 26 Cine MRI images. This 
analysis demonstrated that the six movement patterns were effective at assessing the 
unique uterine characteristics of infertile patients. 

 

Figure 2-8 Comparison on pattern 1 (C1a) [20]. 

 

Figure 2-9 Comparison on pattern 2 (C1a) [20]. 

 

Figure 2-10 Comparison on pattern 3 (C1a and C1b) [20]. 
 



14 
 

The simulation mimicked all uterine movements without changing the 
propagation velocity. The recording time was 0.36 ms and the propagation velocity was 
341.6 m/s in the simulation. This study found that the propagation velocity in the MRI 
images was 0.68 mm/s, as determined by Equation (2-5). 
 𝑉 = 341.6 × (0.36 × 10−3/180.0) = 0.68 × 10−3 (2-5) 

 
Figure 2-11 Comparison on pattern 4 (C2b) [20]. 

 
Figure 2-12 Comparison on pattern 5 (C2a and C3b) [20]. 

 
Table 2-5 Simulation conditions [20]. 

Density  1.2 [kg/m3] 
Bulk modulus K 1.4  105 [N/m2] 

Propagation velocity  () 341.6 [m/s] 
Time step size 1.0  10-6 [s] 

Number of calculation steps 360 [step] 
Unit lattice size 1.0 [mm] 

Boundary condition PML 
Lattice geometry Staggered grid 

Number of grid points 100  100  100 
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The propagation velocity of uterine peristalsis had been not reported. The current 
simulation analysis revealed that the propagation velocity of uterine peristalsis exhibited 
a constant velocity of 0.68 mm/s. 
 

2.5 Evaluation of Experimental Results 
The direction of uterine motion in MRI images was compared with the ideal direction 
(described below) of uterine motion. The direction information was obtained by directly 
inspecting each image for the presence or absence of each class of movement. The author 
analyzed 26 MRI images by direct observation. The ideal direction was based on the stage 
of the menstrual cycle of the patient defined by physicians. The observed motion 
directions were determined to coincide with the ideal direction when the any of the 
following conditions was satisfied: (1) Generated movements were only C1a, C2a, or C3a 
when the ideal direction was a forward movement. (2) Generated movements were only 
C1b, C2b, or C3b when the ideal direction was an opposite movement. (3) Generated 
movements were none when the ideal direction was none. 

In Table 2-6, notation “1” represents the presence of movement and “-” indicates 
the absence of movement. The comparison found that the direction of uterine motion for 
13/26 MRI images coincided with the defined stages of the menstrual cycle. Table 2-7 
also summarizes the cases where the motion direction never coincided with the defined 
stage of the menstrual cycle, and shows that these motion classes were only C1a, C1b and 
C3b. It was speculated that motions C1a and C1b affect the ideal direction. Analysis of 
these findings using a 2 × 2 contingency table (Table 2-8) and the chi-square test found a 
test statistic T = 3.94. The value of the chi-square distribution was 3.84 when the degrees 
of freedom n’ = 1 and the significance level was 0.05. It was concluded that C1a and C1b 
were wrong motions with T > 3.84. 
 

2.6 Automated Analyzing System for Uterine Movement 
This study developed an automated analyzing system for uterine movements. The system 
predicts the class of uterine movement from Cine MRI images by the velocity information 
for the uterine movement. The analysis of the system was based on the key feature 
obtained by visualized simulation, showing that all uterine peristalsis exhibited a constant 
propagation velocity. Two CNN models were developed to evaluate the automatic system. 
One was composed of the original Cine MRI images (shape-based system) and the other 
was composed of images with velocity information (velocity-based system). 
Experimental comparison evaluated the prediction accuracy of movement types. 
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2.6.1 Methods 
Two types of CNN models were developed; a shape-based and velocity-based model. 
Figure 2-13 shows that the structure of the CNN models included a combination of 
VGG16 [14] and fully connected layers. This study used VGG16 that had been previously 
established by ImageNet [25]. 

Table 2-6 Observed uterine movements [20]. 
 P I C1a C1b C2a C2b C3a C3b Co 
1 Sa a - - 1 - - 1 F 
2 Sa a - - - - 1 - T 
3 Tr a - - - - 1 - T 
4 Sa a - - 1 - 1 - T 
5 Tr a - - 1 - 1 - T 
6 Sa a - - 1 - 1 - T 
7 Tr a - - - - 1 1 F 
8 Sa a 1 - 1 - - - T 
9 Tr a - - 1 - 1 - T 
10 Sa a - - 1 - 1 - T 
11 Sa a 1 - - - - - T 
12 Sa a 1 1 - - - - F 
13 Tr a 1 1 - - 1 - F 
14 Tr a 1 - - - - - T 
15 Sa a 1 1 - - - - F 
16 Tr a - - - - 1 1 F 
17 Tr a - - - - 1 1 F 
18 Sa a 1 - - - 1 1 F 
19 Tr b 1 1 - - - - F 
20 Sa b - - - 1 - - T 
21 Sa N 1 - - - - - F 
22 Tr N 1 - - - - - F 
23 Tr N 1 - - - - - F 
24 Sa N 1 - - - - - F 
25 Sa N - - - - - - T 
26 Tr N - - - - - - T 

P: plane type, Sa = sagittal plane, Tr = transverse plane. I: ideal direction, a = forward 
movement, b = opposite movement, N = none. Co: coincided, T = true, F = false. 
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Table 2-7 Patients with classes of uterine motions that did not coincide with expected 
movements [20]. 

Patient 
No. 

Generated waves 
Direction of correct 
motion in menstrual 

cycle 

Class with no 
coincidence 

1 C2a and C3b forward C3b 
7 C3a and C3b forward C3b 
12 C1a and C1b forward C1b 
13 C1a, C1b and C3a forward C1b 
15 C1a and C1b forward C1b 
16 C3a and C3b forward C3b 
17 C3a and C3b forward C3b 
18 C1a, C3a and C3b forward C3b 
19 C1a and C1b opposite C1a 
21 C1a none C1a 
22 C1a none C1a 
23 C1a none C1a 
24 C1a none C1a 

Table 2-8 Contingency table [20]. 
 Coincided No coincidence Total 

(C1a OR C1b) 3 8 11 
NOT (C1a AND C1b) 10 5 15 

Total 13 13 26 
 

 

 
Figure 2-13 Convolution Neural Network (CNN) architecture [20]. 
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2.6.1.1 Shape-based Model 
This section describes a shape-based system using a CNN. The system extracted 
information of endometrium shape by convolution layers and predicted movement types. 

Images were prepared as input for the CNN model. The uterine region was 
extracted from Cine MRI images by a mask image manually generated in advance. Figure 
2-14 shows an original image, a mask image, an image extracted by the mask, and a 
resized image. Because uterine shape and direction have individual variation between 
patients, extracted region sizes were different from each other. Rotation processes every 
30 degrees from −90 to +90, and every 10 degrees from −30 to +30, were applied to 
extracted images in the sagittal and transverse planes, respectively. Obtained images were 
saved at 224×224 pixels. Figure 2-14 (d) shows a saved image at 224×224 pixels. 
Figure2-15 shows examples of saved images. Figure 2-15 (a) and (b) panels show 
examples of saved Cine MRI images, with original images collected one time step apart 
shown in the center vertical columns, and the left and right side images showing rotated 
images for the original center images. 

  

(a) Original image (b) Mask image 

 
 

(c) Extracted image (d) Resized image 
Figure 2-14 Examples of the saved images. 
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2.6.1.2 Velocity-based Model 
This section describes the velocity-based prediction model using a CNN. The system 
predicts the classes of uterine movement by analyzing images with velocity information.  

Images were prepared as input for the CNN model. An averaging filter of 30×30 

 
(a) Sagittal plane 

 
(b) Transverse plane 

Figure 2-15 Examples of the saved Cine MRI images. 
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pixels was applied to the images generated in Section 2.6.1.1. Interframe differences 
Diff(t, x, y) were calculated for the images, and the values of Diff(t, x, y) were converted 
to Diff’(t, x, y) according to Equation (2-6). 
 If 𝐷𝑖𝑓𝑓(𝑡, 𝑥, 𝑦) ≤ 0: 

𝐷𝑖𝑓𝑓′(𝑡, 𝑥, 𝑦) = 0 
Else  𝐷𝑖𝑓𝑓(𝑡, 𝑥, 𝑦) ≤ 20: 

𝐷𝑖𝑓𝑓′(𝑡, 𝑥, 𝑦) =
𝐷𝑖𝑓𝑓(𝑡, 𝑥, 𝑦)

20
× 255 

Else: 
𝐷𝑖𝑓𝑓′(𝑡, 𝑥, 𝑦) = 255 

(2-6) 

t denotes a frame number, and x and y represent a x- and y-coordinate points in the image. 
Since 99.7 percent values of Diff(t, x, y) in the dataset was 20 or less, the number 20 was 
used in Equation (2-6). Diff’(t, x, y) was applied to a moving average filter of five points 
for the t-axis direction. Optical flow was calculated for adjacent frames of Diff’(t, x, y). 
The optical flow was calculated by the Farneback method [26]. The displacement of each 
pixel D(t, x, y) was calculated from the results of the optical flow. A velocity image V was 
generated by the Equation (2-7). 
 If 1 − |3.5 − 𝐷(𝑡, 𝑥, 𝑦)| 2⁄ ≤ 0: 

𝑉(𝑡, 𝑥, 𝑦) = 0 
Else: 

𝑉(𝑡, 𝑥, 𝑦) = (1 −
|3.5 − 𝐷(𝑡, 𝑥, 𝑦)|

2
) × 255 

(2-7) 

Here, the numbers 3.5 and 2 were values obtained from an average value and a standard 
deviation of V(t, x, y) in the dataset. Images were saved as images with velocity 
information by converting the brightness values to V. Figure 2-16 shows examples of the 
saved images. 
 
2.6.2 Comparative Experiments 
Labels for the images had six types of movements labeled as C1a, C1b, C2a, C2b, C3a, 
and C3b. These movements may occur simultaneously or not at all. Therefore, the model 
utilized multi-label classifications. Label information were set according to Table 2-6. 
The output was sigmoidal and the system was evaluated by k-fold cross validation with k 
= 3. The sagittal plane images from 14 patients were divided into three groups, and 
transverse plane images from 12 patients were also divided into three groups. Tables 2-9 
and 2-10 show the results of divided sagittal and transverse plane images, respectively. 
The images from one group were extracted from the dataset as validation data, and the 
model used the images from the remaining two groups as training data. Images that were 
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not rotated in the validation data were used as test data. The model learns during 20 
epochs. The k-fold cross validation repeated the learning while groups were changed for 
validation data, until all groups were used for validation data. Therefore, we obtained 
three learning curves and prediction results for all patients’ data.  

 
(a) Sagittal plane 

 
(b) Transverse plane 

Figure 2-16 Examples of images saved with velocity information. 
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Figures 2-17 and 2-18 show the learning curves for accuracy and loss of 
validation data for the sagittal plane images. In Figures 2-17 and 2-18, the horizontal axis 
shows the number of epochs, and the vertical axes show the accuracy and loss. The 
accuracy was binary and the loss was categorical cross entropy. The velocity-based model 
had a higher accuracy than the shape-based model (Figure 2-17), and a lower loss 
compared with the shape-based model (Figure 2-18). Based on these results, the velocity-
based model provides an effective approach to predict movement types. Table 2-11 shows 
the accuracy and loss of the models in the final step. 

Figures 2-19 and 2-20 show the learning curves for accuracy and loss of 
validation data for the transverse plane images. In Figures 2-19 and 2-20, there was almost 
no difference between the velocity-based and shape-based models. Table 2-12 shows the 
accuracy and loss of the models in the final step. The velocity-based model had a lower 
accuracy and lower loss than the shape-based model. 

In the analysis of sagittal plane images, the velocity-based model obtained a 
higher score than the shape-based model. However, in the analysis of transverse plane 
images, the score of the velocity-based model was not higher than that of the shape-based 
model. It is possible that the cause of these results was the lack of correct information 
regarding the relationship between pixel and distance. Additionally, the model may have 
required more learning input because of larger individual differences in endometrial shape 
and size between transverse plane images compared with sagittal plane images. 
 
 
 

Table 2-9 The subjects for groups in the sagittal plane dataset. 
 Group 1 Group 2 Group 3 
Subject numbers 1, 2, 20, 21, 24 6, 8, 10, 11, 12 4, 15, 18, 25 
Number of images 2,870 3,080 2,464 
Total 8,414 

 
Table 2-10 The subjects for groups in the transverse plane dataset. 

 Group 1 Group 2 Group 3 
Subject numbers 3, 19, 22, 23 7, 9, 13, 14 5, 16, 17, 26 
Number of images 2,464 2,254 2,464 
Total 7,182 
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Figure 2-17 Learning curve showing cross-validation accuracy in the sagittal plane. 

 

 
Figure 2-18 Learning curve showing cross-validation loss in the sagittal plane. 

 
 

Table 2-11 Accuracy and loss of the models for the sagittal plane at the final step. 
 Shape-based model Velocity-based model 

Accuracy 0.64 0.71 
Loss 3.38 2.11 
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Figure 2-19 Learning curve showing cross-validation accuracy in the transverse plane. 

 

 
Figure 2-20 Learning curve showing cross-validation loss in the transverse plane. 

 
 

Table 2-12 Accuracy and Loss of the Models for the Transverse Plane at the Final Step  
 Shape-based model Velocity-based model 

Accuracy 0.71 0.64 
Loss 2.34 2.30 

 
 
 
 



25 
 

2.7 Conclusions 
Uterine peristalsis is related to fertility. The direction and frequency of peristalsis 
corresponds to each stage of the menstrual cycle for healthy women. However, random 
and mixed uterine movements occur in some phases of the cycle for patients with 
infertility. Therefore, characteristics of the direction and frequency of uterine movements 
in infertile patients differ from healthy subjects. To further understand uterine peristalsis 
in infertile patients, we classified six fundamental uterine movements as basis for a new 
evaluation model. The movements were classified based on motility form and direction. 
Evaluation of the direction of motion identified two fundamental movements (C1a and 
C1b) that provide candidate factors for female infertility. These results formed the basis 
of an evaluation method of uterine movements for infertile patients. Visualized simulation 
analysis of the validity of clustering results found that all uterine peristalsis exhibited a 
constant propagation velocity of 0.68 mm/s. The feature will likely be applied to many 
studies in the field of infertility, because the current study demonstrated that a CNN 
system based on this velocity feature had a higher performance than a CNN system based 
on shape features. In sagittal plane images, the velocity-based system had a higher 
prediction accuracy than the shape-based system. However, the prediction accuracy of 
the velocity-based system was not higher than the shape-based system for transverse 
plane images. The differences between sagittal and transverse plane images may reflect a 
dataset lacking diversity because of the limited number of training data. The prediction 
accuracy will be improved by solving the problem of the dataset. In the future, new data 
augmentation methods will be investigated to improve the performance of the velocity-
image based system. 
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Chapter 3 
Pregnancy Prediction Systems by Ultrasonic 
Images 
 
3.1 Introduction 
Ultrasonic B-mode images are often used during infertility treatment. Endometrial shape, 
detected via ultrasonic images, changes during phases of the menstrual cycle [10, 11, and 
12]. Before ovulation, the endometrium has a leaf-like pattern, as shown in Figure 3-1. 
After ovulation, the endometrium has a uniform shape, known as the homogenous pattern, 
as shown in Figure 3-2. Physicians evaluate the optimal phase for pregnancy outcome 
based on endometrial shapes. Based on the relationship between endometrial shapes and 
phases of the menstrual cycle, it is generally considered that a leaf pattern represents the 
optimal time for achieving pregnancy, and the homogenous pattern represents the time of 
a low pregnancy rate. Endometrial shapes in ultrasonic images are evaluated by direct 
observation. However, it is difficult to correctly evaluate endometrial shapes from 
ultrasonic images. The fertility treatment may fail even if the physician identifies a leaf 
pattern, and treatment may succeed even if the physician identifies a homogenous pattern. 

To correctly evaluate endometrial shapes, this study developed an evaluation 
system for optimal uterine features based on a Local Binary Pattern (LBP) feature 
(described in Section 3.3 Analyzing System by LBP). The LBP feature utilizes values 
showing local shape information for an image [27 and 28], and has been mainly used for 
face recognition [29, 30, 31, and 32], as well as analysis of medical images [33, 34, 35, 
36, and 37]. The goal of the current LBP system was to use endometrium shape 
information from ultrasonic images to predict the success rate of a subsequent pregnancy. 
However, endometrial shapes displayed on ultrasonic images are not stable because of 
the angle of incidence of ultrasonic waves. Furthermore, the LBP method may be affected 
by variations in uterine position. It is difficult to develop an automated method aligning 
uterine direction because of the large individual variation in endometrial shapes and sizes. 
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For the current analysis, uterine direction was aligned by manually rotating the images, 
which may be subjective. To overcome these problems with the LBP system, a new 
system was developed to improve the accuracy of detection of uterine features. 

 
Figure 3-1 Example of a leaf pattern in an ultrasound image. 

 

 
Figure 3-2 Example of a homogenous pattern in an ultrasound image. 
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Uterine peristalsis assists in the transport of sperm. The direction and frequency 
of peristalsis changes during the phases of each menstrual cycle [6, 7, 8, and 9]. Uterine 
peristalsis is mainly observed using Cine MRI images, but can also be observed by 
ultrasonic images. Therefore, menstrual cycle information can be predicted by analyzing 
uterine peristalsis from ultrasonic images. As mentioned above, the endometrium exhibits 
different patterns via ultrasound imaging before and after ovulation. The frequency of 
uterine peristalsis decreases from the ovulation to luteal phase. Therefore, the frequencies 
of movement of the leaf and homogenous patterns must also be different. Pregnancy can 
be predicted by analyzing the movement, without detailed analysis of endometrial shapes. 

The images shown in Figures 3-1 and 3-2 were obtained by inserting an 
ultrasonic probe into a vagina. The image was affected by camera shake because the probe 
was controlled by the physician’s hand. Therefore, it was difficult to extract uterine 
peristalsis from the ultrasonic images. In Chapter 2, the findings showed that the 
movement velocity of uterine peristalsis was 0.68 mm/s. Therefore, it was predicted that 
the analysis of velocity information in ultrasonic images would allow extraction of uterine 
peristalsis features. 

This chapter describes a pregnancy outcome prediction system based on CNN 
analysis of uterine movement. Accuracies of the system were compared using two 
information of shape and velocity. The shape-based system, based on conventional theory, 
predicted pregnancy using original ultrasonic images. The velocity-based system, 
developed in this thesis, predicted pregnancy using images generated from velocity 
information.  
 

3.2 Ultrasonic Images 
This chapter describes the analysis of ultrasonic B-mode images, taken at the 
Reproduction Clinic Osaka, of infertile female patients. The dataset included images from 
38 patients. These images had leaf or homogenous patterns classified by a physician, and 
included patient information regarding the success or failure of a pregnancy. Table 3-1 
shows the number of subjects. Because the ultrasonic images were taken in a time series 
for each patient, the dataset consisted of movie files. Table 3-2 shows details of the movie 
files. All study participants provided informed consent, and the study was approved by 
the ethics committee of University of Hyogo (approved number: 201901 and 202004). 
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3.3 Prediction by LBP 
This section describes the development and evaluation of prediction system for pregnancy 
based on LBP analysis.  
 
3.3.1 Methods 
Local shape features of endometrium images were analyzed by an LBP. The LBP 
classified the relationship between the target pixel and peripheral pixels into 256 mask 
patterns. This feature was effective for images with a change in brightness values. 
Furthermore, the calculation cost of an LBP was very low. Figure 3-3 shows a flowchart 
of the analysis method. The average brightness values for the time axis direction were 
calculated for each pixel from the movie file, and the average image of the ultrasonic 
images was made for each patient. The endometrium region was extracted using the 
partial shape constraint contour model [38]. LBP values were calculated in the extracted 
endometrial region, and a histogram of the LBP values was recorded for each image. This 
study analyzed LBP features in the recorded histograms to develop a prediction system 
of pregnancy outcome. 
 
3.3.2 Analyzing LBP Values 
The LBP value was calculated by thresholding the neighborhood of each pixel. The 

Table 3-1 Number of subjects. 
 Success Failure Total 

Leaf 9 11 20 
Homogenous 10 8 18 

Total 19 19 38 
 

Table 3-2 Detail of movie files. 
Extension mpg 

Width 720 pixels 
Height 480 pixels 

Color mode Gray scale 
Gradation 256 
Frame rate 30 fps 

Record time 
29-34 sec 

(Average: 30.8 sec) 
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calculation method used Equation (3-1). 
 

𝐿𝐵𝑃 = ∑ 𝑠(𝑔𝑝 − 𝑔𝑐)2𝑝

7

𝑝=0

 
(3-1) 

 
𝑠(𝑔𝑝 − 𝑔𝑐) = {

1 𝑔𝑝 ≥ 𝑔𝑐

0 𝑔𝑝 < 𝑔𝑐
 

The notations 𝑔𝑐 and 𝑔𝑝 denote brightness values of the central pixel and its neighbor, 
respectively. Uterus directions in ultrasonic images were variable for each patient. 
Because the LBP requires angle information as a feature value, it was difficult to analyze 
features in the original ultrasonic images. Therefore, an LBP rotation invariant (LBPri) 
was used as a first step to analyze the features. In the calculation of an LBP, an eight-bit 
binary pattern was obtained. LBPri is the minimum value obtained by binary shifts for the 
eight-bit binary pattern. Figure 3-4 shows an example of an LBPri. 

An LBPri was calculated for each endometrial region extracted from the average 
image by a mask image. The mask images were generated based on analyzing results of 
the partial shape constraint contour model. Figure 3-5 shows examples of the original 
image, mask image, and an image extracted by the mask. Figure 3-6 shows the LBPri 
values calculated for the datasets as a histogram. In Figure 3-6, the horizontal axis shows 
mask pattern number and the vertical axis indicates the frequency for each mask pattern. 
Notation LP denotes datasets for a leaf pattern and pregnancy, LN indicates a leaf pattern 
and non-pregnancy, HP shows a homogenous pattern and pregnancy, and HN denotes a 
homogenous pattern and non-pregnancy. In Figure 3-6, mask pattern numbers 15 and 31 

 
Figure 3-3 Flowchart of the analysis method. LBP, local binary pattern. 
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have high frequencies. The shapes of mask pattern numbers 15 and 31 are shown in 
Figures 3-7 and 3-8, respectively. These mask patterns show edge patterns. Therefore, 
this analysis found that the endometrium region was mainly composed of edge mask 
patterns.  

 
Figure 3-4 Example of local binary pattern rotation invariant (LBPri). 

 

   
(a) Original image (b) Mask image (c) Extracted image 

Figure 3-5 Examples of uterine region extraction. 
 

 
Figure 3-6 Histogram of local binary pattern (LBP) values with the rotation invariance. 

L, leaf pattern. H, homogenous pattern. P, pregnancy. N, no pregnancy. 
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Figure 3-7 Shape of mask pattern number 15 in the local binary pattern rotation 

invariant (LBPri). 

 
Figure 3-8 Shape of mask pattern number 31 in the local binary pattern rotation 

invariant (LBPri). 
3.3.3 Analyzing Edge Angles 
In Section 3.3.2, the analysis found that the endometrium region was mainly composed 
of edge mask patterns. Analysis of the edge mask pattern was expanded to the frequencies 
of 16 edge mask patterns, as shown in Figure 3-9. In this analysis, angle information was 
defined for the 16 patterns. The ultrasonic images were rotated so that each uterus was 
positioned in a straight direction before analysis, because uterus directions in ultrasonic 
images were variable for each patient. Figure 3-10 shows an ultrasonic image before 
rotation. The arrow in Figure 3-10 shows the coordinate system after rotation. Uterine 
corpus and fundus directions were set as 90 degrees and 270 degrees, respectively. A 
vertical direction from the corpus to fundus was set as 0 and 180 degrees. This study 
analyzed the frequency of 16 patterns in 38 ultrasonic images. 

Figure 3-11 shows a histogram of the 16 patterns. In Figure 3-11, the horizontal 
axis shows the angle and the vertical axis indicates the frequency for each angle pattern. 
Frequencies of angle patterns 0 degree and 180 degrees were higher than other patterns. 
Furthermore, there was a difference in the frequencies of 0 degree and 180 degrees 
patterns between patients exhibiting pregnancy and non-pregnancy. It was assumed that 
the smooth luminance gradient emerged from the center line of the endometrium in a 
vertical direction. The feature values f1 and f2 were defined considering this feature. f1 and 
f2 were calculated by equation (3-2) and (3-3), respectively. 

 
𝑓1 = ∑ ℎ(157.5 ≤ 𝑑𝑒𝑔 ≤ 202.5)

+ ∑ ℎ(375.0 ≤ 𝑑𝑒𝑔) + ∑ ℎ(𝑑𝑒𝑔 ≤ 22.5) 
(3-2) 

 
𝑓2 =

∑ ℎ(157.5 ≤ 𝑑𝑒𝑔 ≤ 202.5)

∑ ℎ(375.0 ≤ 𝑑𝑒𝑔) + ∑ ℎ(𝑑𝑒𝑔 ≤ 22.5)
 

(3-3) 
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The notation deg denotes angle information for mask patterns and h indicates the 
frequency. These feature values were calculated from a histogram of 16 edge mask 
patterns. Equation (3-2) shows the sum of the vertical direction (0 degree and 180 degree) 
frequency, and Equation (3-3) shows the ratio of the upward direction (0 degree) and the 
downward direction (180 degree) frequency. Figure 3-12 shows a graph plotting the 
feature values f1 and f2. In Figure 3-12, the vertical axis shows f1 and the horizontal axis 

 
Figure 3-9 Masks pattern and angles. 

 

 
Figure 3-10 The coordinate system for the ultrasonic images. 
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indicates f2. In Figure 3-12, points of LP, LN and HP are plotted at the front position, and 
points of HN are plotted at the back position relative to the other patterns. Therefore, it 
was assumed that the patients exhibiting homogeneous pattern showed different feature 
values between a pregnancy and non-pregnancy status. 
 

 

Figure 3-11 Histogram of the angles.  
L, leaf pattern. H, homogenous pattern. P, pregnancy. N, no pregnancy. 

  

Figure 3-12 Plotted result for the feature values f1 and f2.  
L, leaf pattern. H, homogenous pattern. P, pregnancy. N, no pregnancy. 
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3.3.4 Evaluation 
This study analyzed whether it was possible to predict pregnancy or non-pregnancy 
outcomes using the feature values f1 and f2 of the ultrasonic images. A support vector 
machine (SVM) was used to predict pregnancy. A feature value of the SVM was two 
dimensional features f1 and f2. The feature value f2 was normalized by Equation (3-4) 
before data was learned. 

 𝐼𝐹  (1.0 ≤ 𝑓2)              𝑇𝐻𝐸𝑁  (𝑓2 = 1.0) (3-4) 
The learning data and test data used 38 ultrasonic images, as shown in Table 3-1 (19 
pregnancy, 19 non-pregnancy). This prediction system was evaluated by leave-one-out 
cross-validation. 

Table 3-3 shows the prediction results. The system had 0.68 accuracy. The 
prediction performance of the model was evaluated using distances of the samples to the 
separating hyperplane. Tables 3-4 and 3-5 show feature values obtained from these 
distances. The feature values were obtained by normalizing to scaling 0 and 1 after the 
distances were calculated. Tables 3-4 and 3-5 shows the feature values for pregnancy and 
non-pregnancy data, respectively. Figures 3-13 and 3-14 show a box plot and histogram 
for the feature values, respectively. There was no significant difference between feature 
values for pregnancy versus non-pregnancy, by a t-test for the feature values (p = 0.508). 
Figure 3-15 shows a receiver operating characteristic (ROC) curve for the feature values. 
In the ROC curve, the area under the curve (AUC) was 0.62, indicating that this model is 
not suitable. 
 
3.3.5 Conclusion 
In this section, a feature of uterine ultrasonic images was analyzed to develop a 
mechanical evaluation method to predict the success of pregnancy for female patients 
exhibiting infertility. The result survey using LBPri showed that a region of the 
endometrium was composed of an edge mask pattern. The current findings demonstrated 
that an angle feature of the edge mask pattern was different between the homogeneous 
pattern and pregnancy compared with the homogeneous pattern and non-pregnancy. The 
predictive rate of pregnancy by the angle feature system had 0.68 accuracy. However, the 
prediction results from the model found no significant difference between patients with 
pregnancy and non-pregnancy. It was assumed that to predict pregnancy from uterine 
shape was difficult because ultrasonic images of the uterine shape were not stable. 
Furthermore, the method was affected by uterine direction. Since uterine direction was 
manually aligned by rotating images, this method was subjective. Thus, it is difficult to 
develop an automated aligning uterine direction method, because of large individual 
variation in the shapes and sizes of endometrium. These issues present serious problems 
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for this proposed system. 
 

Table 3-3 Predictive result (overall) 

 
Observation 

Pregnancy 
(True) 

No Pregnancy 
(False) 

Forecast 

Pregnancy 
(Positive) 

15 8 

No Pregnancy 
(Negative) 

4 11 

Accuracy: 0.68 
 
 

Table 3-4 Feature values for subjects with pregnancy. 
Subject number Feature value 

1 (L) 0.75 
2 (L) 0.71 
3 (L) 0.52 
4 (L) 0.66 
5 (L) 0.47 
6 (L) 0.73 
7 (L) 0.80 
8 (L) 0.04 
9 (L) 0.07 

10 (H) 0.69 
11 (H) 0.09 
12 (H) 1.00 
13 (H) 0.66 
14 (H) 0.70 
15 (H) 0.59 
16 (H) 0.11 
17 (H) 0.53 
18 (H) 0.78 
19 (H) 0.52 

AVG (SD) 0.55 (0.27) 
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Table 3-5 Feature values for subjects with no pregnancy. 
Subject number Feature value 

1 (L) 0.12 
2 (L) 0.70 
3 (L) 0.26 
4 (L) 0.92 
5 (L) 0.88 
6 (L) 0.08 
7 (L) 0.45 
8 (L) 0.47 
9 (L) 0.11 
10 (L) 0.67 
11 (L) 0.68 
12 (H) 0.15 
13 (H) 0.45 
14 (H) 0.94 
15 (H) 0.00 
16 (H) 0.68 
17 (H) 0.11 
18 (H) 0.09 
19 (H) 0.08 

AVG (SD) 0.41 (0.32) 
 

  

Figure 3-13 Box plot for the feature values. Figure 3-14 Histogram for the feature values. 
Success = pregnancy. Failure = no pregnancy. 
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3.4 Prediction Based on Velocity by CNN 
In Section 3.3, the findings suggested that the proposed prediction system using LBP had 
problems. In this section, a prediction system for pregnancy without LBP was developed 
from a new viewpoint to solve these problems and improve prediction accuracy. 

This section described a new prediction system composed of CNN using velocity 
information. An analysis method of this system was based on the analysis presented in 
Chapter 2, indicating that all uterine peristalsis exhibited a propagation constant velocity. 
In the current experiments, two CNN models were developed. One was composed of 
original ultrasonic images (conventional method using shape information) and other was 
a new method composed of images with velocity information (denoted a velocity-based 
system). The prediction accuracy for pregnancy was evaluated by comparative 
experiments. 
 
3.4.1 Methods 
This section details the two types of CNN approaches using shape- and velocity-based 
models. Figure 3-16 shows the structure of CNN models, which included a combination 

 
Figure 3-15 Receiver operating characteristic (ROC) curve. 
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of VGG16 [14] and fully connected layers. Because the VGG16 had been previously 
learned by ImageNet [25], the learning processes of these models was performed by 
transfer learning. 
 
3.4.1.1 Shape-based Model 
In this section, a shape-based system using CNN extracted endometrium shape 
information by convolution layers and then predicted pregnancy. It is generally thought 
that endometrial shapes can affect a pregnancy. Therefore, the system was defined as a 
conventional method. 

Images were prepared as input for the CNN model. An averaging filter of 5×5 
pixels was applied to ultrasonic images as preprocessing. An average image was 
generated every second from the movie file by calculating an average per time axis. Thirty 
images were generated from a 30-second movie by this process. An endometrial region 
was extracted from the average image by a mask image manually generated in advance. 
Figure 3-17 shows the original image, mask image, image extracted by the mask, and a 
resized image. The mask extracted endometrium regions from ultrasonic images. The 
considerable variation of endometrial shape and direction between individuals resulted in 
different extracted region sizes. Rotation processes every 60 degrees were applied to the 
extracted images. The obtained image was saved at 224×224 pixels. Figure 3-17 (d) 
shows a saved image at 224×224 pixels. Figure 3-18 shows an example of saved images. 
The vertical axis in Figure 3-18 shows the time of the movie file, and the horizontal axis 
shows the rotated images. Table 3-6 shows the number of saved images. 
 
 

 

Figure 3-16 Convolution Neural Network (CNN) architecture. 
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The learning process of CNN was performed using the saved images. Success or 

failure of pregnancy was predicted in the learned model. The system was evaluated by k-
fold cross validation with k = 3. Images from 38 different patients were assigned to three 
groups. Table 3-7 shows the images divided into three groups. Subject’s numbered 1 to 9 
under pregnancy success and those numbered 1 to 11 under failure were all patients 
classified with an endometrium exhibiting a leaf pattern by physicians. Subject’s 
numbered 10 to 19 under success and those numbered 12 to 19 under failure were patients 
classified as exhibiting endometrium with a homogenous pattern. The images from one 
group were extracted from the dataset as validation data, and the model used images from 
the remaining two groups as training data. Images that were not rotated in the validation 
data were used as test data. One patient had about 30 test images for a time series. The 
model performed learning analysis for 100 epochs. A pregnancy prediction for the test 
data was performed using the model after learning analysis for 100 epochs. The k-fold 
cross validation repeated learning while the groups were changed for validation data until 
all groups were used for validation data. Therefore, three learning curves and prediction 
results for the data from all patients were obtained. In the training and prediction process, 
labels of the images were set according to pregnancy success or failure for each patient. 
The images for subjects with successful pregnancy were labeled as success independent 
of time series. The images of subjects with no pregnancy were labeled as failure 
independent of time series. 

  
(a) Original image (b) Mask image 

  
(c) Extracted image (d) Resized image 

Figure 3-17 Examples of images in the mask process. 
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3.4.1.2 Velocity-based Model 
This section described a velocity-based prediction model using a CNN. This system 
predicted pregnancy by analyzing images with velocity information. A prediction method 
using velocity information has not been reported to date. Therefore, this system was 
defined as a proposed method. 

Images were prepared as input for the CNN model. An averaging filter of 5×5 
pixels was applied to ultrasonic images as preprocessing. An average image was 
generated every second from the movie files by calculating an average for the time axis. 
Thirty images were generated from a 30-second movie by this process. An endometrial 

 
Figure 3-18 Examples of saved images. 

 
Table 3-6 The number of saved images. 

Success 3,432 
Failure 3,408 
Total 6,840 

 
Table 3-7 The subjects for each group in the dataset. 

 Group 1 Group 2 Group 3 
Subject number  
with success 

1, 2, 3, 
10, 11, 12 

4, 5, 6, 
13, 14, 15 

7, 8, 9 
16, 17, 18, 19 

Subject number  
with failure 

1, 2, 3, 
12, 13, 14 

4, 5, 6, 7, 
15, 16, 17, 18 

8, 9, 10, 11, 
18, 19 

Number of images 2,190 2,316 2,334 
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region was extracted from the average image by a mask image, as described in Section 
3.4.1.1. Because endometrial shape and direction exhibit variation between individuals, 
the size of extracted regions different from each other. Rotation processes every 60 
degrees was applied to extracted images. Obtained images were saved as 224×224 pixels. 
The displacement D of each pixel was calculated as speed per second by applying an 
optical flow to saved images. A velocity image V was generated by normalizing D. Speed 
statistics for the dataset were calculated to set a standard of normalization. The speed 
information was calculated for images from 19 subjects with successful pregnancy. The 
fastest speed value in one image was recorded. A histogram for obtained speed values is 
shown Fig. 3-19. The average value of calculated speed was 0.78 mm/s with a standard 
deviation of 0.38 mm/s. The calculated average value was consistent with the 0.68 mm/s 
described in Chapter 2. A velocity image V was generated by normalizing D as shown in 
Equation (3-5). 
 If |0.78 − 𝐷(𝑥, 𝑦)| < 0.76: 

𝑉(𝑥, 𝑦) = (1 −
|0.78 − 𝐷(𝑥, 𝑦)|

0.76
) × 255 

Else: 
𝑉(𝑥, 𝑦) = 0 

(3-5) 

The notations x and y denote the x and y coordinate points, respectively, in the image. 
Figure 3-20 shows an example of the velocity images. The vertical axis in Figure 3-20 
shows the time of the movie file, and the horizontal axis shows rotated images.  
 

 
Figure 3-19 Histogram of the speed values. 
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3.4.2 Experimental Results 
 
3.4.2.1 Shape-based Model 
Figures 3-21 and 3-22 show the learning curves for accuracy and loss for each epoch, 
respectively. The solid and broken lines show average values of training and validation, 
respectively. The translucent region shows the maximum and minimum value range for 
the three learning curves. The accuracy was binary and the loss was binary cross entropy. 
The training accuracy increased with each epoch, but validation accuracy was not 
improved from around 0.56. Furthermore, training loss decreased with each epoch. 
Therefore, it is possible the overfitting occurred in the model. 

The prediction accuracy for pregnancy was based on prediction rates for each 
patient. The prediction results for the test data were treated as time series data for each 
patient. Figure 3-23 shows examples of the time series data. Figures 3-23 (a) and (b) show 
the time series data of subject 4 (pregnancy success) and subject 6 (pregnancy failure), 
respectively. An average for this time series data was a feature value for the subject. 
Tables 3-8 and 3-9 show the feature values of the subjects labeled success and failure, 
respectively. Figures 3-24 and 3-25 show a box plot and a histogram for the feature values, 
respectively. Figures 3-24 and 3-25 show there was no significant difference in the feature 
values for pregnancy by t-test (p = 0.092). Figure 3-26 shows a ROC curve for the feature 
values, with the AUC = 0.65. This AUC value shows that the model was not suitable. If 
a cut off value was the left upper point in the ROC curve, the false positive rate, true 
positive rate, and threshold value were 0.37, 0.74, and 0.36, respectively. When the 

 
Figure 3-20 Examples of saved images. 
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threshold value was set at 0.36, the accuracy was 0.68. Table 3-10 shows a prediction 
result when the threshold value was set to 0.36. 
 

 
Figure 3-21 Learning curve showing cross-validation accuracy. 

 

 
Figure 3-22 Learning curve showing cross-validation loss. 

 
 
 
 
 



45 
 

  

(a) Success, subject 4 (b) Failure, subject 6 
Figure 3-23 Examples of time series prediction results. 

Success = pregnancy. Failure = no pregnancy. 

 
Table 3-8 Feature values for subjects with pregnancy (successful) 

Subject number 
(L: leaf, H: homogenous) 

(validation group) 
Feature value 

1 (L) (1) 0.89 
2 (L) (1) 0.51 
3 (L) (1) 0.83 
4 (L) (2) 0.16 
5 (L) (2) 1.00 
6 (L) (2) 0.09 
7 (L) (3) 0.21 
8 (L) (3) 0.00 
9 (L) (3) 0.37 

10 (H) (1) 0.59 
11 (H) (1) 1.00 
12 (H) (1) 0.96 
13 (H) (2) 0.95 
14 (H) (2) 1.00 
15 (H) (2) 0.81 
16 (H) (3) 0.00 
17 (H) (3) 0.36 
18 (H) (3) 0.52 
19 (H) (3) 1.00 
AVG (SD) 0.59 (0.36) 
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Table 3-9 Feature values for subjects with no pregnancy 
Subject number 

(L: leaf, H: homogenous) 
(validation group) 

Feature value 

1 (L) (1) 1.00 
2 (L) (1) 1.00 
3 (L) (1) 0.00 
4 (L) (2) 0.05 
5 (L) (2) 0.27 
6 (L) (2) 0.53 
7 (L) (2) 0.01 
8 (L) (3) 1.00 
9 (L) (3) 0.00 
10 (L) (3) 0.00 
11 (L) (3) 0.27 
12 (H) (1) 0.63 
13 (H) (1) 0.14 
14 (H) (1) 0.96 
15 (H) (2) 0.97 
16 (H) (2) 0.12 
17 (H) (2) 0.03 
18 (H) (3) 0.03 
19 (H) (3) 0.05 
AVG (SD) 0.37 (0.40) 

 

  
Figure 3-24 Box plot for the feature values. Figure 3-25 Histogram for the feature values. 

Success = pregnancy. Failure = no pregnancy. 
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Figure 3-26 Receiver operating characteristic (ROC) curve.  

Table 3-10 Prediction results of the conventional method using the threshold process 

 
Actual class 

Success Failure 

Predicted class 
Success 14 7 
Failure 5 12 

Accuracy: 0.68 
3.4.2.2 Velocity-based Model 
Figures 3-27 and 3-28 show learning curves for the accuracy and loss for each epoch, 
respectively. The solid and broken lines show average values for the training and 
validation analysis, respectively. The shaded region shows the maximum and minimum 
value ranges for the three learning curves. The accuracy was binary and the loss was 
binary cross entropy. The training accuracy increased with the rising epoch, but the 
validation accuracy did not increase beyond approximately 0.61, as shown in Figure 3-
27. Furthermore, training loss declined with increasing epochs. These results suggest that 
overfitting occurred in the model. 

The prediction accuracy for pregnancy was based on a prediction rate for each 
patient. Prediction results for the test data were treated as time series data for each patient. 
Figure 3-29 shows examples of time series data. Figures 3-29 (a) and (b) show the time 
series data of subject 4 (pregnancy success) and subject 6 (pregnancy failure), respectively. 
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An average for this time series data was used as a feature value for the subject. Tables 3-
11 and 3-12 show the feature values of the subjects with successful and failed pregnancy, 
respectively. Figures 3-30 and 3-31 show a box plot and a histogram for the feature values, 
respectively. Figures 3-30 and 3-31 show a significant difference in the feature values for 
pregnancy at the p = 0.05 level (since p = 0.026 from a t-test for the feature values). Figure 
3-32 shows the ROC curve for these feature values, with the AUC = 0.72. If a cut off 
value was the left upper point of the ROC curve, the false positive rate, true positive rate, 
and threshold value were 0.37, 0.68, and 0.38, respectively. When the threshold value was 
set 0.38, the accuracy was 0.66, as shown in Table 3-13.  
 

 
Figure 3-27 Learning curve showing cross-validation accuracy. 

 
Figure 3-28 Learning curve showing cross-validation loss. 
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(a) Success, subject 4 (b) Failure, subject 6 

Figure 3-29 Examples of time series prediction results.  
Success = pregnancy. Failure = no pregnancy.  

 
Table 3-11 Feature values for subjects with pregnancy (success).  

Subject number 
(L: leaf, H: homogenous) 

(validation group) 
Feature value 

1 (L) (1) 0.92 
2 (L) (1) 1.00 
3 (L) (1) 0.32 
4 (L) (2) 0.45 
5 (L) (2) 1.00 
6 (L) (2) 0.28 
7 (L) (3) 0.34 
8 (L) (3) 0.33 
9 (L) (3) 0.08 

10 (H) (1) 0.70 
11 (H) (1) 0.50 
12 (H) (1) 0.74 
13 (H) (2) 0.38 
14 (H) (2) 0.77 
15 (H) (2) 0.52 
16 (H) (3) 0.80 
17 (H) (3) 0.47 
18 (H) (3) 0.39 
19 (H) (3) 0.35 
AVG (SD) 0.54 (0.26) 
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Table 3-12 Feature values for subjects with no pregnancy (failure). 
Subject number 

(L: leaf, H: homogenous) 
(validation group) 

Feature value 

1 (L) (1) 0.36 
2 (L) (1) 0.07 
3 (L) (1) 0.08 
4 (L) (2) 0.37 
5 (L) (2) 0.39 
6 (L) (2) 0.28 
7 (L) (2) 0.51 
8 (L) (3) 0.26 
9 (L) (3) 0.46 
10 (L) (3) 0.73 
11 (L) (3) 0.30 
12 (H) (1) 0.24 
13 (H) (1) 0.14 
14 (H) (1) 0.45 
15 (H) (2) 0.00 
16 (H) (2) 1.00 
17 (H) (2) 0.62 
18 (H) (3) 0.29 
19 (H) (3) 0.14 
AVG (SD) 0.35 (0.24) 

 

  
Figure 3-30 Box plot for the feature values. Figure 3-31 Histogram for the feature values. 

Success = pregnancy. Failure = no pregnancy. 
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Figure 3-32 Receiver operating characteristic (ROC) curve.  

 
Table 3-13 Prediction results of the proposed using the threshold process 

 
Actual class 

Success Failure 

Predicted class 
Success 13 7 
Failure 6 12 

Accuracy: 0.66 
 

3.5 Comparison 
Figure 3-33 compares the validation accuracy between the shape-based and velocity-
based models, and Figure 3-34 compares the validation loss between the shape-based and 
velocity-based models. The validation accuracy for the velocity-based model was higher 
than in the shape-based model, and the validation loss was lower in the velocity-based 
model than the shape-based model. Therefore, the velocity-based model was more 
suitable than the shape-based model based on these results. Figure 3-35 compares the data 
in Figures 3-23 and 3-29. In Figure 3-35 (a), the prediction rate was higher for the 
velocity-based model compared with the shape-based model. In Figure 3-35 (b), the 
prediction rate was lower for the velocity-based model compared with the shape-based 
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model. The high prediction rate for pregnancy and low prediction rate for no pregnancy 
in the velocity-based model indicated that this model was more suitable than the shape-
based model. Tables 3-14 and 3-15 compare the feature values by the LBP system, the 
shape-based, and velocity-based models. Figure 3-36 compares the ROC curves by the 
LBP system, the shape-based, and velocity-based models. In Figure 3-36, the AUC value 
from the velocity-based model was higher than other models, indicating that the velocity-
based model is the most suitable model. 

 
Figure 3-33 Comparison of results for cross-validation accuracy. 

 
Figure 3-34 Comparison of results for cross-validation loss.  
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(a) Success, subject 4 (b) Failure, subject 6 
Figure 3-35 Comparison of the time series prediction results. 

Success = pregnancy. Failure = no pregnancy. 
 

Table 3-14 Feature values for subjects with pregnancy (success) 
Subject 
number 

 Feature value 
LBP system Shape-based model Velocity-based model 

1 (L) (1) 0.75 0.89 0.92 
2 (L) (1) 0.71 0.51 1.00 
3 (L) (1) 0.52 0.83 0.32 
4 (L) (2) 0.66 0.16 0.45 
5 (L) (2) 0.47 1.00 1.00 
6 (L) (2) 0.73 0.09 0.28 
7 (L) (3) 0.80 0.21 0.34 
8 (L) (3) 0.04 0.00 0.33 
9 (L) (3) 0.07 0.37 0.08 

10 (H) (1) 0.69 0.59 0.70 
11 (H) (1) 0.09 1.00 0.50 
12 (H) (1) 1.00 0.96 0.74 
13 (H) (2) 0.66 0.95 0.38 
14 (H) (2) 0.70 1.00 0.77 
15 (H) (2) 0.59 0.81 0.52 
16 (H) (3) 0.11 0.00 0.80 
17 (H) (3) 0.53 0.36 0.47 
18 (H) (3) 0.78 0.52 0.39 
19 (H) (3) 0.52 1.00 0.35 
AVG (SD) 0.55 (0.27) 0.59 (0.36) 0.54 (0.26) 
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Table 3-15 Feature values for subjects with no pregnancy (failure) 
Subject 
number 

 Feature value 
LBP system Shape-based model Velocity-based model 

1 (L) (1) 0.12 1.00 0.36 
2 (L) (1) 0.70 1.00 0.07 
3 (L) (1) 0.26 0.00 0.08 
4 (L) (2) 0.92 0.05 0.37 
5 (L) (2) 0.88 0.27 0.39 
6 (L) (2) 0.08 0.53 0.28 
7 (L) (2) 0.45 0.01 0.51 
8 (L) (3) 0.47 1.00 0.26 
9 (L) (3) 0.11 0.00 0.46 
10 (L) (3) 0.67 0.00 0.73 
11 (L) (3) 0.68 0.27 0.30 
12 (H) (1) 0.15 0.63 0.24 
13 (H) (1) 0.45 0.14 0.14 
14 (H) (1) 0.94 0.96 0.45 
15 (H) (2) 0.00 0.97 0.00 
16 (H) (2) 0.68 0.12 1.00 
17 (H) (2) 0.11 0.03 0.62 
18 (H) (3) 0.09 0.03 0.29 
19 (H) (3) 0.08 0.05 0.14 
AVG (SD) 0.41 (0.32) 0.37 (0.40) 0.35 (0.24) 
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Figure 3-36 Comparison of the receiver operating characteristic (ROC) curves.  

 
 

3.6 Conclusion 
In this chapter, a system was developed to predict uterine ultrasonic B-mode images 
related to the success or failure of a pregnancy. This system predicts pregnancy based on 
uterine movement. Physicians typically determine endometrial shape to predict the 
optimal timing for fertility treatments to achieve predict pregnancy based on an 
endometrial shape. However, it is difficult to correctly evaluate endometrial shape by 
visual observation. The current system used information of endometrial movement as a 
new feature to predict pregnancy outcomes. Uterine movement is mainly analyzed using 
Cine MRI images because these images can be analyzed more easily than ultrasonic 
images. Uterine movement affects pregnancy. However, prediction models using a feature 
of uterine movement has not been reported for ultrasonic images. In this thesis it was 
proposed that it is possible to analyze uterine movements from ultrasonic images by 
extracting the movement with a constant speed. Findings obtained from the analysis of 
Cine MRI images was applied to investigate ultrasonic images and develop a new system. 
Because the knowledge of uterine movement obtained from the analysis of Cine MRI 
images can be applied to the analysis of ultrasonic images, it was predicted that the 
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success rate of fertility treatment will increase. The direction and frequency of uterine 
peristalsis change in each phase of the menstrual cycle. We demonstrated that a uterus 
suitable for a successful pregnancy has uterine peristalsis, and a uterus unsuitable for 
pregnancy does not have uterine peristalsis. The system predicted the success or failure 
of a pregnancy with an AUC of 0.72, which was higher than a system using endometrial 
shape information. 
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Chapter 4 
Conclusions 
 
The number of people treated for infertility is increasing annually, but the success rate is 
not improving. The success rate of ART is higher than that of conventional fertility 
treatment methods, but the success rate remains low. Currently, there is limited 
opportunity for artificial intervention during the embryo transfer step of ART, so new 
techniques are required to improve the success rate. One problem for ART is that the 
clinically defined uterine characteristics for pregnancy have not been clarified. Uterine 
peristalsis assists in the transport of sperm. The direction and frequency of uterine 
peristalsis are known to change in each phase of the menstrual cycle; however, random 
and mixed movements occur in all phases of the menstrual cycle in infertile patients. 
These random and mixed movements had not been analyzed in detail. This thesis 
analyzed uterine movements using Cine MRI images from patients with infertility. This 
analysis identified six fundamental movement patterns in Cine MRI images, by visual 
inspection, from the infertile patients. Visual simulation mimicked the movements 
defined from original Cine MRI images, and supported the classification of these uterine 
movements. The simulation model revealed that all uterine peristalsis exhibited a constant 
propagation velocity of 0.68 mm/s. Using this velocity feature, a CNN system was 
developed that predicts uterine movement patterns. Comparative analysis was used to 
compare the original MRI images with velocity images generated from the velocity 
feature. In sagittal plane images, the prediction accuracy of the velocity image system 
was higher than that of the original image system. However, in transverse plane images, 
the prediction accuracy of the velocity image system was not improved compared with 
the original MRI image system. The difference between sagittal and transverse images 
may be caused by the lack of distance per pixel information. Furthermore, it is possible 
that the model had insufficient learning analysis, because individual variations of 
endometrial shape and size were larger in transverse plane images than in sagittal plane 
images.  

The current research then developed a system to predict pregnancy outcomes 
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from ultrasonic images. In fertility treatment, physicians decide the timing of embryo 
transfer by analyzing endometrium shape on ultrasonic B-mode images. However, the 
treatment sometimes fails when physicians define a suitable endometrial shape, and 
treatment may succeed when physicians define an unsuitable endometrial shape. It is 
difficult to correctly evaluate endometrium shape by a visual inspection. To solve the 
problem of determining the optimal uterine feature for the timing of embryo transfer 
leading to a successful pregnancy, we developed a prediction system using LBP. This 
system predicted a pregnancy outcome based on endometrial shape with 0.68 accuracy. 
The model was evaluated by ROC curve analysis; however, the AUC of 0.62 indicated 
the system was not a suitable prediction model. The current research developed a new 
prediction system using the velocity feature (uterine peristalsis has a constant velocity of 
0.68 mm/s) obtained from Cine MRI analysis. The new system was composed of a CNN, 
and was evaluated using experiments comparing original images and velocity images 
generated from the velocity feature. This analysis produced prediction accuracies of 0.68 
and 0.66 for the original and velocity image systems, respectively. The accuracy of the 
velocity image system was lower than the LBP and original image systems. The models 
were evaluated by ROC curve analysis, which produced obtained AUC of 0.65 and 0.72 
for the original and velocity image systems, respectively. These findings demonstrated 
that the velocity image system provides a good model, because the AUC was higher with 
the velocity image system compared with the other systems, including the LBP system. 
 This study revealed that all uterine peristalsis displayed at a constant propagation 
velocity. This novel velocity feature was applied to pregnancy outcome prediction from 
uterine analysis. In clinical image analysis for infertility, it is very important to analyze 
uterine movement because uterine movement and infertility are closely related. To date, 
it has been difficult to analyze uterine movement by image analysis. The large variation 
in endometrial shape and size between individuals, presented a challenge to generating a 
generalized prediction model. The new velocity feature overcomes these problems and is 
expected to contribute to the growth of related studies. 
 In the current study, the movement prediction system for Cine MRI images 
showed no improvement using the velocity images. However, the new pregnancy 
prediction system for ultrasonic images was improved by the velocity images. It is 
predicted that these findings reflect information about the distance per pixel. In the dataset 
of ultrasonic images, memory of the actual size was retrieved in the images. However, 
information to determine the relationship between pixels and distance was lacking in the 
dataset of Cine MRI images. Such information is needed to perform analysis based on the 
velocity. In previous studies, this information was not viewed as important. In the future, 
this information should be gathered to allow the application of the proposed new method. 
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In the current field of clinical image analysis, it is difficult to collect datasets that could 
be used in the current studies. There were not enough images to use a CNN in the current 
system, and the learning curves showed a tendency for overfitting. To avoid overfitting, 
it will be necessary to increase the number of collected images in future research. In recent 
years, data expansion by generative adversarial networks (GANs) [39, 40, 41, 42, 43, and 
44] has been attracting attention. The application of GANs has been reported in the field 
of medical imaging research [45, 46, 47, 48, 49, 50, and 51]. Future work should develop 
data augmentation methods for medical images to improve the accuracy of the new 
prediction system. 
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Appendix 
The captured images for the MRI and simulation results for every 5 frames are shown 

in Figures A-1 to 18. Images on the left show that the simulation results overlapped with 
the MRI images. In the simulation results, images were tilted −15 degrees, black and red 
in the images were replaced with a transparent color, and the alpha value was decreased 
to 20%. Images on the right show the simulation results. These images are snap shots of 
the movie file with 3 seconds (90 frames).  

 

 
Figure A-1 Comparing MRI and simulation (0/90) [20]. 

 

 
Figure A-2 Comparing MRI and simulation (5/90) [20]. 

 

 
Figure A-3 Comparing MRI and simulation (10/90) [20]. 
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Figure A-4 Comparing MRI and simulation (15/90) [20]. 

 

 
Figure A-5 Comparing MRI and simulation (20/90) [20]. 

 

 
Figure A-6 Comparing MRI and simulation (25/90) [20]. 

 

 
Figure A-7 Comparing MRI and simulation (30/90) [20]. 
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Figure A-8 Comparing MRI and simulation (35/90) [20]. 

 

 
Figure A-9 Comparing MRI and simulation (40/90) [20]. 

 

 
Figure A-10 Comparing MRI and simulation (45/90) [20]. 

 

 
Figure A-11 Comparing MRI and simulation (50/90) [20]. 
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Figure A-12 Comparing MRI and simulation (55/90) [20]. 

 

 
Figure A-13 Comparing MRI and simulation (60/90) [20]. 

 

 
Figure A-14 Comparing MRI and simulation (65/90) [20]. 

 

 
Figure A-15 Comparing MRI and simulation (70/90) [20]. 
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Figure A-16 Comparing MRI and simulation (75/90) [20]. 

 

 
Figure A-17 Comparing MRI and simulation (80/90) [20]. 

 

 
Figure A-18 Comparing MRI and simulation (85/90) [20]. 
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