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Abstract

This study investigates the relationship among the dynamics of
market competitiveness, dynamics of economic growth, and long-run
growth phase using the Romer (1990) model with expiring patents
caused by imitation activities. The main results obtained are as fol-
lows: Intense intellectual property rights (IPR; with more difficult
imitation) cause the economy to ride on a positive economic growth
path with research and development (R&D), and vice versa. In the
middle range, the economy might have two steady states: with and
without R&D and multiple steady states. In this case, following initial
competitiveness, the economy is determined by the converging steady
state. Because the arrival rate of imitation indicates its difficulty and
can be interpreted to be partially affected by political factors, such
as policy parameters, we confirm that the IPR policy can escape the
no-growth trap. However, in the middle area, where multiple steady
states occur, not only R&D efficiency and imitation intensity but also
initial competitiveness determine the converging states.
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1 Introduction

This study analyzes the relationship between competitiveness and multiple
steady states that has not been adequately treated in the literature on en-
dogenous growth. We refer to an important study by Laussel and Nyssen
(1999) that analyzed the effects of patent length on multiple steady states.
However, their study conducts a partial equilibrium analysis on the labor
market. This study clarifies the relationship between imitation and steady
states with/without long-run positive growth; the dynamics of market com-
petitiveness; and the effects of innovation, imitation, and the initial statement
of competition on the realization of the steady state using the framework of
a representative macroeconomic general equilibrium model: the Romer-type
research and development (R&D) based growth model.

The Romer (1990) model is related to patent and long-run growth. Be-
cause the knowledge has the properties of public goods, non-excludability,
and non-rivalness, patents play a central role in economic growth. Moreover,
monopolized profit from patents is an incentive for R&D activities, and they
drive economic growth. Thus, intellectual property rights (IPR) are the main
driving forces of economic growth, and the importance of patents as the main
body of IPR has been recognized, with many studies being conducted.

One characteristic of the Romer (1990) model is the perpetual patent.
The infinite patent length of the perpetual patent is, of course, unrealistic.
Nevertheless, patent length has been variously studied since the 1960s, for
example, by Nordhaus (1969) and Judd (1985). Some researchers, such as
Iwaisako and Futagami (2003), Futagami and Iwaisako (2007), Lin (2015),
and Lin and Shampine (2014), assumed a finite patent length in the endoge-
nous growth model. However, as Lin and Shampine (2014) stated, patent
length does not essentially matter with respect to the dynamic properties
of endogenous growth (although it would matter in regard to its qualitative
properties).

In this study, we relax the assumption of infinite length patents by adding
another simple assumption, imitating activities. In this process, we simplify
the Romer model by omitting capital (durable goods). Then, as usual, R&D
activities create a new intermediate good and a patent is granted to the
created knowledge (”blueprint” of the intermediate goods), which yields a
sequence of monopolizing profits. In this monopolized sector, we introduce
imitation activities with a constant, exogenously given, imitation arrival rate.
Then, the monopolized intermediate goods sectors wherein imitations occur
become competitive thereafter.

Thus, we obtain the coexistence of monopolizing and competitive sectors,
which are analyzed in Matsuyama (1999), Iwaisako and Futagami (2003), and
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Kuwahara (2007). These previous studies are different from this study as they
considered a fixed-length patent. However, in our model, the monopolistic
power expires stochastically. This stochasticity implies that the source of
the monopoly power in this study could be interpreted as not simply newly-
developed knowledge so that its usage is completely protected by patent, but
knowledge with broader meaning, including brand image, competitive loca-
tion, and so on.1 Moreover, our objective differs from those of Matsuyama
(1999), Iwaisako and Futagami (2003), and Kuwahara (2007). Matsuyama
(1999) focused on the fluctuation between monopolized and competitive sec-
tors, Iwaisako and Futagami (2003) focused on welfare and patent length, and
Kuwahara (2007) focused on middle-income traps. By contrast, this study
focuses on the possibility of multiple steady states yielded by the relationship
between innovation and imitation as well as the dynamics of economy and
market competitiveness.

Many studies such as Helpman (1993), Lai (1998a, 1998b), and Tanaka
and Iwaisako (2014), among others, examine the relationship between patents
and imitation using the north-south model. In the north-south model, which
is a two-country model with both advanced and developing countries, we can
refer to, as a representative arrangement, the model wherein innovation is
usually executed in the advanced country and imitation is executed in the
developing country. As the model can represent a simple dynamic system
with abundant implications, many north-south models have been developed.
On another front, the closed-economy model has received little attention with
some exceptions such as Kwan and Lai (2003) and Furukawa (2007). This
study does consider a closed-economy setting. This is because some devel-
oping countries, such as China, have already been growing with R&D while
facing the inadequacy of IPR. Moreover, in advanced economies with huge
R&D-based high-technology enterprises having monopolistic power, the pre-
cautions against monopoly power have been gradually gaining momentum.
These phenomena, we think, indicate that the interaction between R&D
and imitation activities in both advanced and developing countries’ national
economies is also important.

This study obtains the following results: We use a Romer model without

1Hori (2009) and Hori and Kuwahara (2009) are similar to this study, and we can
refer to them for models including broad knowledge, where a new intermediate good
firm obtains monopoly power not only through patents but also unique advantages, for
example, excellent design and location of plants. Although Hori (2009) and Hori and
Kuwahara (2009) assume that an intermediate good supplied by the firm becomes extinct
after an intrinsic cost shock to the firm, this study assumes that a monopolist firm loses its
monopoly power after the entry of a competitor; therefore, innovative intermediate goods,
or the concept of the brand or efficient site location, do not become extinct.
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capital accumulation, which does not include transition dynamics against the
given market competitiveness. Herein, the newly developed goods market is
monopolized, and imitation activities have been destroying the monopolizing
power of existing sectors step by step. Thus, dynamics of market competi-
tiveness can be extracted and the competitiveness of the economy is gradually
changed, which is the transition dynamic in this economy. In this process,
the dynamics are driven by innovation, which increases the monopolized sec-
tor, and imitation, which increases the competitive sector, and in the steady
states, both numbers are equated, or all sectors become either monopolized
or competitive.

When the imitation rate is too high, the profitability of R&D is violated
and R&D ceases and the incremental growth of sectors stops, and all sec-
tors become competitive in the long run. In the case with positive R&D, if
the mechanism that equates innovative sectors and imitative sectors exists,
then the steady states with a constant rate of monopolized and competitive
sectors exist, and we can clarify the existence of this type of steady state.
However, our setting in this study cannot yield an economy where all sectors
are monopolized because we assume an exogenously-given constant imitation
rate, which prevents all sectors from being monopolized. Alternatively, we
obtain the possibility of multiple steady states. In our model, the long-run
steady state with positive R&D is conditioned by two conditions. The first
is the no R&D (poverty trap) equilibrium, which is linear. The other gives
an inner (real) quadratic curve solution. The domain that satisfies both the
poverty trap and real solution conditions, gives multiple steady states. Thus,
an economy could have two possible steady states for the given deep param-
eters, and the selection of the steady state that the economy converges on
depends on the competitiveness. Thus, in this study, the selection of the
steady state depends not on expectations but on history as suggested by
Krugman (1991).

Furthermore, this study assumes stochastic monopoly power, which im-
plies that the imitation rate does not simply reflect the patent length, but
rather something of the institutional competitiveness. Then, it is natural that
this reflects, at least partially, the IPR protection intensity. In this mecha-
nism, we can consider policy interventions. A lower imitation rate basically
provides steady states with R&D, but the existence of history-dependent
selection and the quadratic property condition for multiple steady states,
means that the policy effects would be less visible.

The remainder of this paper is organized as follows. The model is set up
and solved for static equilibria in Section 2. The two types of steady states
are derived in Section 3. In Section 4, several topics of economic growth and
development are discussed. Section 5 concludes the study.
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2 The Model

2.1 Production

This study follows the production structure of the Romer (1990) model.
There are three sectors in the present analysis: final goods, intermediate
goods, and R&D. Production takes place using two production factors: labor
and intermediate goods. Time is continuous, and the price of final goods is
normalized to 1.

Final goods are supplied competitively. These goods are produced with
labor and a cluster of intermediate goods and are used for consumption
(C) and intermediate goods production.2 Thus, the final goods production
function is specified as

Y = L1−α
Y

∫ A

0

X̃(i)αdi, α ∈ (0, 1), (1)

where Y , LY , A, and X̃(i) are the final goods output, labor, number of
intermediate goods, and quantile of the ith intermediate good input i ∈ [0, A],
respectively.

From, the assumption of perfect competition in the final goods market,
we derive the first-order condition of final goods production as follows:

∂Y

∂LY

= (1 − α)
Y

LY

= w, and
∂Y

∂X̃(i)
= L1−α

Y X̃(i)α−1 = p(i), (2)

where w and p(i) are the real wage rate and price of the ith intermediate
good, respectively.

The original Romer (1990) model assumed that intermediate goods are
produced by final goods, not durable goods, that is, capital. This arrange-
ment is used by, for example, Barro and Sala-i-Martin (1995, Ch6), where
every intermediate good is produced by using an η (>1) unit of final goods.
Thus, we omit the capital, making our analysis, which contains other dy-
namics of market competitiveness, easier.

The final goods are also used as consumption goods and durable goods,
namely capital. Thus, the resource constraint of final goods is given as
Y = C + X, where C and X ≡

∫ A

0
X̃(i)di are consumption and aggregate

demand of the final goods from the intermediate goods sector, respectively.
The profit from producing the ith intermediate good is

2The quality of the cluster, that is, the productivity of intermediate goods, can be
regarded as knowledge in this economy.
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Π̃(i) = p(i)X̃(i) − ηX̃(i). (3)

There are patented intermediate goods and non-patented goods at each
point of time. The sectors producing the former and latter are the monop-
olized and competitive sectors, respectively. In the competitive sector, all
firms operate freely with the technology; therefore, the goods are competi-
tively supplied, which results in a price equal to the marginal cost. Therefore,
the following conditions are obtained:

For i ∈ C ⇒ X̃c = X̃c(i) =

(
α

η

) 1
1−α

LY , pc = pc(i) = η, (4)

where X̃c = X̃c(i) and pc = pc(i) are derived from the symmetric equilibrium
of intermediate goods. In a monopolized sector, a monopolistic firm, or a
firm holding a patent, maximizes its profit by considering price as a control
variable. Therefore, the first-order condition of the monopolistic firm in the
ith sector with the Mith quality yields

For i ∈ M ⇒ X̃m = X̃m(i) =

(
α2

η

) 1
1−α

LY , pm = pm(i) =
η

α
, (5)

where X̃m = X̃m(i) and pm = pm(i) are derived from the symmetric equi-
librium. Eqs. (4) and (5) imply that each sector shows symmetry between
firms in the same sector. Therefore, by denoting s as the share of the com-
petitive sector, sA and (1 − s)A represent the number of goods produced in
the competitive and monopolized sectors, respectively. From (4) and (5), we
obtain

X =

(
α2

η

) 1
1−α

AΦ(s; 1)LY , (6)

where Φ(s; z) ≡ (1 − s) + α− z
1−α s (z = α, 1). With respect to Φ, we have

Φ(0; z) = 1 and Φ(1; z) = α− z
1−α > 1, and Φ is a linear increasing function

of s. Thus, in this version, economic output can increase if the monopolized
sector becomes competitive.

Substituting Eqs. (4) and (5) into (1), we obtain the aggregate final food
output Y as

Y =

(
α2

η

) α
1−α

AΦ(s; α)LY . (7)
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Thus, the changes in Y obey the changes in technology level A, competitive-
ness c, and labor allocation LY . From Eqs. (3), (5), and (7), we have

Π̃m =

(
1

α
− 1

)
ηX̃m = α(1 − α)

Y

AΦ(s; α)
. (8)

In Eq. (7), Φ(s) denotes the change in output between the competitive
(s = 1) and monopolized (s = 0) cases for a given endowment.3

2.2 R&D: Entry Activities

In this model, innovation, or entry, is assumed to be the discovery of a new
design of intermediate goods, or a new profit opportunity that is added to
the existing set of intermediate goods (A). Therefore, the new design of
intermediate goods can be denoted as Ȧ. Moreover, accordingly, patents
of the designs bear the stream of monopoly profits. The present value of
the stream is the value of R&D, or new entry, which we denote as Ṽ . The
dynamics of Ṽ are given as

rṼ = ˙̃V + Π̃m − µṼ , (9)

where µ is the depreciation rate of the monopolistic power. The deprecia-
tion is caused by competing new firms that gain marginal and instantaneous
monopoly profits. Following Grossman and Helpman (1991), among others,
we assume that the imitation is exogenous and can be variable through the
policy for economic competition.

Because the R&D or new entry activities are assumed to be competitive,
the value of firm v is equated to the price of a design or new entry. In this
process, it is assumed that R&D firms pay their labor (LA) wage w and freely
use the entire knowledge stock captured by the number of intermediate goods
(A). To eliminate the scale effects, we introduce negative effects from pop-
ulation L, which is assumed to be linearly affected. Thus, new intermediate
goods are invented in the R&D firm according to the technology:

Ȧ = δ ALA, (10)

where δ(> 0) denotes the R&D or entry efficiency parameter. Hereafter, we
call δ, R&D efficiency.

Defining the human capital input of R&D firm j as Lj
A, we assume that

the share of the jth firm’s innovation share against aggregate innovation
Ȧ is a proposal for the human capital share employed by firm j against the

3Of course, endowment is affected by competitiveness.
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aggregate employment in the R&D sector: Lj
A/LA. Therefore, the optimizing

problem of the R&D firm is given as

max
Lj

A

Lj
A

LA

Ȧ Ṽ − wLj
A(≡ πR).

The free entry of R&D yields πR = 0. Therefore, the value of R&D is given
as

Ṽ Ȧ < wLA, for LA > 0. (11)

Substituting Eq. (10) into (11), we obtain the following condition of positive
R&D activity:

Ṽ δA = w or Ṽ =
w

δA
. (12)

If inequality v < w
δ A

holds, this implies that R&D activity is not executed.
Combining Eqs. (2), (7), and (12), we have the value of v as follows:

Ṽ =
(1 − α)

δ

(
α2

η

) α
1−α

Φ(s; α). (13)

3 Dynamics and Steady States

This section analyzes the dynamic properties of the economy and describes
the properties of its steady states.

3.1 Dynamics

First, we derive the dynamics of Y . In this study, labor can be used for
final goods production (LY ) or R&D activities (LA). The market-clearing
condition for labor imposes L = LY + LA, where L is the total amount of
labor in the economy. Hereafter, we define u ≡ LY /L, wherein LY = uL and
LA = (1 − u)L are used for simple notation.

From Eqs. (7) and (10), we have

Ẏ (t)

Y (t)
=

u̇(t)

u(t)
+ δ(1 − u(t))L +

α− α
1−α − 1

Φ(s(t); α)︸ ︷︷ ︸
≡ΓY (s(t))

ṡ(t). (14)

Because α− α
1−α > 1 for α ∈ (0, 1), the coefficient of ṡ(t) is positive.

Next, we analyze the case with positive R&D wherein Eq. (9) holds.
Thus, by combining Eqs. (8), (9), and (13), we obtain relationship r and ṡ
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as follows:

r(t) = ΓY (s(t))ṡ(t) +
αδu(t)L

Φ(s(t); α)
− µ. (15)

Then, the model is closed by specifying the household. We assume a rep-
resentative household and that each household inelastically supplies a unit of
labor. From this, we identify labor supply at the level of the total population.
Furthermore, we assume that the population scale is constant and exoge-
nously given for simplicity. Thus, aggregate labor supply L also denotes the
constant population scale in this economy. Consumption is specified as being
of the following constant relative risk aversion type: U =

∫ ∞
0

e−ρtlogC(t)dt,
where C denotes consumption. Following Romer (1990), we assume that
labor is constant, and so the aggregate value and per capita value can be
identified. This optimization problem yields the following ordinary Euler

equation as an optimizing condition: Ċ(t)
C(t)

= r(t) − ρ. In this study, final

goods can be used for intermediate goods production (X̃) or consumption
(C). The market-clearing condition for the final goods imposes Y = X̃ + C.
Moreover, X̃ and Y are respectively derived in Eqs. (6) and (7). Thus, we
obtain the relationship between C and Y as follows:

C(t) = (1 − c(t)) Y (t), where c(t) = c(s(t)) ≡ α2

η

Φ(s(t); 1)

Φ(s(t); α)
, (16)

and 1 − c denotes the marginal propensity to consume. Through a brief
calculation, we obtain the following results: c(0) = α2

η
, c(1) = α

η
(< 1), and

c′(s) > 0 for s ∈ [0, 1]; therefore, the condition for positive consumption
c(s) ∈ (0, 1) can be confirmed to be satisfied. Eq. (16) implies that c is a
function of competitive index s (and time through s). Then, the dynamics
of consumption C are subject to the dynamics of Y and s.

Differentiating Eq. (16) based on time, we obtain

Ċ(t)

C(t)
=

Ẏ (t)

Y (t)
− ċ(t)

1 − c(t)︸ ︷︷ ︸
≡Γ̃c(t)

, (17)

and

Γ̃c(t) =
α2

η

(1 − α)α− 1
1−α{

1 − c(s(t))
}
Φ(s(t); α)2︸ ︷︷ ︸

≡Γc(s)(>0)

ṡ(t).
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From the Euler equation Ċ(t)
C(t)

= r(t) − ρ, (14), and (17), we obtain the
relation r and dynamics of u and s as follows:

r(t) − ρ = δ(1 − u(t))L +
u̇(t)

u(t)
+ ΓY

(
s(t)

)
ṡ(t) − Γc

(
s(t)

)
ṡ(t). (18)

By eliminating r−ΓY ṡ using Eqs. (15) and (18), we obtain the dynamics
of u as follows:

u̇(t)

u(t)
=

α δ u(t) L

Φ(s(t); α)
− µ − ρ + Γc

(
s(t)

)
ṡ(t) − δ(1 − u(t))L. (19)

Because s(t) indicates the competitive sector share, ṡ(t) can be positive or
negative when the economy becomes more competitive or monopolizing, re-
spectively. Other terms are always positive. Therefore, we need to discuss
the dynamics of varieties and their types of competitiveness captured by s.

To derive the dynamics of s, we define the number of monopolized sectors
M ≡ (1 − s)A, which implies that

Ṁ

M
=

−ṡ

1 − s
+

Ȧ

A
. (20)

The increment of M is generated by the innovation of a new variety of goods,
which is given as Ȧ = δALA. The decrement of M occurs because of the
imitation, which is assumed to be µ(1 − s)A. Therefore, we have

Ṁ = δA(1 − u)L − µ(1 − s)A. (21)

By eliminating M from (20) and (21), we have the dynamics of s as follows:

ṡ(t) =
(
1 − s(t)

)
µ − s(t)δ(1 − u(t))L, (22)

where it should be noted that the dynamics of s depend on variable s; there-
fore, the dynamics of u must first be discussed to obtain the dynamics of s.
However, we can depict the dynamics of s for u in Fig. 1, wherein we find
that s is increasing for all u ∈ (0, 1).

From Eqs. (19) and (22), we obtain the dynamics of u as follows:

u̇(t)

u(t)
=

[
α

Φ(s(t); α)
+ 1 + s(t)Γc

(
s(t)

)]
︸ ︷︷ ︸

A1(s)

δ u(t) L (23)

−
[
Γc

(
s(t)

) {
s(t)δL −

(
1 − s(t)

)
µ
}

+ µ + ρ + δL
]︸ ︷︷ ︸

A2(s)

.
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A1 > 0 always holds, but because A2 contains the term δL −
(
1 − s(t)

)
µ,

the sign of A2 is ambiguous. If A2 < 0,4 then u̇/u > 0 for ∀u ∈ (0, 1), only
the long-run feasible equilibrium is u = 1, and the economy is caught in
a no-growth trap. Because we are interested in the possibility of long-run
positive growth, we confine our analysis to the case of A2 > 0.

Using A1 and A2 > 0, we obtain the phase diagram depicted in Fig.
2, which implies that equilibrium, denoted as ū(s), exists uniquely, and the
dynamics of u are unstable. Because u is a jumpable variable, jumping to ū(s)
and staying there, economic behaviors are derived by rational expectations.

For ū(s) to be feasible, ū(s) ∈ (0, 1) must be satisfied. ū(s) ∈ (0, 1) is
equivalent to u̇

u

∣∣
u=1

> 0, namely A1δL−A2 > 0. This condition is converted

into δ > δ̄(s), where δ̄(s) ≡ Φ(s;α)
αL

{
ρ + µ − (1 − s)µΓc(s)

}
. When condition

δ > δ̄(s) is satisfied, the phase diagram shows that an economy with a rational
expectation selects unique equilibrium u∗ for a given s. It should be noted
that allocation rate s varies with time, and so ū does not immediately have
the steady state value of u.

From (23), we can derive the equilibrium labor allocation rate ū as follows:

ū(s) =
µ + ρ + δL + Γc(s)

{
sδL −

(
1 − s

)
µ
}[

α
Φ(s;α)

+ 1 + sΓc(s)
]
.δ L

. (24)

This study utilizes the Romer model without capital accumulation, which
has only one stock variable: knowledge. Moreover, the labor allocation be-
tween production and R&D and the final goods allocation between consump-
tion and production are uniquely determined against the given knowledge
stock A, which fixes economic growth rate gA. Thus, the usual Romer model
without capital contains no transition dynamics, and the economy always
stays in a steady state. However, the economy in this study contains the
dynamics of the loss of monopolistic power stemming from imitation, which
generate transition dynamics. Because the change in s is considered ex-
ogenous for all decentralized agents, it cannot be handled but affects the
condition through a change in Φ(s; z). The dynamics of s are discussed in
the next section on steady states.

3.2 Steady States

In this section, we derive some conditions for steady states.

4For A2 < 0, δ <
µ
{

Γc(s)(1−s)−1
}
−ρ{

Γc(s)s+1
}

L
is necessary under Γc(s)(1 − s) > 1 and µ >

ρ
Γc(s)(1−s)−1 . Namely, a sufficiently low R&D efficiency and sufficiently high imitation rate
would derive A2 < 0.
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Combining s and u, we have the following possible steady states:

ṡ > 0(s → 1) and u > 0 =⇒ {s∗, ū(s∗)} = {1, ū(1)} : Case I (C),
ṡ < 0(s → 0) and u > 0 =⇒ {s∗, ū(s∗)} = {0, ū(0)} : Case II (M),
ṡ = 0 and u > 0 =⇒ {s∗, ū(s∗)} = {s∗, ū(s∗)},

where s∗ ≡ arg{s | (1 − s)µ = sδ(1 − ū(s))L} : Case III (D),
ṡ > 0(s → 1) and u = 0 =⇒ {s∗, ū(s∗)} = {1, 0} : Case I (P),

where C,M, and D, respectively, stem from the initials of competitive, mo-
nopolized, and dual. All sectors in the economy in P are competitive, and
those in M are monopolized. However, in the economy in D, both competi-
tive and monopolized sectors co-exist.

Then, we derive the necessary conditions in the steady state between u
and s, which are derived from R&D activities and consumption optimization.

We denote the index steady state values as ∗ and consider our analysis
in the inner solution case of u∗, namely u∗ ∈ (0, 1).

Eq. (12) implies gv = gw − gA, where gZ ≡ Ż
Z
, namely gZ , denotes the

growth rate of variable Z. Eqs. (2) and (7) imply gw = gY − gLY
. In the

steady state, we have g∗
w = g∗

Y = g∗
A; thus, we obtain g∗

v = 0. From Eqs. (2),
(8), (7), and (12), we have πm

v
= αδūL

Φ(s∗;α)
. Substituting these results into (9),

we have

r∗ =
αδū(s∗)L

Φ
(
s∗; α

) − µ. (25)

Under the steady state, Eq. (16) and the Euler equation give

ρ + g∗
A = r∗. (26)

From Eqs. (7), (10), and (16), and using u, we conclude that

g∗
Y = g∗

C ≡ g∗ = g∗
A = δ(1 − ū(s∗))L (27)

must hold in the steady states.
From Eqs. (25), (26), and (27), we have

ū∗(s) =
ρ + µ + δL[

α
Φ(s∗;α)

+ 1
]
δL

, (28)

where we can easily obtain ū∗′(s) > 0; namely, ū(s) is increasing in s ∈ (0, 1).
It should be noted that Eq. (28) is obtained by inserting Γc = 0 into (24).
This does not mean that Γc = 0 in steady states. Nevertheless, the effects of
Γc vanish in the steady states because Γc is the coefficient of ṡ, that is, 0, on
the steady states.

From (28), we can derive the following properties on the steady states:
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(i) Condition for the existence of an inner solution ū∗(1) < 1,
namely, the reverse condition of (29), yields a unique inner solution of type
D, M, or C. Because a discussion on stability is necessary, we discuss this
later.

(ii) Condition for the existence of a no-growth steady state P is
derived by the condition of ū∗(1) > 1. The economy without R&D (u = 1)
can arrive at P by ṡ|u=1 > 0. Thus, ū∗(1) > 1 is the condition of the
emergence of a steady state with a poverty trap.

The conditions in (i) and (ii) are transformed into

ū∗(1)

{
>
<

}
1 ⇐⇒ αδL

{
<
>

}
Ω0 or µ

{
>
<

}
α

1
1−α δL − ρ,

⇐⇒
{

A unique steady state related with an inner solution,
At least one steady state related with a corner solution,

(29)

where Ω0 ≡ (Λ+1)(ρ+µ)
)

and Λ ≡ α− α
1−α −1(> α > 0). Because δL denotes

the potential maximum R&D power, a sufficiently small R&D efficiency or
excessively high imitation rate causes long-run no growth, and vice versa.

3.3 Steady States and Dynamics of s

The above discussions only imply the possibility of the existence of steady
states. In this section, we analyze the dynamic properties and feasibility
of converging the steady states. From the above discussions, we derive two
equations that condition the steady states and dynamics of s, namely, ṡ = 0
and u = ū∗. Under the restriction of positive R&D activities, namely u < 1,
u is uniquely given by Eq. (28). Moreover, Eq. (22) yields the dynamics of s,
and the two equations (28) and ṡ = 0 derived from (22) yield the equilibrium
of u and s in the steady state.

The dynamics of this economy are depicted by the dynamics of s, and
they can be derived by substituting Eq. (24) into Eq. (22) as follows:

ṡ(t) =
(1 − s)µ

{
α + Φ(s; α)

}
− s

{
αδL − Φ(s; α)(µ + ρ)

}
α + Φ(s; α)

{
1 + sΓc(s)

} . (30)

Because we obtain the dynamics of s, we can investigate the possibility
of an emerging type of steady state derived in subsection 3.2.
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On C, we obtain the necessary condition ṡ > 0 for s → 1. From this and
(30), we have

lim
s→1

ṡ =
−

{
αδL − Φ(1; α)(µ + ρ)

}
α + Φ(1; α)

{
1 + Γc(1)

} < 0. (31)

Thus, the type C is impossible.
On M, we obtain the necessary condition ṡ < 0 for s → 0. From this

and (30), we have

lim
s→0

ṡ =
µ
{
α + Φ(0; α)

}
α + Φ(0; α)

> 0. (32)

Thus, type M is also impossible. However, this condition also shows that P
is possible.

These two impossibilities can be confirmed graphically. From the two
equations (28) and ṡ = 0 derived from (22), we obtain the equilibrium of u
and s in the steady state as two panels of Fig. 3. They contain only D and
P and neither C nor M.

For emerging D, we obtain the two patterns depicted in Fig. 3, where
panel (a) depicts the case of ū∗(1) < 1 and panel (b) shows the case of ū∗ > 1.
For ū∗ > 1, steady state M vanishes if u = ū∗(s) and ṡ = 0 do not intersect
with each other. It should be noted that ū∗ is not the transition path of u or
s; it is only one of the conditions that determine the steady state. Moreover,
Fig. 3 also shows that types C and M are impossible.

To derive the condition of D, we need further investigation. From (30),
we define the following:

Σ(s) ≡(1 − s)µ
{
α + Φ(s; α)

}
− s

{
αδL − Φ(s; α)(µ + ρ)

}
,

= Λρs2 + s
{
Ω1 − αδL

}
+ (1 + α)µ, (33)

where Λ(α) ≡ α− α
1−α − 1 and Ω1(µ; α, ρ) ≡ µ(Λ − α) + ρ. We can easily

conform Λ > α(> 0); therefore, Ω1 > 0. Then, s∗ = arg{s|ṡ = 0} is given
by s = arg{s|Σ(s) = 0}. s∗ gives the long-run equilibrium market share of
the competitive firm. Because Σ(s) is a quadratic function of s, the equation
Σ(s) = 0 is a quadratic equation; therefore, we have two roots at most and
no roots at the least. Combining this and Σ(0) = µ(1 + α) > 0 (for µ > 0),
we have three possible cases, and combining the dynamic properties, we have
a three-phase diagram: panels (a), (b), and (c) in Fig. 4, where s̃ is the value
of s that gives the extremum of function Σ. Σ is defined as

s̃ = arg
{
s|Σ′(s) = 0

}
.
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In Fig 4(b), we obtain three points of s that give multiple steady states,
D, D′ and P . D′ is unstable and it can be realized at measure 0. When
s ∈ (D,D′), s is converging D, and when s ∈ (D′,P), s is converging P .
Thus, we have the following lemma:

Lemma In the case of Fig 4(b), multiple steady states merge, and the initial
s determines the converging steady state against the given parameters such
as µ and δL.

It should be noted that the condition in (29) is given by Σ(s) as follows:

ū∗(1)

{
>
<

}
1 ⇐⇒ Σ(1)

{
<
>

}
0 ⇐⇒ α δ L

{
>
<

}
Ω0, (34)

where Ω0 = (Λ + 1)(ρ + µ). Thus, Σ(1) > 0 yields panels (b) and (c) in Fig.
4, where P always emerges. It should be noted that the condition obtained
in (34) is depicted as a line on (µ, αδL)-plain.

Result 1 Σ(1) > 0 always yields the poverty trap, and Σ(1) < 0 always
yields a unique steady state D with an inner solution. The threshold values
of Σ(1) = 0 yield αδL = Ω0(µ; ρ, α). Moreover, higher ρ and µ, lower δ and
L, less durable time attitude, less protective IPR, lower R&D efficacy, and
less R&D input endowment cause the emergence of P, and vice versa.

The possibility is considered wherein steady state D exists or not under the
condition of Σ(1) > 0, namely, under the existence of steady state P . That
is, if D exists, multiple equilibria emerge. Because Σ(s) = 0 is a quadratic
equation, to generate D, we have additional conditions Σ′(0) < 0, Σ′(1) > 0,
and DΣ > 0 besides Σ(1) > 0, where DΣ denotes the discriminant of the
equation Σ(s) = 0.5.

Eq. (33), Σ′(0) < 0, and Σ′(1) > 0 (and αδL < Ω0) immediately give the
following condition:

Ω1 < αδL < min[Ω1 + 2Λρ, Ω0], (35)

where Ω1 ≡ µ(Λ − α) + ρ. Because Λ > α and Ω1 < Ω0 can be obtained
immediately, an intermediate goods efficiency (α) adjusted maximum R&D
ability (δL) that satisfies this interval always exists.

5Discriminant DΣ > 0 indicates the existence of root(s), and Σ′(0) < 0 and Σ′(1) > 0
give s̃ ∈ (0, 1).
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Solving Eq. (35) on µ, we obtain

max

[
αδL − ρ(1 + 2Λ)

Λ − α
,
αδL − (Λ + 1)ρ

Λ + 1

]
< µ <

αδL − ρ

Λ − α
. (36)

Until now, we obtain the result that we have the possibility of multiple
steady states if the economy satisfies condition (35). To draw a conclusion,
we must check the last condition DΣ > 0, which is given as follows:

DΣ(µ) =
(
Ω1(µ) − αδL

)2 − 4Λρ(1 + α)µ > 0.

Thus, we also obtain a (quadratic) relationship between µ and αδL. Because
we consider the case of αδL > Ω1, the above inequality becomes

αδL > Ω1(µ) + 2
√

Λρ(1 + α)µ. (37)

It should be noted that because this constraint is the sum of a linear function
(Ω1(µ)) and a functional square root of a linear function (2

√
Λρ(1 + α)µ),

it is a type of a quadratic curve. For µ > 0, equation αδL = Ω1 + 2Λρ
yielded from (35) and equation αδL = Ω1(µ) + 2

√
Λρ(1 + α)µ yielded from

(37) have a unique intersection at µ = Λρ
1+α

. Thus, combining (35) and (37),
we obtain the emergence condition of the steady state on the (µ, αδL)-plain,
as depicted in Fig. 5.

This figure and Lemma provide the main results of this study, as follows:

Result 2 A higher µ and lower adjusted R&D ability αδL basically cause
a poverty trap. Thus, an IPR protecting policy stimulates long-run growth
and vice versa. However, between the domains with only D and only P, we
obtain the domain in which both D and P exist. In this area, there exists the
domain with only P as in above, and so a simple increasing αδL or decreasing
µ policy might fail the economy in riding on the transition path converging
to D. Furthermore, the selection of the converging steady states in the area
with D and P depends on initial competitiveness s. Thus, in this study, the
converging point is determined historically and not by expectations.

Thus, the mechanism of selecting a steady state from two possibilities in
this study is “history” and not “expectations” (Krugman, 1991). Our study
also contains the political factor µ, which might change the result—that is,
history can be changed by policies.

Furthermore, we assume a stochastic monopoly power. These arrange-
ments imply that µ reflects not only patent length, but also some institutional
competitiveness. Then, it is natural that this competitiveness could be, at
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least partially, considered to be affected by the attitude of the government, µ
can be considered a policy variable in this study. Fig. 5 shows that we have
two policy instruments in this study: one is the potential maximum R&D
ability (δL), and the other is IPR protection which affects the imitation rate
(µ).

This study assumes stochastic monopoly power, which implies that the
imitation rate does not reflect a simple patent length, but rather some in-
stitutional competitiveness. Then, it is natural that this reflects, at least
partially, some IPR protection intensity. In this mechanism, we can consider
the policy intervention. Because more intense IPR (policy for making imi-
tation more difficult) tends to ensure that the economy rides on a positive
economic growth path with R&D and vice versa, a policy that restricts imita-
tion basically provides steady states with R&D. However, in the middle range,
the economy might have two steady states; those with and without R&D.
Furthermore, the presence of history-dependent selection and the quadratic
property condition for multiple steady states, would make the policy effects
less visible. To ensure that the economy remains in a unique positive long-
run growth state, the government must attempt to move the economy into
the {D} domain.

4 Conclusion

This study analyzes the relationships among R&D-based growth, discrim-
ination, and the dynamics of economy and market competitiveness. The
economy in this study has long-run steady states with and without R&D, or
long-run R&D-based growth (denoted as D) and a no-growth trap (denoted
as P in this study). They respectively correspond to an economy that is both
monopolized and competitive and one that is only competitive. An economy
with a high imitation rate and low R&D ability is stuck in the steady state
without R&D, and vice versa. In addition, an economy with parameters with
middle values has both types of steady states, and the economic convergence
is a no-growth trap if it has sufficiently high competitiveness in the initial
period, and vice versa.

Because this study assumes that monopolizing power expires stochasti-
cally, the source of total factor productivity growth can be interpreted as not
merely R&D, but something that yields inherent advantages for firms while
being legally less protected than when holding a patent. Meanwhile, under
the assumption that intermediate goods are produced using final goods, a
more competitive market structure means that more intermediate goods are
supplied competitively. This implies that the instantaneous production level
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is increased, but the driving force of long-run growth is weakened. Thus, a
policy that enhances excessive entry of competitors for short-run increments
to output might decrease the long-run growth of output, which depends pos-
itively on the implicit knowledge of such an entry in the niche market or
construction of an optimal supply network, which cannot be protected by a
patent.

This study is preliminary, and several points still need to be addressed.
First, it lacks the micro-foundation of discrimination, which occurs stochas-
tically. The fundamental results depend on the exogenously given arrival
rate of imitation, which is constant but presumed to be affected by policy.
Furthermore, although the present version assumes a myopic government,
theoretically, optimal growth should be solved to analyze a rational growth
policy. We believe this is possible.

Second, the imitation or competitor’s entry probability is exogenously
given and constant. That is, both old and new monopolistic firms confront
their competitors with the same probability. This also stems from the as-
sumption that the cost of imitation or the competitor’s entry is zero. Existing
studies on imitation assume an imitation cost. To include the optimal activ-
ities of a competitor would enrich the analysis through comparison with the
existing model with imitation.

Third, because we use the Romer (1990) model, each sector is either
already developed or not. Once a sector once becomes competitive, it is
never monopolized by, for example, a new monopolist who develops higher
quality goods. This property clearly weakens the direction of the model for
monopolizing.

These points constitute important future agendas in the stream proposed
by this research.
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