
 
 

 

 

 

High-dimensional biomedical image 

recognition with artificial intelligence 
 

 

 

 

by 

 

Kazutoshi Ukai 

 

 

 

 

 

 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Engineering 
 

 
 
 

Supervisor: Professor Syoji Kobashi 
 

University of Hyogo, Japan 

 
March 2022 

 

 



 
 

 

 

 

 

 

 
 



i 
 

 

Preface 

 

Advances in biomedical imaging technology have made it possible to acquire large 

amounts of high-dimensional image data such as video images, 3D volume data, and 

fusion images of multiple modalities, consequently increasing the need for 

automation. In recent years, image recognition technologies that surpass humans 

have been developed, such as face recognition technology that distinguishes slight 

individual differences in the face, and skin lesion detection technology that has 

higher diagnostic accuracy than specialists. It is expected to be applied to the video 

images and 3D volume data, and expand the range of application. Although it has 

become possible to distinguish individual differences in the face, research on 

grasping the internal condition of an individual from the complexion and facial 

expression is still under development. Also, in lesion detection from medical images, 

the accuracy is increasing by utilizing deep learning. However, the calculation cost 

in applying deep learning to a 3D volume data is still one of the major concerns. This 

thesis introduces methods to solve these problems. 

Firstly, a study is conducted focusing on blood flow as a biomarker for recognizing 

the internal state from facial video images. By calculating the cycle of each heartbeat, 

which is called R-R interval (RRI), from the blood flow, the state of the autonomic 

nervous system can be quantified based on the fluctuation of RRI. In recent years, 

some studies have been conducted to extract the information of blood flow from facial 

video images. However, it takes an observation time of several tens of seconds to 

extract the signal component, and it is a serious problem when used in real-time 

applications. This study enables to measure RRI accurately with a short observation 

time by simultaneously observing multiple regions on the facial video images. 

Secondly, a method is introduced to detect spoofing by a 3D artificial object, which 

is a problem in face recognition. It is based on blood flow which is detected from facial 

video images. By analyzing the blood flow change in the facial video image in 

multiple wavelengths and multiple regions, impersonation was detected in the 

proposed method for three kinds of spoofing objects - 3D face models, printed 

photographs, and still images of monitors. 

Thirdly, a method is proposed for detecting the 3D pelvic fractures from CT images. 

Deep convolutional neural networks were used to detect 2D fracture candidates from 
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multi-directional 2D cross-sectional images reconstructed from 3D-CT volume, and 

the detected 2D fracture candidates were integrated to obtain 3D fracture candidate 

regions. By analyzing 3D-CT volume in 2D space, the calculation cost could be 

significantly reduced. Also, because deep neural networks were trained by using 

multi-directional 2D cross-sectional images, a large number of 2D images could be 

synthesized from each 3D-CT volume. 
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Chapter 1 : Introduction 

 

Recent rapid advances in biomedical imaging technology has made it possible to 

acquire a large amount of high-dimensional image data, such as moving images, 

three-dimensional (3D) volume data, and fusing images of multiple modalities. As a 

result, it has become difficult for humans to adequately respond to the needs of 

medical, security, and other applications. In addition, technologies that outperform 

humans have been developed for many tasks including the tasks that require 

advanced human cognitive abilities that could not be replaced by artificial 

intelligence in the past. Also the need for automation of biomedical image recognition 

is increasing. One of the examples is face recognition technology that can distinguish 

slight individual differences in faces [1]. Another example is in the field of medical 

image recognition, where technology with diagnostic accuracy that exceeds the 

performance of medical specialists in detecting skin diseases [2]. Although it has 

become possible to distinguish individual differences in faces, research on 

understanding the internal state of individuals from the facial color and expressions 

is still at its infancy [3]. In addition, the accuracy of lesion detection from medical 

images has been increasing with the use of deep learning, but issues such as the 

increase in computational cost in applying it to 3D volume data remains [4]. 

Chapter 2 proposes an estimation method of R-R interval (RRI) from facial video 

images [5]. In this study, blood flow is considered as a cue for detecting internal 

states from face images. By calculating RRI from blood flow, we can quantify the 

state of the autonomous nervous system based on the variation of RRI [6][7][8]. To 

measure blood flow, a photoplethysmographic device that utilizes the change in light 

absorption due to the increase or decrease in blood volume associated with the 

heartbeat [9] was developed several decades ago. In recent years, a new approach 

based on the same principal has been conducted to detect blood flow from facial video 

images taken with a commercial color camera [10]. However, since many noise 

components are included on facial video images, advanced processing such as 

independent component analysis (ICA) is required. Therefore, it takes longer 

observation time to extract the signal components, which is inconvenient when it is 

used for real-time applications [11][12]. In this study, a novel method to measure RRI 

accurately is proposed with a short observation time by simultaneously observing 
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multiple regions on the facial video image instead of the length of observation time. 

Chapter 3 investigates an application of obtained blood flow information from 

facial videos to detect impersonation by 3D objects [13], which is a problem in face 

recognition. It proposes a method to detect impersonation by four kinds of spoofing 

objects such as a 3D face model, a photograph, a still image displayed on a screen, 

and a moving image by analyzing the blood flow changes in the face video image in 

multiple wavelengths and regions. 

Chapter 4 proposes an automated method for detecting 3D lesions in CT images, 

which can be applied to 3D medical images such as CT and MRI images [14]. The 

main issues regarding applying deep learning to 3D medical images are small 

number of subjects, very large size of data, high computational cost, etc. [4]. In this 

study, these issues are addressed, and we propose a novel method for detecting pelvic 

fractures on CT images. 

This dissertation consists of five chapters, including this chapter. In Chapter 2, a 

multiple-measurement-points-voting-method is proposed to estimate RRI from time-

series face images in a short time. The experimental results are compared with the 

ICA method to describe the effectiveness of the proposed method. In Chapter 3, a 

liveness detection method is proposed based on changes in blood flow on facial skin 

using video images, and it is evaluated using 16 subjects in five types of lighting 

environments and four types of spoofing objects including 3D objects. In Chapter 4, 

a method is proposed for detecting pelvic fractures from 3D-CT using a deep 

convolutional neural network with multi-directional slab images, and it is evaluated 

using 93 subjects with fractures and 112 subjects without fracture. Chapter 5 

summarizes this dissertation. 
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Chapter 2 : Short-time estimation of R-R interval from facial 
video image with a multiple-measurement-points-voting-
method 

 

2.1 Introduction 

In the modern society, mental stress accumulates without people being aware of it 

due to long hours of work, especially using electronic displays in the workplace. Since 

mental stress affects the endocrine system and autonomic nervous system, many 

studies have been conducted to quantify and analyze stress. Among them, a 

relationship between stress and heart rate variability has attracted much attention 

[6][7][8]. Here, heart rate variability refers to the variation of the period (RRI) of 

each heartbeat in a pulse wave. 

The pulse wave can be obtained using an electrocardiogram or, for simplicity, a 

photoplethysmographic device that detects the pulse wave from the finger or earlobe. 

In recent years, wearable devices such as wristwatches and shirts have been 

developed, making constant observation possible to the pulse wave [15]. However, 

these devices are worn consciously by the subject and are not suitable for observing 

stress that accumulates unconsciously. On the other hand, measurement with 

millimeter-wave sensors [16] has been proposed as a non-contact method, but it 

requires special and expensive equipment. 

Therefore, in this study, we focus on face video images captured by a video camera. 

Since the face is a part of the body that almost everyone is exposed to in daily life, 

its applicability is broad, and the camera equipment is inexpensive and easy to 

install. However, if we assume that the video images will be used in actual living and 

office environments, we need an analysis method that can measure the heart rate in 

a shorter observation time. 

Some methods using frequency spectrum analysis and ICA to calculate the heart 

rate from facial video images have been proposed [10][11][12][17][18]. Takano et al. 

proposed a method to estimate the heart rate by using a band-pass filter and 

frequency spectrum analysis on the average time-series signal of the entire face 

region [17]. Jiang et al. applied Kalman filter to remove white noise and estimated 

the heart rate by frequency spectrum analysis on the obtained time-series signal [18]. 
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In order to apply frequency spectrum analysis, they require an observation time of 

about 30 sec. On the other hand, ICA-based methods have been proposed in the 

literature [10][11][12]. These methods do not use frequency spectrum, but they 

require a certain observation time for signal decomposition with ICA. 

In this study, we propose a method that detects the pulse wave peak from the time-

series signal of each pixel. The pulse wave peaks are extracted using a differential 

filter, and then it finds the most frequent value of the RRI in every pixels of region-

of-interest (ROI). Hereinafter, the proposed method is called as multiple-

measurement-points-voting-method. This method is based on a signal filter without 

using the frequency spectrum or ICA, and thus it can shorten the observation time. 

In addition, by using a large number of observation points simultaneously, the RRI 

can be estimated robustly and quickly by suppressing the influence of noise from 

non-skin parts such as spectacles and hair. 

The details of the method are presented in the following sections; the subjects and 

measurement data used in the evaluation experiments of this study are presented 

in section 2.2; the proposed multiple-measurement-points-voting-method is 

described in section 2.3; the experimental results are discussed in section 2.4; a 

summary is given in section 2.5. 

 

2.2 Experimental data 

The experimental data were collected in two different states: stationary state and 

working state while working on a computer. This study was conducted by following 

procedures approved by the Ethics Committee of the University of Hyogo on 

“Estimation of Physical and Mental States Using Time-Series Facial Images”, with 

the obtained written consent from all subjects. 

 

2.2.1 Stationary state 

The experimental data at the stationary state were collected from four males and 

one female, twice a day (around 12:00 and 17:00) for 3 minutes each time. A total of 

198 data were collected (this dataset is referred to as DS1). To evaluate the 

robustness within subjects, a large number of data were conducted with a small 

number of subjects. Table 2.1 shows the demographic of subjects (gender, age, and 

whether or not they wore spectacles) and the number of trials for each subject. None 

of the subjects wore makeup. 
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Next, in order to evaluate the robustness between subjects, data were collected 

from 21 males and 6 females. Two data were collected from each subject, one with 

spectacles and one without spectacles. The ages of subjects ranged from 21 years to 

62 years with a mean age of 30.2 years and a standard deviation (SD) of 13.6 years. 

All of the subjects were different from the subjects in DS1. The total number of 

collected data was 54 (this dataset is referred to as DS2). Spectacles without power 

were used, and the women wore make-up for daily outings. 

Face video images were collected by using a color camera (Allied Vision Mako 192C, 

1600×1200 resolution, 40fps, 12mm lens), which was synchronized with a fingertip 

photoplethysmographic device (Tokyo Devices IWS920, 409.6 [sample/s] sampling 

rate). The video images captured by the color camera were stored as a lossless 

compressed video where each pixel had three channels: red (R), green (G), and blue 

(B), with a color depth of 8 bits per channel. Each video was taken in 3 min. 

The data acquisition setup is illustrated in Fig. 2.1. The distance between the 

camera and the subjects was fixed at 1 m. The height of the subjects were adjusted 

by changing the height of chair so that the entire face was captured. The videos were 

acquired in a room under general lighting conditions. During the video acquisition, 

the subjects wore a photoplethysmographic device on their finger. Also, the subjects 

were instructed to look at the camera with open eyes in a relaxed state. 

Table 2.1  Demographic of subjects 

Subject Sex 
Age 
(y.o.) 

Spectacles 
(Type) 

Number of trials 

Noon Evening 

A M 23 No 11 20 

B M 22 
Yes 

(Black edge) 
16 26 

C M 22 
Yes 

(Borderless) 
31 30 

D M 25 No 27 27 

E F 22 No 6 4 
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Fig. 2.1  Data acquisition booth. 

 

������������������� 

Six videos were acquired from eight males and two females, whose age was 

between 26 and 57 years (mean±SD of 38.4 ±11.1 years). In total, 60 data for working 

state were acquired (this dataset is referred to as DS3.). The females wore makeup 

for daily outings. 

The face video images were acquired by using a color camera (Basler acA1920-

155uc, 1920×1200 resolution, 30fps, 8mm lens), which was synchronized with a 

photoplethysmographic device (Nihon Kohden OLV-4202, sampling rate 1000 

[sample/s]). When the videos were collected while the subjects were working in 

computers, the photoplethysmogram (PPG) signals were acquired from the earlobe. 

The stored videos had the same configuration as the videos stored in the stationary 

state. 

The subject sat at a desk with a camera fixed on two 20-inch displays (the distance 

from the camera to the subject's face was about 0.5 m) as shown in Fig. 2.2, and facial 

videos were taken while the subject was working on a computer. A 

photoplethysmographic device was attached to the earlobe, and the subject was 

instructed not to touch his face with his hands during the recording. The recording 

was conducted under a general indoor lighting environment. 

DS3 were collected by using an in-house experimental program. The program 

moved a pointer on a screen at an irregular speed (maximum speed of about 90 cm/s), 

and the subject was instructed to follow the movement of the pointer. Then the 
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subject typed an alphabetic string of about 20 characters displayed by the program 

near the pointer. The duration of each video was two minutes. During the acquisition, 

the subjects were instructed to repeat two tasks consecutively - following the mouse 

pointer on screen and typing, each task for 15 sec. The goal of these experiments was 

to simulate a typical work environment on a computer. 

 

����������������������������������������������  

�������������� 

The multiple-measurement-points-voting-method estimates an RRI for each pixel 

in the ROI shown in Fig. 2.3 (A: face or B: cheek). The RRI is estimated from the 

time difference between two consecutive peaks detected by the first order gaussian 

derivative of the normalized time-series signal. Then, the most frequent value of the 

RRI calculated at every pixel in the ROI is found as the RRI at that time. The details 

of the proposed method are described below.  

 

��������������������������������������� 

This method utilizes threes ROIs, the face ROI, the cheek ROI, and the nose ROI. 

Each ROI is determined by detecting facial feature points (dots in Fig. 2.3) on the 

first frame of the video using the C++ library named Dlib [19][20]. The detected nose 

ROI is used as the template image, and the following frames are aligned by tracking 

the template in order to extract the face ROI and the cheek ROI. The relative 

positions of the face ROI from the nose ROI are obtained. The likelihood of template 

matching used is correlation coefficient. Next, as a preprocessing, each channel of 

 
Fig. 2.2 Data acquisition environment. 
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RGB image of the video is spatially smoothed using a moving average filter of S × S 

pixels.  

 

Fig. 2.3  Region of interest (A: Face, B: Cheek, C: Nose). 

 

2.3.3 Acquisition of normalized time-series signals 

Hemoglobin in blood has a strong property of absorbing the green wavelength of 

visible light (wavelength around 550 nm), and fluctuation of blood flow can be 

obtained from small temporal changes in green luminance value [21]. Therefore, in 

our method, the normalized intensity value of the green channel of each pixel is used 

to construct the time-series signal [22]. The normalization is done using equation 

(2.1). 

���� = ��������	����	
���, (2.1) 

where ���� is the green luminance value after normalization at time t, and ����, 
����, and ���� are the red, green, and blue intensity values at time �, respectively. 

 

2.3.4 Peak detection by first-order differential Gaussian function 

The first-order differential Gaussian function ���� defined in equation (2.2) is 

convolved with the normalized time-series signal ���� using equation (2.3) to obtain 

the differential time-series signal �’���. 
���� = �Ȃ���� exp �− ������ (2.2) 

�’��� = Ȃ ��� + �� ∙ ����"�#$"  (2.3) 
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Where, % is the SD of the Gaussian function and & is the half of the window length 

of the convolution operation. 

Next, the time at which the differential time-series signal �’��� switches from 

positive to negative (referred to as the zero-crossing point) is determined by equation 

(2.4), and is considered as the positive peak of the pulse wave. Fig. 2.4 shows an 

example of ���� and the differential time-series signal �’���. 
�’�� − �� Ȃ �������’���＜� (2.4) 

 

��������������������������������������������������������������������� 

For the normalized time-series signal at each pixel in the ROI, let RRI be the time 

interval between two consecutive peaks, Pi and Pi-1. Here, we introduce an RRI map 

which represents the estimated RRI for each pixel. The RRI map has the same 

dimension as the face ROI. Fig. 2.5 shows an example of RRI calculation, and Fig. 

2.6 shows an example of an RRI map. 

Then, we find the most frequent RRI value in the RRI map as the representative 

RRI at the frame. If there is more than one value, the minimum value of RRI is used. 

The interval between consecutive RRI maps is the frame interval. 

The above procedure is summarized below. Since the procedure is applied to each 

frame, real-time processing is possible. However, there is a time delay equal to the 

length of the convolution function. It is assumed that at least one peak has been 

detected in the normalized time-series signal of each pixel.  

 
Fig. 2.4  Peaks detection method. Peaks are detected by finding zero-crossing points 
of the derivative of the normalized time-series signal. 
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For each frame, 

Step 1 Detect a peak by the first-order differential Gaussian function at each pixel. 

Step 2 When a peak is detected, calculate the time difference (RRI) from the previous 

peak at the pixel, and update the value of the pixel in the RRI map. 

Step 3 Calculate the distribution of RRI values in the RRI map, and find the most 

frequent value as the representative RRI at the frame.  

 

  

 

Fig. 2.5  RRI detection method. RRI is defined as the interval between the zero-
crossing points. 

 

800 800 1125 1100 800 800 

950 725 800 975 800 850 

825 700 800 850 875 950 

800 750 800 775 725 1000 

775 800 775 800 600 975 

875 800 800 825 800 950 

800 800 800 800 1200 1100 

650 300 800 375 125 1025 

Fig. 2.6  An example of RRI [msec] map. Assume that face ROI is W6×H8 pixels. Each 

pixel has the value of the estimated RRI at the pixel. 
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2.4 Experimental Results 

The spatial smoothing parameter, S, of the ROI was 61 pixel, the SD, %, of the 

first-order differential gaussian function was 4, and the one-sided window width, w, 

of the convolution was 3% . The position and size of the ROIs were determined 

experimentally. The upper edge of the face ROI (outer rectangle in Fig. 2.3) was set 

to 60 pixels above the eyebrows, and the left, right, and bottom edges were aligned 

with the contour points of the face. The upper edge of the cheek ROI (inner rectangle) 

was set to 60 pixels below the lower eyelids to exclude the region of the spectacles, 

the left and right edges were aligned with the facial contour points, and the bottom 

edge was 10 pixels above the top of the upper lip. The size of the ROI in the 

experimental data was determined according to the size of the subject's face and the 

distance from the camera, as shown in Table 2.2. 

 

2.4.1 RRI estimation accuracy 

The accuracy of RRI estimation of the proposed method was evaluated using the 

PPG signals that were acquired simultaneously with video images. The peak was 

detected from the PPG signals by calculating the local maxima. MATLAB's 

‘findpeaks’ function was used to detect the peaks. Using the detected peaks, the true 

value of RRI for each frame was calculated as shown in Fig. 2.7. The heart rate, /�, 

in beats per minute (bpm) was calculated using equation (2.5). 

/� = 01234561Ȃ ��7828945 × 6�, (2.5) 

where ��<= is the RRI of the f th frame. The evaluation start frame t0 was set to 121 

frames, and N was set to 7200 (the total number of frames in 3 minutes of recorded 

video). As the RRI can’t be calculated without the two consecutive heartbeats and 

the time for two consecutive heartbeats is 3 sec (120 frames), considering a minimum 

heartbeat of 40 bpm, t0 is set to 121 frames. 

Table 2.2  ROI size [pixel]. 

Data set Face ROI Cheek ROI 

Stationary 
 state 

DS1 
W：330~445 
H：381~514 

W：330~445 
H：54~118 

DS2 
W：322~460 
H：384~500 

W：322~460 
H：52~127 

Working state DS3 
W：237~355 
H：313~427 

－ 
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Fig. 2.7  Example of deriving truth RRI for each frame. NA means that available RRI 

is not calculated. 

 

We compared our proposed method with two conventional methods. The first 

method was ICA based method (hereinafter referred to as the ICA method) [8]. The 

second method calculated RRI using the first-order differential Gaussian function on 

the time-series signal obtained by averaging the entire ROI (hereinafter referred to 

as the Non-voting method). 

The scatter plots of the true HR and the estimated HR obtained by equation (2.5) 

are shown in Fig. 2.8, and their correlation coefficients are shown in Table 2.3. Next, 

the mean and SD of the mean absolute error (MAE) calculated by equation (2.6) and 

the p-value are shown in Fig. 2.9. Student's t-test was used for significance test. 

>?@ = 0A$�5	0Ȃ BC= − D=BA=#�5 , (2.6) 

where C= and D= are the true RRI and estimated RRI of the f th frame, respectively. 

In terms of the accuracy of heart rate (Fig. 2.8 and Table 2.3), the proposed method 

and the conventional method were not significantly different. However, in terms of 

the MAE (Fig. 2.9), which compares the RRI measurement error for each frame, the 

proposed method showed significantly higher accuracy than the other conventional 

methods in all data sets and ROIs (significance level ≤ 0.05). The MAE of the 

proposed method was not significantly different among the data sets (significance 

level ≤ 0.05). Furthermore, the MAE (mean ± SD) of the proposed method for the face 

ROI, which was calculated by dividing DS2 into those with and without spectacles, 

was 22.5 ± 10.9 for those with spectacles and 21.3 ± 10.6 for those without spectacles, 

with no significant difference (significance level ≤ 0.05). 
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(a) DS1(Face ROI). 

 

(b) DS1(Cheek ROI). 

 

(c) DS2(Face ROI). 

 

(d) DS2(Cheek ROI). 

Fig. 2.8  Scatter plots between the estimated HR and the true HR using DS1 and DS2. 

 

Table 2.3  Correlation coefficients between the estimated HR and the truth HR. 

Data set ROI 
Estimation method 

Proposed ICA Non-voting 

DS1 
Face 0.999 0.984 0.988 

Cheek 0.999 0.993 0.993 

DS2 
Face 0.992 0.987 0.997 

Cheek 0.999 0.998 0.998 
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(a) DS1(Face ROI). 

 

(c) DS2(Face ROI). 

 

(b) DS1(Cheek ROI). 

 

(d) DS2(Cheek ROI). 

Fig. 2.9  Mean and SD of MAE using DS1 and DS2. 

 

Fig. 2.10 shows the mean, SD, and p-value of MAE for 60 videos from 10 subjects 

in DS3. Fig. 2.11 shows the MAE of each method for each of the 60 videos and the 

number of times the coordinate values of the nasal region moved by more than 3 

pixels between frames. As shown in Fig. 2.10, the accuracy of the proposed method 

was significantly improved compared to the conventional methods even in the 

working state condition. Furthermore, the variation between the MAE data of the 

proposed method was as small as 24.7 msec. Fig. 2.11 shows that, the MAE of the 

proposed method was stable and had a high accuracy even for the data with many 

quick movements of more than 3 pixels per frame. 
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Fig. 2.10  Mean and SD of MAE in DS3. 

 

 
Fig. 2.111  Mean and SD of MAE in DS3. (A-J denote 10 different subjects, and numbers 
denote trial number). 

 

���������������������������������� 

In the previous section, we evaluated the estimation accuracy of the RRI except 

for the first three seconds. In this section, we compare and evaluate the ICA method 

and the proposed method for the time until satisfying the target accuracy using the 

stationary data shown in Section 2.1. Since the ICA method requires a minimum 

observation time of 2 sec, we started from 2 sec and evaluated at 0.5 sec intervals, 

as shown in Fig. 2.12. This figure shows the time-series signals separated by ICA at 

the time of each evaluation. It can be seen that as the analysis time becomes longer, 
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the time-series components corresponding to the change in PPG signal are obtained 

becomes better. The target accuracy was set to be within 50 msec of the error between 

the true RRI and the estimated RRI, and the accuracy was evaluated using the RRI 

at the end of the obtained results. The minimum target error between the true RRI 

and the estimated RRI was set to be within 50 msec as we considered the achievable 

accuracy to be double of the RRI measurement resolution of 25 msec for the data 

taken at 40 fps. 

Fig. 2.13 shows the required time to satisfy the target accuracy for DS1 and DS2 

in the face and cheek ROIs, respectively. In both ROIs for both data sets, the 

proposed method significantly reduces the time to reach the target accuracy 

compared to the ICA method (significance level ≤ 0.05). 

 

 

Fig. 2.12  Example of the ICA result for the different measurement duration 
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(a) DS1 (Face ROI). 

 

 

(c) DS2 (Face ROI). 

 

(b) DS1 (Cheek ROI). 

 

 

(d) DS2 (Cheek ROI). 

Fig. 2.132  Comparison of the minimum measurement duration to satisfy target 
accuracy between the proposed method and ICA method using DS1 and DS2. 

 

���������������������� 

The average computation time per frame for 300 frames of each of the three sample 

data with different sizes of ROI is shown in Table 2.4. The average computation time 

was measured separately for the following three processes. The specification of the 

computer was Core i7-4790 3.6GHz memory 8GB. 

 

Process 1  ROI extraction： Processing of Section 2.3.2 

Process 2  RRI calculation of each pixel： Step 1 and 2 in Section 2.3.5 

Process 3  Voting： Step 3 in Section 2.3.5 
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Table 2.4  Average processing time of 3 sample data.  

Sample data Average time of each process 

No 
ROI size 

W×H [pixel] 
ROI extraction 

RRI calculation of each 

pixel 
Voting 

1 247×307 11.0 msec 14.5 msec 1.6 msec 

2 302×384 11.7 msec 23.3 msec 6.1 msec 

3 357×424 12.3 msec 31.7 msec 9.2 msec 

 

2.5 Discussion 

2.5.1 RRI estimation accuracy 

Fig. 2.9 shows the results of the significant difference test between the proposed 

method and the conventional methods (ICA method and non-voting method) on the 

MAE results. The results show that the proposed method significantly reduced MAE 

more than the conventional methods in both DS1 and DS2, which were conducted 

with a small number of subjects and a large number of subjects, respectively. This 

indicates that the proposed method is robust both within and between individuals. 

In both of DS1 and DS2, the MAE of the proposed method was significantly lower 

than that of the conventional methods in both of the cheek ROI (skin only) and the 

face ROI (including spectacles and hair in some people). There was no significant 

difference between the ROIs in either dataset, and the proposed method has the 

advantage that it does not require the process of limiting the ROI to the cheek ROI. 

On the other hand, as shown in Table 2.3, the accuracies of heart rate estimation 

for all methods were high with a small difference between the proposed method and 

both of the conventional methods. However, the accuracy of frame-by-frame RRI 

estimation of the proposed method was significantly higher than the conventional 

method. This indicates that although the conventional method can obtain the 

estimated pulse rate with high accuracy, the deviation of the peak time from the true 

value is large. Since sympathetic and parasympathetic nerve balance is evaluated 

by frequency spectrum analysis of RRI, the proposed method is particularly effective 

in the analysis requiring RRI. 

 

2.5.2 Minimum measurement duration 

Table 2.5 shows the comparison of the mean and SD of the minimum measurement 
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time between the proposed method and the ICA method. The student’s t-test was 

performed. Table 2.5 shows that the proposed method significantly reduced the 

minimum measurement time compared to the ICA method for all data sets and ROIs. 

 

Table 2.5  Comparison of the minimum measurement duration to satisfy target 
accuracy between the proposed method and ICA method (mean±SD) [msec].  

Data 

set 
ROI 

Estimation method p-value between 

methods Proposed ICA 

DS1 
Face 1785±314 2419±766 4.1e-22 

Cheek 1781±309 2396±710 5.3e-24 

DS2 
Face 1856±340 2704±1365 2.3e-5 

Cheek 1843±329 2583±1018 1.6e-6 

 

Next, to estimate the observation time required for reliable RRI estimation, we 

define the required observation time as the time required for 3σ data to achieve the 

target accuracy. This is the time when 99.7% of the experimental data satisfy the 

target accuracy, that is, the shortest measurement time. Table 2.6 shows the 

required observation time obtained using a total of 252 trials of DS1 and DS2 data. 

The results of the face ROI in Table 2.6 shows that the required observation time is 

about 2.8 sec for the proposed method, and one is about 5.3 sec for the ICA method. 

So, the proposed method can be applied with half of the input signal length of the 

window width of the first-order differential Gaussian function in addition to the 

minimum two beats required for RRI estimation, while the ICA method requires 

sufficient input signal length. 

 

Table 2.6  Minimum measurement duration to reach target accuracy [msec]. 

 Proposed ICA 

Face 2,762 5,286 

Cheek 2,737 4,802 

 

In order to detect pulse waves using face images, it is necessary to extract images 

of the same part of the body for a certain period of time from a moving object such as 

a person's face. For example, when images are taken by a camera on a computer 

monitor, the face always faces the front, so it is easy to extract the same part of the 

face for a certain period of time. When image is taken by a surveillance camera of a 
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person in daily life, problems occur such as the angle of the face changes. Even in 

daily life, people do not move all the time and are often in a stationary state. 

Therefore, a method with a short observation time is desirable to estimate the RRI 

in the same static state. The proposed method can estimate RRI in about 47% less 

observation time than the ICA method, which means that the proposed method is 

highly practical. 

 

2.5.3 Calculation time 

Each of the processes in Table 2.4 (ROI extraction, RRI calculation of each pixel, 

and Voting) can be done within 33 msec, which is the frame interval of a 30 fps 

camera. Therefore, we developed a software that processes each method in parallel 

on multiple cores. The real-time operation was confirmed for the data in Table 2.4, 

No.1 and No.2, which were captured using a 30 fps camera. Each process can be done 

independently, but the results of the first process are used in the next process. 

Therefore, the throughput required for real-time processing was achieved, but 

latency was incurred. 

 

2.6 Summary 

In this chapter, we have shown that the multipoint measurement voting method, 

which estimates the RRI from the most frequent values of the RRI in the region, was 

significantly more accurate than the conventional ICA and non-voting methods. In 

addition, the observation time required for reliable estimation of RRI was reduced 

by about 47% compared to the ICA method. Furthermore, with parallel computation, 

we achieved real-time processing for data with ROI size within 302×384 pixels. 

We also evaluated the proposed method for persons in working state. It showed 

that the proposed method is significantly more accurate than the conventional 

method on the persons with motion. However, the accuracy in the PC working state 

was significantly lower than that in the stationary state. In future, we will 

investigate the effect of motion on the distribution of RRI values and develop a 

method that is more robust against motion. We will also investigate the accuracy of 

RRI estimation necessary for stress calculation, and aim to develop a method that 

can calculate stress with high accuracy in practical scenes. 
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Chapter 3 : Facial skin blood perfusion change based liveness 
detection using video images 

 

3.1 Introduction 

Recently, facial images have been used widely as a user-friendly person 

authentication method. However, spoofing has become a problem. Main spoofing 

techniques include printed images (photographs), still and video images on flat 

monitors and screens, and 3D masks and printed 3D faces similar to a person's faces. 

Conventional anti-spoofing methods use facial recognition cameras capturing visible 

wavelength or other devices such as IR cameras and range camera.  

Spoofing detection methods using only facial recognition cameras can be divided 

into two categories – methods that deal with spoofing using single still images, and 

methods that address spoofing using video images. Regarding techniques dealing 

with spoofing using still images, there are some methods based on texture analysis 

using Local Binary Pattern (LBP) [23] and multiscale directional features using the 

shearlet transform [24]. The former showed a recognition rate (the rate of 

discrimination between biological and artificial objects) of 98.0% using printed 

images, and the latter showed a recognition rate of 88.9% using printed images or 

images shown in monitors. The common limitation of both methods was that 3D 

masks were not considered. Regarding techniques dealing with video images, a few 

methods were proposed for the detection of flat objects using optical flow [25] or 

focused images [26]. Both methods showed a recognition rate of 100% for printed 

images. In addition, a recognition rate of 91.7% was achieved for printed images with 

a method combining image texture, face background, and oscillating components [27]. 

Another method using Weber Local Descriptor (WLD) was proposed to deal with 

spoofing with both still and video images that achieved a recognition rate of 92.3% 

[28]. However, no evaluation results were mentioned for spoofing with 3D masks. To 

deal with the spoofing using 3D masks, liveness detection methods were proposed 

based on blinking [29]. The limitation of these methods is that specific actions are 

required for these methods to work, which would impair the user's convenience. 

Using other images such as range images [30], thermal images [31], near-infrared 

(IR) images [32], some anti-spoofing techniques have been proposed. The recognition 
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rate of a method based on facial curvature distribution using range images was 100% 

for inflected printed images [30]. A method based on thermal images detects the 

spoofing by calculating a correlation with segmented visible facial images [31]. The 

false acceptance rate was 0.1% and recognition accuracy was 85.1% (90.8% for faces 

without spectacles). This method, however, lacks practicability as a special camera 

is required. Regarding a method using near IR images [32], texture analysis was 

applied to near IR images and visible images, thus providing tolerance for 

illumination changes. A recognition rate of 99.8% was achieved for printed images 

and still monitor images, but evaluation using 3D masks was not performed.  

Recent studies explore the detection of pulse waves from color images. Takano et 

al. [17] analyzed frequency spectra of intensity variation in the cheek area to confirm 

coincidence with pulse periods measured by a pulse oximeter. Poh et al. [10] applied 

ICA and frequency spectrum analysis to RGB signals in the facial area to improve 

calculation accuracy of pulse period. They also reported that green channel of the 

RGB images offers the highest sensitivity to pulsation. These studies are interesting 

as they describe ways of detecting changes in blood perfusion from facial images. 

However, multiple pulse waves (e.g., several periods of ten seconds) are used for 

heart rate calculation, which is not suitable for liveness detection in facial 

authentication systems aiming at fast recognition. 

This chapter proposes a spoofing detection method that addresses 3D objects by 

detecting the blood perfusion changes within a short time from video images 

acquired by facial recognition cameras. The proposed method rapidly detects 

biological response through evaluation of intensity-based time series in terms of 

likeness to biological pulse waves. Performance of the method is evaluated using 16 

real (human) subjects, 5 illumination conditions, and 4 types of artifacts including 

3D objects, still images, and video images. 
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3.2 Experimental Data 

This study was conducted with the approval of Ethics Committee of University of 

Hyogo as a “Liveness detection using facial images of video camera”. 

 

3.2.1 Data acquisition equipment 

Ten-second videos of real subjects and spoofing objects were captured using a color 

camera (Basler acA1920-155uc, sensor: Sony IMX174, resolution: 1920 × 1200, 30 

fps). The captured images were recorded as non-compressed AVI files. 

 

3.2.2 Real subjects 

Videos were acquired three times for a total of 16 healthy males and females, two 

in each age group of 20s, 30s, 40s, and 50s, under five illumination conditions (L1-

L5) described below. The subjects stood in front of the fixed camera at a certain 

position (about 50 cm away from the camera), and looked at the camera for a certain 

time period. Shooting started before a subject stood in front of the camera, and lasted 

for several seconds. It took for a subject 2-4 sec to stand in front of the camera, and 

the total shooting time was 10 sec. Shooting under different illumination conditions 

is illustrated in Fig. 3.1. The lighting was normal white light.  

(L1) Room light (without the presence of sunlight): 380 lux  

(L2) Sunlight in front of face (no other light): [2,130, 6,400] lux  

(L3) Sunlight on back of head (no other light): [140, 420] lux  

(L4) Sunlight on back of head with room light: [530, 740] lux  

(L5) Sunlight on back of the head with room light and facial light: [1080, 1360] lux 

The above illumination values are the minimum and the maximum recorded values 

during the video acquisition. The values were measured by a lux meter placed at 50 

cm from the camera.  
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3.2.3 Artificial subjects 

The lighting environment was the same as in L1 (room light only, 380 lx). The 

recording started before an operator took a spoofing object and approached the 

camera, and lasted for a certain period while the operator was standing in front of 

the fixed camera at a certain position (so that the operator's face was the same size 

as the spoofing object); the total recording time was 10 sec. The experimental setup 

is demonstrated in Fig. 3.2.  

The spoofing objects held in hand to create video data of artificial subjects are 

described below (O1-O4). 12 data were obtained for O1, and 3 data were obtained for 

 
(a) Room light. 

 
(b) Sunlight in front of face. 

 
(c) Sunlight on back of head. 

 
(d) Sunlight on back of head with room 

light. 

 
(e) Sunlight on back of head with room light and facial light. 

Fig. 3.1  Experimental environments. 
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each of the O2, O3, and O4. The same experiments were conducted by 4 different 

operators, and a total of 768 data were obtained.  

(O1) Four types of dolls (Fig 3.3).  

(O2) Printed images of 16 persons.  

(O3) Still images of 16 persons displayed on an LCD monitor.  

(O4) Video images o 16 persons displayed on an LCD monitor.  

The LCD monitor was 13.1 inches wide, with resolution of 1600 × 900 and refresh 

rate of 59 Hz. The spoofing objects, O2-O4, were images of the subjects described in 

the previous subsection. 

 
(a) Doll. 

 
(b) Printed image. 

 
(c) Monitor image. 

 
(d) Monitor video. 

Fig. 3.2 3 3-D (a) and 2-D (b-d) spoofing data collection. 
 

 
Fig. 3.3  Four kinds of doll. 
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3.3.1 Overview 

In a captured video, a frame where the user's face is facing front is selected as the 

first frame to be analyzed. Three time-series signals of green, and blue (RGB) color 

channels in the face ROI are extracted. The time-series signals are normalized 

(referred to as normalized time-series signals) by dividing them with the sum of 

three time-series signals. Next, a the first-order derivative Gaussian function is 

convolved. The obtained signal is referred to as normalized time-series derivative 

signals. The method then extracts two features for liveness identification from the 

normalized time-series derivative signals. The first feature is the correlation 

coefficient between the red and the green normalized time-series derivative signals 

(Referred to as R-G correlation feature). The second feature is the correlation 

coefficient between the green normalized time-series derivative signals between two 

regions (Referred to as inter-area correlation feature). Finally, spoofing is detected 

by using support vector machine (SVM) with the extracted features. The flow chart 

of the proposed method is shown in Fig. 3.4. 

 

3.3.2 Region of interest extraction 

Facial feature points (shown by dots in Fig. 3.5) are detected using Dlib C++ 

 

Fig. 3.4 4 Flow chart of the proposed method. 
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library [19]. In total, 68 feature points are detected. Using coordinates of the detected 

feature points, frontal face is recognized when the following condition met.  

E�FG	�G�� − HIE J ��G$FG	0�0K , (3.1) 

where HI is x coordinate of the nose center, LI is x coordinate of the leftmost face 

contour, and �I is x coordinate of the rightmost face contour.  

When the frontal face is recognized, Total of ROI (ROI T) is defined by equations 

(3.2)-(3.5). <M，<N，<G，<O are width and height of ROI T, x, and y coordinates of the 

upper left vertex, respectively.  

<M = P��I − LI + ���� R × �� (3.2) 

<N = P��I − LI + ���� R × 3 (3.3) 

<G = P��I − LI + ���� R + LI (3.4) 

<O = P�>T − HT + ��� R − <N (3.5) 

Where, >T is y coordinate of the lip center, and HT is y coordinate of the nose center. 

Besides, ROI T is equally divided into subregions A, B, C in the horizontal direction, 

from left to right. 

The subregion B is used as a template image to track the object's movement by 

correcting ROI position in each frame using the template matching. Correlation 

 

Fig. 3.5 5 Region of interests. T is the total area of A, B, and C. 



28 
 

coefficient is used as a likelihood function. Besides, when the detected movement 

exceeds a certain value from the previous frame (k pixels in x or y direction), the 

frontal face detection algorithm is applied again for that frame. Here k is an 

empirical analysis parameter. 

 

3.3.3 Normalized time-series derivative signals 

For each region T and subregions A, B, and C, normalized time-series derivative 

signals are derived as follows. In each region, mean time-series signals (����, ����, 
����) for each channel are obtained. Then, color component ratio, which is called 

normalized time-series signals, ���� and C���, are calculated using equations (3.6) 

and (3.7) respectively. 

���� = �������� + ���� + ���� (3.6) 

C��� = �������� + ���� + ���� (3.7) 

Next, a first-order derivative Gaussian function, ����, defined by equation (3.8), is 

convolved to ���� and C���. �′��� and C′��� are normalized time-series derivative 

signals. 

���� = �Ȃ�V%W exp X− ���%�Y (3.8) 

�’��� = Z ��� + �� ∙ ����"
�#$"

 (3.9) 

C’��� = Z C�� + �� ∙ ����"
�#$"

 (3.10) 

Here % is the SD of the Gaussian function, and w is half-length of the window. In the 

same manner, normalized time-series derivative signals of subregions A, B, and C 

are obtained. 

 

3.3.4 R-G correlation feature 

Erythrocytes in blood flow show strong absorption of green light (around 550 nm) 

and weak absorption of red light (around 650 nm) [21]. As a result, color components 

in the facial skin change with an increase or decrease in blood flow. Therefore, R-G 

correlation feature, [��, that is the correlation coefficient between normalized time-

series derivative signals of red and green intensity values is defined as a feature for 
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liveness detection. 

[�� = Ȃ X\]′���$\]′YX ]̂′���$ ]̂′Y_491
`Ȃ X\]′���$\]′Y

�_491 `Ȃ X ]̂′���$ ]̂′Y
�_491
, (3.11) 

where �ab ��� and Cab ��� are normalized time-series derivative signals at  ROI T, �ab  

and Cab are mean values, and n is the number of samples of the normalized time-

series signals. 

 

3.3.5 Inter-area correlation feature 

Blood flow of the human simultaneously changes in any part of ROI. That is, the 

changes of intensity values due to the light absorption characteristics of blood are 

synchronized among multiple areas. Intensity change caused by blood flow is the 

most pronounced for green color; hence we used intensity values of the green channel. 

So, inter-area correlation coefficient, [c^dc, defined in equations (3.12)-(3.14), will be 

effective to detect liveness.  

[e
 = Ȃ ��eb ��� − �eb � ��
b ��� − �
b �f�#0
gȂ ��eb ��� − �eb ��f�#0 gȂ ��
b ��� − �
b ��f�#0

 (3.12) 

[
h = Ȃ ��
b ��� − �
b � ��hb ��� − �hb �f�#0
gȂ ��
b ��� − �
b ��f�#0 gȂ ��hb ��� − �hb ��f�#0

 (3.13) 

[eh = Ȃ ��eb ��� − �eb � ��hb ��� − �hb �f�#0
gȂ ��eb ��� − �eb ��f�#0 gȂ ��hb ��� − �hb ��f�#0

 (3.14) 

Where, �eb ���，�
b ���，and �hb ��� are normalized time-series derivative signals for 

the subregions A, B, and C. We introduce a new feature which is defined as an 

average of correlation coefficients, [e
, [
h, [eh as given by equation (3.15).  

[c^dc = [e
 + [
h+[eh3  (3.15) 

 

3.3.6 Spoofing detection with pattern recognition 

R-G correlation and inter-area correlation are obtained as image features 

expressing liveness. Using these features, spoofing is detected by solving a two-class 

discrimination problem with SVM, which is one of pattern recognition methods. Here 
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living objects are defined as class 1, and spoofed objects are defined as class 0. Pre-

collected data are used as the training data for SVM. For the evaluation data, 

spoofing is detected if the output value of trained SVM is 0 or less. 

 

3.4 Experimental Results 

The method proposed in Section 3.2 was applied to all data described in Section 

3.3. As regards parameters, the first-order derivative Gaussian function, SD, %,�w�s�
�.4�fr�mes,�����the�wi��ow�le�gth,�w,�of�the�first-or�er��eriv�tive�G�ussi���fu�ctio��w�s�5 

frames. The movement threshold at template matching, k, was 5 pixels, and the 

evaluation time were 1 sec, 1.5 sec, 2 sec. The fps of the camera was 30. The 

evaluation time lengths, n, were 30, 45, 60 frames. ROI height (mean ± SD), IH, was 

95.8±9.8 pixels for real subjects, 90.8±5.0 pixels for dolls, 106.7±13.3 pixels for 

printed images, 99.7±13.6 pixels for still monitor images, and 92.8±13.1 pixels for 

videos. 

 

3.4.1 Time-series signals in region of interest 

Fig. 3.6 shows an example of the time-series signals of average intensity, �a���, �a���  in the region T, the corresponding normalized signals, Ca��� , �a��� , the 

normalized derivative signals Ca′���, �a′���, and the normalized derivative signals 

�e′���, �
′���, �h ′���, in regions A, B, C for a real subject. Similarly, Fig. 3.7 shows 

an example of the normalized time-series signals of a doll, a printed image, a still 

monitor image, and a video. The normalized time-series derivative signals are 

plotted from the 11th frame because of a calculation delay corresponding to the 

window width (frames) in the convolution of the first-order derivative Gaussian 

function.  

As shown in Fig. 3.6(b), in the case of real face, there is a negative correlation 

between Ca���  and �a��� . Moreover, Fig. 3.6(c) indicates that the negative 

correlation between Ca′��� and �a′��� can be enhanced by convolution of first-order 

derivative Gaussian function defined by equations (3.8)-(3.10). In addition, positive 

correlations between all possible combinations of the normalized derivative signals 

(�e′���, �
′��� and �h ′���) were confirmed.  

In contrast, as can be seen from Fig. 3.7, in the case of spoofed objects, there was 

neither a negative correlation between normalized time-series derivative signals in 

the whole region of interest or positive correlation between the subregions in 
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comparison with other than video images of doll, printed image, still monitor image. 

 

 

 

 

 

 

 

 

 

 
(a) Time-series signal �a��� and �a���. 

 

 
(b) Normalized time-series signal Ca��� and �a���. 

 

 
(c) Derivative signal Ca′��� and �a′���. 

 

 
(d) Derivative signal �e′���, �
′���, and �h′���. 

 

Fig. 3.6  Example of the signal of real subject. 
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3.4.2 Extracted �������� 

Fig. 3.8 compares two features, R-G correlation and inter-area correlation, in the 

different illumination conditions and of the different spoofing objects. Here the 

evaluation time length, n, was varied in three periods—30 frames (1.0 sec), 45 frames 

(1.5 sec), and 60 frames (2.0 sec). Fig. 3.8(a) shows that the average R-G correlation 

was always negative for real subjects, and positive for spoofing objects, except for 

video (O4). A significant difference (significant level ≤ 0.01) was confirmed for the all 

combination of between real subjects (L1) and each spoofing objects (O1-O4). Fig. 

 
(a) Doll. 

 
(b) Printed image. 

 
(c) Monitor image. 

 
(d) Monitor video. 

Fig. 3.7  Example of the signal of artificial subjects. Left figures show the derivative 
signal {|′�}� and ~|′�}�. Right figures show the derivative signal ~�′�}�, ~�′�}�, and ~�′�}�. 
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3.8(b) indicates that inter-area correlation was neither negative nor positive for doll 

(O1), and positive in all other cases. Particularly, this positive correlation was strong 

for real subjects and video (O4), while the SD was small. In addition, SD tended to 

decrease with a longer evaluation time. Significant difference (level: 0.01) was 

confirmed for the all combination of between real subjects (L1) and each spoofing 

objects (O1-O3).  

Fig. 3.9 represents plots of the two features for real subjects (3 data for each of the 

16 subjects) and for spoofing objects (a total of 192 data for dolls, printed images, 

still monitor images, and videos). The horizontal axis shows R-G correlation feature, 

and the vertical axis does the inter-area correlation feature. Here the evaluation 

time length, n, was 30 frames. It can be seen from the plots that each spoofing object 

can be separated using either R-G correlation or inter-area correlation. However, 

both correlation features are required to distinguish spoofing objects from real 

subjects. 

 

 

 

 

 

 
(a) R-G correlation, [��. 

 
(b) Inter-area correlation, [c^dc. 

Fig. 3.8  Comparison of feature values. Vertical axis represents five kinds of lighting 
conditions (L1-L5), and four spoofing methods (O1-O4). 
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3.4.3 �������������������������� 

The results of spoofing detection obtained by SVM using R-G correlation and inter-

area correlation features are described below. Evaluation was performed on real 

subjects (16 subjects, three data each), and 192 data of 3D spoofing objects (dolls) 

and plane spoofing objects (printed images, still images, and images on a monitor). 

The video data for both real subjects and spoofing objects were collected 3 times 

under each illumination condition. Among them, one video was used as evaluation 

data and the other two videos were used as learning data to conduct three-fold cross-

validation. Recognition rates for the evaluation data are shown in Fig. 3.10. The 

recognition rate (ACC: accuracy) is defined in the following way. 

��� = a�	aAa�	aA	��	�A,  (3.16) 

 
(a) Real subject and doll. 

 
(b) Real subject and printed image. 

 
(c) Real subject and monitor image. 

 
(d) Real subject and monitor video. 

Fig. 3.9  Relationship between R-G correlation and inter-area correlation. 
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where �� is the number of correctly recognized real subject data (real subjects are 

recognized as real subjects), �H  is the number of correctly recognized spoofing 

object (spoofing objects are recognized as spoofing objects), �� is the number of 

misclassified spoofing data (spoofing objects are recognized as real subjects), and �H 

is the number of misclassified real subject data (real subjects are recognized as 

spoofing objects). As indicated in the figures, all evaluation data, except for video 

(O4), were recognized at an accuracy of 90% or higher. With the evaluation time 

length n = 60 frames shown in Fig. 3.10(d), the recognition rate was 99.6% for dolls 

(O1), 100% for printed images (O2), and 98.3% for still images on monitors.  

Next, to evaluate generalization capability with respect to inter-individual 

variation for recognizing objects, leave-one-out cross-validation (LOOCV) was 

applied on the data of 16 subjects. LOOCV uses one subject as validation data, and 

use the remained data as training data. The obtained recognition rates are shown in 

Fig. 3.11. It shows that the correct recognition was obtained for all combinations with 

printed images (O2) and still monitor images (O3) at the evaluation time length n = 

60 frames; with other settings of evaluation time, recognition rates were 80% or 

higher.  

 
(a) Test set 1 

 
(b) Test set 2 

 
(c) Test set 3. 

 
(d) Average of three test sets. 

Fig. 3.10  Comparison of accuracy among four different spoofing attacks (O1-O4). 



36 
 

 

To examine the effect of illumination conditions, real subject data collected at 5 

environments were used. The spoofing objects were 3D objects (O1: dolls) and plane 

objects (O2: printed images and O3: still monitor images). Videos (O3) were excluded 

because both R-G correlation and inter-area correlation feature values showed the 

same trends as real subjects. Data were repeatedly collected 3 times for every 

condition, and three-fold cross-validation was applied. The obtained results are 

presented in Fig. 3.12. As indicated by Fig. 3.12(d), accuracies under room light (L1) 

and front sunlight (L2) were 96.3% and 97.9% respectively at n = 30 frames, and 

99.2% and 99.5% respectively at n = 60 frames. Under back sunlight (L3-L5), 

accuracies were 91.5%, 94.4%, 96.8% at n = 30 frames, and 96.3%, 96.8%, 98.6% at 

n = 60 frames.  

 
(a) Printed image(O2). 

 
(b) Monitor image(O3). 

 
(c) Monitor video(O4). 

Fig. 3.11  Comparison of accuracy among subjects (A-P). 
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�������������� 

3.5.1 Limitations of extracted features 

For spoofing with videos, because both R-G correlation and inter-area correlation 

feature values showed the same trends as real subjects, spoofing detection proved 

difficult. The reason might be the similar blood perfusion changes for videos played 

on monitor and data of real subjects as shown in Fig. 3.7(d).  

There is a possibility to increase the inter-area correlation feature by subject’s 

movement. To address this issue, we examined the relationship between frame-to-

frame shift in template matching of the subregion B and both correlation features. 

Fig. 3.13 shows the correlation of both features with an average shift (during 

evaluation time n= 60 frames) for all experimental data. It shows that inter-area 

correlation for printed images and still monitor images increases with shift and 

approaches the positive correlation it is the trend of real subjects. However, R-G 

correlation feature showed no correlation. Therefore, it can be said that, although 

inter-area correlation increases with subject's movement, liveness detection can be 

performed using R-G correlation feature. 

 
(a) Test set 1. 

 
(b) Test set 2. 

 
(c) Test set 3. 

 
(d) Average of three test sets. 

Fig. 3.12  Comparison of accuracy among lighting conditions (L1-L5). 
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Fig. 3.136. Correlation with motion 

 

3.5.2 �������������������������� 

In Fig. 3.10, the accuracy rate was 90% or higher for all evaluation data, except 

for videos (O4), at any evaluation time length. Particularly, with n = 60 frames, 

average accuracies for dolls, printed images, and still monitor images were 99.6%, 

100%, and 98.3%, respectively. It shows that R-G correlation and inter-area 

correlation features are effective for detecting spoofing objects. In the evaluation for 

each subject at n = 60 frames, all of spoofing are correctly detected for all 

combinations (Fig. 3.11). Therefore, the proposed method is robust against 

interindividual variation.  

As shown in Fig. 3.12(d), accuracy at the evaluation time length n = 30 frames was 

96.3% for room light (L1) and 97.9% for sunlight in front of face (L2); at n = 60 frames, 

respective values were 99.2% and 99.5%. For the sunlight at the back of the head 

(L3-L5), the accuracy decreased. However, with the increase in evaluation time, the 

accuracy increased.  

The accuracy reached as high as 96.3%, 96.8%, and 98.6% when the evaluation 

time was 60 frames. The evaluation time length, n, is the primary parameter 

determining response time. It should be set as small as necessary to obtain the 

required accuracy. Another factor related to response time is the window width (2w 

+ 1) of first-derivative Gaussian function. This was set as small as 11 frames (0.37 

sec). Hence the response time is not affected by the ROI extraction process as ROI 

needs to be extracted from every frame.  
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3.6 Summary 

Several methods were already proposed and verified to detect spoofing with 

photographs and other plane spoofing objects. However, there were hardly any 

simple and sufficient techniques to deal with 3D spoofing. In this chapter, we 

considered a fast recognition method of live subjects based on blood perfusion 

changes in time-series facial images. With 2-sec observation after frontal face 

identification, recognition accuracies of three types of spoofing objects (dolls, printed 

images, still monitor images) and real (human) subjects were 99.2% under room light 

(L1), 99.5% in case of sunlight in the front of the face (L2), and 98.6% for sunlight 

back of the head (L5). In evaluation using dolls, printed images, and still monitor 

images, recognition rates were, 99.6%, 100%, and 98.3% respectively. Therefore, the 

proposed method validated effective for 3D spoofing attacks as well. Since the 

proposed method uses time-series changes of green and red intensity values, a light 

source is necessary that has both green and red wavelengths of the light. 

Limitation of the proposed method is that it could not detect spoofing with videos 

as the blood flow response was similar to the blood flow on human face. In the future, 

we will explore new features of video images that decline the image quality caused 

by re-recording. Also, the camera used in these experiments had relatively high 

sensitivity and could capture small details. Therefore, the effects of CMOS sensor 

sensitivity must be considered for practical application. Furthermore, subjects with 

diverse facial characteristics, such as bearded persons, will be considered. 
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Chapter 4 : Detecting pelvic fracture on 3D-CT using deep 
convolutional neural networks with multi-orientated slab 
images 

 

4.1 Introduction 

Pelvic fracture can be considered as a significant health concern, representing one 

of the most common causes of hospitalization and mobility loss [33]. Moreover, pelvic 

fracture is a key cause of mortality in the elderly [33][34][35][36]. The number of 

patients with pelvic fracture is continuously increasing among elderly populations 

in various countries, including Japan and the United States [37][38][39][40][41]. 

Quick and precise diagnosis is required in the hospital, especially in emergency 

departments, to enable early surgical intervention and preservation of the 

functionality of joints and quality of life [42][43]. This increase in patients is leading 

to an increasing load on radiologists, contributing to initial misdiagnoses [22]. Such 

misdiagnoses result in worsened prognosis, increased costs of treatment, and 

elevated mortality rates [34][45]. 

Pelvic fractures are more perceptible on images from computed tomography (CT) 

[46][47], which are widely used to diagnose pelvic fractures. As CT data usually 

contain a large number of images, a substantial investment in time is required to 

interpret each of the images to identify fractures, which then carries a risk of 

overlooking fractures [48]. An automated system to detect pelvic fractures from CT 

may thus assist physicians to diagnose fractures. Further, such results can be 

applied to augmented reality (AR) to assist surgeons in complex surgical procedures 

[49]. 

Several methods have been proposed to automatically detect pelvic fractures on 

CT. Chowdhury et al. [50] introduced some methods of pelvic fracture detection based 

on graph cut theory, curvatures, morphological analysis, and their combinations. It 

detected fractures by evaluating discontinuities or gaps in the pelvic bone. However, 

natural gaps exist between pelvic bones and could be incorrectly detected as 

fractures and thus increase the number of false-positive results. Another method 

was proposed to detect fractures on CT images of traumatic pelvic injuries based on 

the registered active shape model and 2D stationary wavelet transform [51]. 
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Accuracy, sensitivity, and specificity in 12 subjects were 91.98%, 93.33%, and 89.26%, 

respectively. That method focused only on completely displaced bone fractures, and 

did not discuss incompletely displaced fractures or compression fractures. The 

number of subjects was also limited. 

Some studies have detected various kinds of bone fractures on 2D X-ray 

radiographs based on deep convolutional neural networks (DCNNs). Lindsey et al. 

[52] proposed a method of wrist fracture detection. It estimated a conditional 

probability map which represents a probability of fracture at each pixel. Thian et al. 

[53] proposed a method to detect wrist fractures using frontal or lateral X-ray 

radiographs based on faster region-based convolutional neural network (Faster R-

CNN) architecture. Detection accuracies in frontal and lateral radiographs of the 

wrist were 88.9% and 91.2%, respectively. A method to detect intertrochanteric hip 

fractures from X-ray radiographs of the femoral head and the greater and lesser 

trochanters was proposed based on VGG16 [54], a kind of DCNN. Detection accuracy 

was reported as 95.5%, higher than the detection accuracy of orthopedic surgeons 

(92.2%). Sato et al. [55] introduced a CNN based method to detect hip fracture on 

plain X-ray radiograph. The experimental results from 300 images showed that the 

accuracy, sensitivity, specificity, F-value, and area under the curve (AUC) were 96.1%, 

95.2%, 96.9%, 0.961, and 0.99, respectively. Cheng et al. [56] developed a human-

algorithm integration system to improve the diagnosis of hip fracture. Another 

method to classify proximal femur fracture from X-ray images was proposed based 

on a multistage architecture of successive CNNs in cascade along with gradient class 

activation maps (Grad-CAM) to visualize the most relevant areas of the images [57]. 

Mean accuracies of the method for 3-class and 5-class classifications were 0.86 and 

0.81 respectively. The proposed CAD system based on the method improved accuracy 

of specialists by 14%. However, these methods were based on 2D images, and could 

not be applied directly to 3D images. 

As related studies involving fractures at sites other than the pelvis, a few studies 

have proposed methods of automated bone fracture detection using CT. Bar et al. 

[58] proposed a method to detect vertebral compression fractures (VCFs), based on 

DCNN and long short-term memory (LSTM). This method first estimated a vector of 

probabilities from patches of CT images using DCNN, then classified these patches 

into VCF using LSTM. Accuracy, sensitivity, and specificity were 89.1%, 83.9%, and 

93.8%, respectively. Roth et al. [59] proposed a method to detect posterior element 

fractures from CT images based on ConvNet. Sensitivities at 5 false positives per 
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patient (FP/P) and 10 FP/P were 71% and 81%, respectively. Recently, Zhou et. al. 

proposed an automatic method to detect and classify rib fractures on thoracic CT 

[60]. This method is based on Faster R-CNN. With the assistance of this method, the 

sensitivity for diagnosing rib fractures was increased by 23.9%. 

Those papers mainly focused on detecting bone fractures in 2D spaces. The 

methods used CT, but did not segment 3D fracture regions, and did not consider 3D 

image features and structure. Basically, those methods cannot evaluate the 3D 

spatial connectivity of fractures. A straightforward approach to evaluating 3D 

information is 3D-DCNN [61], but as the availability of 3D data is limited, a suitable 

3D-DCNN model to detect fractures is not yet known, and the method would be 

computationally costly. Another approach is to synthesize 2D images from 3D volume 

data, known as 2.5D representation. Such 2.5D representation has been applied to 

lymph node detection using CT images [62] and cerebral aneurysm detection on 

Magnetic Resonance (MR) angiography [63]. The 2.5D approach synthesizes 2D 

images from 3D volume data in orthogonal and diagonal directions. The synthesized 

2D images may contain a large amount of 3D information in comparison with the 

original raw 2D images. 

Bone fractures on CT images can take various appearances. Any surface displaced 

due to bone fracture and vertical to the imaging plane will be clearly apparent. 

However, fracture surfaces displaced parallel to the imaging plane can be hard to 

recognize. This means that appropriate orientation of the imaging plane is crucial. 

However, the appropriate orientation cannot be determined initially, because each 

fracture has a different orientation, and acquisition of images in multiple 

orientations from the same patient is unfeasible because of the risks associated with 

X-ray exposure. The present study addressed this obstacle by reconstructing raw 

sectional images into multiple-orientated images. We assume that detection 

accuracy in 3D space would thus be improved by detecting fractures in the 

reconstructed multiple-orientated images simultaneously and aggregating those in 

3D space. 

This chapter proposes a fully automated method of fracture detection on 3D- CT 

of pelvic region. The proposed method is based on multiple 2D-DCNNs, in which each 

2D-DCNN evaluates images in a different orientation. This utilizes YOLOv3 [64], a 

real-time object detection system, to detect fractures on 2D images. For each 

orientation, three 2.5D slab images are synthesized with three different thicknesses. 

Fracture candidates are detected by each YOLOv3 model with different orientations 
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simultaneously. The 3D fracture region is finally detected by integrating fracture 

candidates. By detecting bone fractures in multiple orientations, the proposed 

method improves detection accuracy. 

 

4.2 Subjects and materials 

CT images taken at the Steel Memorial Hirohata Hospital were used in this study. 

Approval was obtained from the Institutional Ethics Committee (IRB #1-52, Steel 

Memorial Hirohata Hospital), and the need to obtain informed consent from subjects 

was waived. These analyses were performed in accordance with the relevant rules, 

guidelines and regulations. 

Two datasets were used in this study. Dataset A consists of CT images acquired 

from 93 subjects who had one or more pelvic fractures. Dataset B consists of CT 

images acquired from 112 subjects identified by orthopedic surgeons as not having 

any fractures. Both datasets were acquired at Steel Memorial Hirohata Hospital, 

Japan. 

Dataset A was taken from 47 male and 46 female subjects with a mean age of 66.1 

± 18.9 years (range, 20–93 years). Each subject had one or more fractures of the 

pelvis, and no implant had been confirmed on CT images. Before subjects received 

surgical treatment, CT images were acquired using three multidetector-row CT 

(MDCT) scanners (SOMATOM Definition AS 32 line, SOMATOM Go. Top 64 line, or 

Sensation Cardiac 16 line; Siemens, Germany). The images were taken between 

April 2013 and August 2019. CT images covered the whole pelvis, and image 

acquisition parameters were: tube voltage, 120 kVp; current, auto mAs; spatial 

resolution, 0.61–0.98 mm; and thickness, 0.60–1.00 mm. No space between slices was 

used. All CT images were annotated by orthopedic surgeons for training and 

evaluation purposes. The annotation procedure is described in the following section. 

Dataset A was used for both training and evaluation. 

Dataset B was taken from 69 male and 43 female subjects with a mean age of 61.3 

± 19.7 years (range, 20–93 years). No fractures or implants were confirmed on CT 

images by orthopedic surgeons specializing in pelvic fracture. CT images were 

acquired between July 2018 and December 2018 using an MDCT scanner 

(SOMATOM Definition AS 32 line; Siemens, Germany). CT images covered the whole 

pelvis, and image acquisition parameters were: tube voltage, 120 kVp; current, auto 

mAs; spatial resolution, 0.61–0.98 mm; and thickness, 0.70 mm. No space between 
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slices was used. Dataset B was used for evaluation only. 

The acquired CT images had 12-bit pixel resolution. As a preliminary step, CT 

values of 1–1,800 HU were linearly converted into 0–255. To normalize pelvic size, 

CT images were normalized into 296×169×288 mm, as the average size of the pelvis 

for 30 randomly selected subjects, using B-spline interpolation. The resulting 

dimensions were 494×282×480 voxels, and voxel size was 0.6×0.6×0.6 mm. 

 

4.3 Proposed Method 

4.3.1 Overviews 

A conceptual diagram of the proposed method is illustrated in Fig. 4.1. The method 

first synthesizes 2.5D slab images with thicknesses of 18.6 mm, 9.0 mm, and 0.6 mm 

in nine orientations (Fig. 4.1b) from the provided CT images (Fig. 4.1a). Second, the 

method detects fracture candidates for each orientation using YOLOv3 model 

simultaneously (Fig. 4.1c). Third, 3D volumes of fracture candidates are formed by 

thickening the detected 2D boundary box (Fig. 1d). Finally, the 3D fracture region is 

determined by integrating fracture candidates (Fig. 4.1e). 

The method has two parameters, [��  and <�� . [��  represents a threshold of 

confidence score to detect the 2D bounding box with YOLOv3 model. The confidence 

score takes a value between 0 and 1, with higher values showing higher confidence. 

Bounding boxes with confidence scores equal to or exceeding [�� are detected. <�� 

represents the threshold for the degree of fracture. When the number of orientations 

in which the voxel is included in fracture candidates equals or exceeds this threshold, 

the voxel is extracted as a fracture voxel. 
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Fig. 4.1 Conceptual diagram of the proposed method. (a) A series of axial CT images 
obtained from a subject. Each image represents 50×50-mm area for easy understanding. 
(b) Nine synthesized, orientated 2.5D images. Three slab images with thicknesses of 18.6 
mm, 9.0 mm, and 0.6 mm are visualized by R-G-B colors, respectively. (c) Detection of 
2D fracture candidates. (d) Thickening of 2D fracture candidates. (e) Fracture region 
detection. 
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A volume of a subject is first divided into four cubes to reduce the memory required 

for YOLOv3 analysis. The dimensions of each cube are 282×282×282 voxels. Cubes 

are extracted from the edge of the normalized volume so that overlaps between cubes 

are minimal. The proposed method synthesizes 9 orientation images from each cube; 

the 9 orientations are 3 orthogonal directions and 6 diagonal directions. In the 

synthesized images, the out-of-imaging area is filled by 0. Next, for each sectional 

image, three slab images with 31-image (18.6 mm), 15-image (9.0 mm), and 1-image 

(0.6 mm) thickness are synthesized to represent neighboring information according 

to 2.5-D representation. Slab images are synthesized by averaging neighboring 

images. Fig. 4.2 shows an example of three slab images. 

 

 

Fig. 4.2 A 2.5D representation. (a) Image with 31-image thickness. (b) Image with 15-
image thickness. (c) Image with 1-image thickness. 
 

�������������������������������������������� 

The proposed method simultaneously extracts 2D bone fracture candidates from 

multiple 2D orientation images. By aggregating 2D bone fracture candidates, the 3D 

bone fracture region is segmented. The procedure for bone region extraction is 

described below. 

 

Step 1  Detect bone fractures from 2D images using multiple YOLOv3 models in 

parallel. Nine YOLOv3 models are prepared to analyze 9 orientation images. For 

each orientation, a set of three thicknesses of slab images is fed to the input layer of 

YOLOv3 model, which then yields coordinates of bounding boxes and confidence 

scores. If the confidence score is greater than or equal to a threshold confidence score 
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([��), the bounding box is detected as a fracture candidate. The fracture candidates 

are thickened by 12.6 mm to cover the whole fracture volume, such as that for a 

completely displaced fracture. 

 

Step 2  Integrate the thickened fracture candidates detected from the multiple 

YOLOv3 models into one 3D volume. Each voxel represents the degree of fracture, 

defined as the number of orientations included in the thickened fracture candidates. 

Each voxel takes a value between 0 and 9. 

 

Step 3  Segment the fracture region by thresholding the obtained 3D volume. The 

voxels with a value equal to or higher than <�� are set to 1, and all others are set to 

0. Small fracture regions in which the number of voxels is less than 8,000 are 

discarded to suppress over-detection. The remaining regions are finally detected as 

fracture regions. 

 

4.3.4 New 3D surface annotation method 

The proposed method requires annotation of bone fracture regions to train 

YOLOv3 models. However, the number of CT images is huge, and manually 

performing the annotation procedure that surrounds a fracture area with a polygon 

is too difficult. To annotate fractures efficiently, this study introduces a new 3D 

annotation scheme using 3D surface rendering. The 3D surface rendering is 

performed by representing the pelvic bone surface on CT images with a set of small 

polygons. The pelvic bone region is easily segmented using image processing such as 

thresholding, morphological operation, etc. Orthopedic surgeons select 3-4 adjacent 

polygons around fractures using the 3D surface rendering as shown in Fig. 4.3a. For 

example, a completely displaced fracture (F1) is annotated as shown in Fig. 4.3b. An 

incompletely displaced fracture (F2) or a compression fracture (F3) is annotated as 

show in Fig. 4.3c. After 3D annotation on the pelvic bone surface, the annotated 3D 

polygons are converted into 2D bounding boxes on sectional images for each 

orientation. Because YOLOv3 model evaluates the three slab images with 18.6 mm, 

9.0 mm, and 0.6 mm thicknesses, the 2D bounding boxes are also thickened by 18.6 

mm. 
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Fig. 4.3 The 3D annotation method. (a) Annotated 3D bone surface data. (b) Annotation 
of completely displaced fracture (F1). (c) Annotation of incompletely displaced fracture 
(F2) or compression fracture (F3). 
 

4.3.5 YOLOv3 model training 

A YOLOv3 model [64] pre-trained with the ‘COCO trainval’ dataset is used. 

YOLOv3 model is trained using a set of three 2.5D images and the ground truth 

bounding boxes. A different YOLOv3 model is trained for each of the 9 orientation 

images, and 9 YOLOv3 models are obtained. The training data are augmented by 

brightness adjustment, rotation, horizontal flip, enlargement, reduction, and 

changing the aspect ratio. Each model is fine-tuned on three output layers for the 

first eight epochs with a learning rate of 0.001, then all layers are fine-tuned for the 

following ten epochs with a learning rate of 0.0001. The batch size is 28. The input 

size of the model is 416×416. 

To correct the imbalance in the number of images with and without fractures, the 

volume of a subject is divided into volumes with 20 consecutives slices. For each 

divided volume, when the number of images with fractures over all subjects is less 

than 10%, 10% of images without fracture from the same volume are randomly 

chosen. Otherwise, the same number of images without fractures are selected 

randomly. For training the model, the multi-orientated synthesized images from 

dataset A are used. Table 4.1 shows the total number of synthesized images from 

dataset A for each orientation. The data were decomposed into 6 folds to perform 6-

folds-cross-validation test. 
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Table 4.1 Total number of synthesized images from dataset A (93 subjects). 

Orientations with fracture without fracture 

orthogonal direction 1 31,217 62,527 

orthogonal direction 2 23,524 70,220 

orthogonal direction 3 29,766 63,978 

diagonal direction 1 29,298 107,970 

diagonal direction 2 33,942 103,326 

diagonal direction 3 28,011 109,257 

diagonal direction 4 30,385 106,883 

diagonal direction 5 32,697 104,571 

diagonal direction 6 29,083 108,185 

 

4.4 Experimental Results 

4.4.1 Evaluation metrics 

Precision, recall, F-score, and AUC are calculated to evaluate the results. The 

ground truth of the 3D fracture region is prepared by intersections of 2D fracture 

boundary boxes at every orientation image. Then, IoU is calculated between the 

detected and ground truth 3D fracture regions. The IoU is defined by equation (4.1). 

<�� = e�∩
_e�∪
_, (4.1) 

where ?� is a set of ground truth fracture regions, and �f is a set of the detected 

fracture regions. The correspondence between ground truth and detected region is 

determined by maximizing IoU. When IoU is greater than or equal to a threshold, 

the ground truth region is successfully detected. Otherwise, the ground truth region 

is not detected. 

Fracture-wise precision and recall are calculated using true positive (TP), false 

positive (FP), and false negative (FN). TP denotes the number of ground truth 

fractures successfully detected. FP denotes the number of fractures detected 

incorrectly. FN denotes the number of ground truth fractures that are not detected. 

Precision, recall, and F score are defined by equations (4.2)-(4.4). 

 

�C������� = a�a�	�� (4.2) 

������ = a�a�	�A (4.3) 
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�����C� = �・�d�c��・�^d�����f�d�c��	�^d�����f  (4.4) 

 

The interpolated precision [65] is calculated by sampling precision whenever it 

drops and computing the sum of the rectangular blocks using equation (4.5). 

D�f�d^��Cf� = m�x^̀∶�^̀��� _̂�D�C̀��, (4.5) 

where D�C� = precision at recall r. 

 

4.4.2 Detection of 3D fracture regions 

Fig. 4.4a shows the estimated degree of fracture overlaid on multiplanar 

reconstruction images with [�� of 0.2. The degree of fracture is estimated at each 

voxel, and assumes a value between 0 and 9 as the number of orientations under 

evaluation; 0 means that no fracture is detected in any orientation, and 9 means that 

fracture is detected in all orientations. Fig. 4.4b shows the resultant fracture region 

with <�� = 6. Over-detection occurring in the individual orientation detection step is 

suppressed by aggregation of fracture candidates for each orientation. 
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Fig. 4.4 Estimated degree of fracture on multiplanar reconstruction images. Top: axial 
image; bottom-left: coronal image; bottom-right: sagittal image. L: left; R: right; A: 
anterior; P: posterior; S: superior; I: inferior. (a) Integrated 3D fracture candidate region 
overlapping on CT images ([�� : 0.2). Yellow represents the degree of fracture. (b) 
Resultant 3D fracture region (<��: 6). Yellow represents the detected region. The enlarged 
image shows raw CT images for the detected fracture region. 
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4.4.3 Detection accuracy 

Dataset A with bone fractures was used to evaluate the proposed method, and 6-

fold cross-validation was conducted. Dataset A included 93 subjects with 389 

fractures. All subjects were divided into 6 groups, with 5 groups used for training, 

and the remaining group used for evaluation. To evaluate performance, the IoU 

between the detected fracture region and ground truth fracture region was 

calculated. Detection accuracy was evaluated for each fracture, and the evaluation 

metrics were precision, recall, and AUC. The threshold used for IoU was 10%. Fig. 

4.5 shows the interpolated precision-recall (PR) curve, obtained using the set of 

parameters as combinations of [�� = 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and <�� = 

3, 4, 5, 6, 7, 8, 9. The AUC for multiple orientations was 0.824 with an IoU of 10%. 

To demonstrate the effectiveness of the proposed method using multiple 

orientations, single-orientation detection, and triple-orientation results are also 

plotted in Fig. 4.5. The single-orientation method detected fractures using only axial 

images, and the triple-orientation method used axial, coronal, and sagittal images. 

AUCs with the single- and triple-orientation methods were 0.652 and 0.734, 

respectively. The proposed method detected bone fractures successfully using more 

orientations, and the less-orientated method failed when the fracture did not appear 

clearly in the given orientation. We concluded that multiple-orientated analysis is 

quite effective to detect bone fractures from CT images. 

Parameters [�� and <�� should be optimized to provide the highest value of the 

two evaluation metrics “recall” and “precision”, although a tradeoff exists between 

recall and precision. F score was therefore used to evaluate the overall performance 

of the proposed method. The highest F score for an IoU of 10% was 0.853 when [�� 

was 0.2 and <�� was 6. Recall was 0.805 and precision was 0.907. 
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Fig. 4.5 Precision-recall curve. 

 

������������������������������������������������ 

Fig. 4.6 shows the comparison of ground truth fractures and automatically 

detected fractures under the proposed method. Fractures on the 3D bone surface are 

highlighted. The subject had five ground truth fractures (A-E). The proposed method 

successfully detected all except one fracture (C). The IoUs of A-E were 15.4, 7.3, 0.0, 

30.3, and 15.0, respectively. Although the detected volume is slightly different from 

the ground truth fractures, the detected region is located close to the ground truth 

fractures, and will assist physicians in identifying the fractures. 
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Fig. 4.6 The 3D visualization of fractures. (a) Ground truth fractures. (b) Automatically 
detected fractures. 

 

����������������������������������������� 

Subject-wise recall and specificity were evaluated using dataset A with bone 

fractures, and dataset B without bone fractures, respectively. For comparison, we 

called the recall and specificity calculated for each fracture the fracture-wise recall 

and specificity. Only dataset A was used for training YOLOv3 models, and 6-fold 

cross-validation was also conducted. Analysis parameters were: [��  was 0.2, <�� 

was 6, and the threshold of IoU was 10%. Subject-wise recall and specificity were 

evaluated for each subject (not for each fracture), where a positive subject denotes a 

subject in whom one or more fractures are detected, and a negative subject denotes 

a subject in whom no fractures are detected. Subject-wise recall calculated using 

dataset A was 1.00 (93 of 93 subjects), showing that the proposed method completely 

detected all subjects with bone fractures. The ratio of subjects for whom all fractures 

were detected was 0.559 (52 of 93 subjects). Subject-wise specificity for dataset B 

was 0.964 (4 of 112 subjects), and the proposed method successfully recognized all 

except 4 non-fracture subjects. 

 

�������������� 

The experimental results of the proposed method depend on parameters, [�� and 

<��. Fig. 4.7a shows F score at IoU of 10% with changes in [�� and <��. For each of 
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[��= 0.4, 0.2, 0.1, and 0.02, the highest F score was 0.849 (recall 0.792, precision 

0.914) at <�� = �, 0.853 (recall 0.805, precision 0.907) at <��= 6, 0.845 (recall 0.810, 

precision 0.884) at <��= 7, and 0.832 (recall 0.802, precision 0.863) at <��= 8. A 

tendency was seen for <�� to be decreased when [�� was large, while the <�� should 

be increased when [��  is small. This is because that the number of fracture 

candidates detected by multiple YOLOv3 models in parallel increases with 

decreasing [�� , and can be suppressed by increasing <��  at the integration step. 

Next, Fig. 4.7b shows a cumulative histogram of IoUs of the detected fractures by 

the proposed method with <��= 5, 6, and 7. This shows that the ratio of high IoU 

fractures increased with higher <��, because the integration of multiple orientation 

results specifies the fracture region more precisely. 

 

 

Fig. 4.7 Performance dependency on analysis parameters. (a) Relationship between <�� 
and [��. (b) Cumulative histogram of IoU of the detected fractures. 

 

Next, detection accuracy among appearance types was discussed. We classified 

bone fractures into 3 types: (F1) completely displaced fracture; (F2) incompletely 

displaced fracture; and (F3) compression fracture. F1 type represents fractures 

where fractured part of the bone is completely separated (Fig. 4.8a). F2 type 

represents fractures where the fractured part of the bone is loosely separated (Fig. 

4.8b). F3 type represents the fractures where the fractured part of the bone is not 
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separated but a part of the bone surface has changed (Fig. 4.8c). The 389 fractures 

of dataset A were classified into 67 F1 fractures, 282 F2 fractures, and 40 F3 

fractures. Fig. 4.8 shows examples of axial CT images for the 3 fracture types. We 

calculated fracture-wise recall for each type of fracture using parameters with [�� 

of 0.2 and <�� of 6 that provided the highest F score. The fracture-wise recalls were 

0.955 (F1), 0.869 (F2), and 0.350 (F3). The accuracy of F3 type was lower than that 

of the other types, because few characteristics of fracture were present on the image. 

 

 
Fig. 4.8 Types of fractures. (a) Completely displaced fracture (F1). (b) Incompletely 
displaced fracture (F2). (c) Compression fracture (F3). Fractures are indicated by 
triangles. 

 

Processing time for one subject was 756 sec in total, using a computer with an i9-

10900k CPU, and a TITAN-RTX GPU. The method consists of 3 steps; the first step 

to synthesize slab image took 361 sec, the second stage to predict 2D fracture 

candidates took 253 sec, and the third stage to aggregate them into 3D space took 

142 sec.  

 

����������� 

Although many studies have been conducted using DCNN to detect lesions in 2D 

and 3D medical images, training DCNN using 3D images is complicated, 

computationally expensive, and requires a large amount of training data. Therefore, 

we have trained multiple YOLOv3 models in parallel. In the proposed method, each 

YOLOv3 model was trained using multiple oriented 2D slab images constructed from 

3D-CT. We assumed that there is an appropriate orientation to extract maximum 

features for each fracture. For this reason, multiple YOLOv3 models were used to 

detect 2D fracture candidates in different orientations. The 3D fracture region was 
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detected by integrating the 2D fracture candidates. The proposed method was tested 

on 93 subjects with fractures. The area under the curve (AUC), recall, and precision 

were 0.824, 0.805, and 0.907 respectively. To evaluate the specificity, we tested our 

method on 112 subjects without fractures. The specificity was 96.4% and fractures 

were detected on only 4 of the 112 subjects. 

The proposed method will assist physicians to detect pelvic fractures. While 

fracture detection performance will be increased, the risk of misleading physicians 

must be considered. Use of the method should thus be limited to second-stage 

interpretations after the first interpretation without the AI-system. A limitation to 

the proposed method is that it is not applicable to patients with implants. The future 

prospects for the proposed method include extending the methods for patients with 

implants, compared with other object detection methods such as Faster R-CNN, SSD, 

and optimization of deep learning parameters. 
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Chapter 5 : Conclusion 

 

In this dissertation, high-dimensional biomedical image recognition methods have 

been proposed that incorporate a new analysis perspective with the goal of saving 

labor in human operations on high-dimensional biomedical images that have been 

taken in large numbers in the fields of medical care and security in recent years. 

In Chapter 2, a multiple-measurement-points-voting-method has been proposed to 

estimate the RRI from the most frequent value of the RRI calculated for each pixel 

in the face area, which is the variation of the period per heart beat (RRI: R-R 

interval) that is related to the state of the autonomous nervous system. The method 

was evaluated using data in a stationary state (198 data, 3 minutes per data) and 

data in a working state (60 data: 2 minutes per data), and showed that the proposed 

method was significantly more accurate than the conventional method of ICA for 

both data sets. In addition, the proposed method reduced the observation time 

required for reliable RRI estimation by about 47% compared to the conventional 

method. Furthermore, a parallelization method was devised for the implementation 

of the proposed method, and achieved real-time processing for data with a ROI size 

within 302×384 pixel. 

Chapter 3 has proposed a method to distinguish a real person in a short time by 

focusing on the changes in blood flow that appear on time-series facial images, which 

are unique to living bodies. After detecting a frontal face, recognition rates for indoor 

lighting, normal lighting, and lighting at the back with direct illumination on the 

face were 99.2%, 99.5%, and 98.6%, respectively using an observation time of 2 sec. 

In the evaluation of each type of spoofing objects, the recognition rates for dolls, 

printed photographs, and still images of monitors were 99.6%, 100%, and 98.3%, 

respectively, indicating that the proposed method was effective against spoofing 

attacks by 3D objects. 

Chapter 4 proposes a novel method to detect factures in pelvic CT images. It uses 

2D cross-sectional images of nine directions reconstructed from CT images to extract 

2D fracture candidates using a deep convolutional neural network. Then, the 

detected 2D fracture candidates in nine directions were integrated in 3D space to 

form the 3D fracture candidate region. This procedure significantly reduced the 

computational cost because the images are analyzed by deep learning in 2D. In 
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addition, since the convolutional neural network is trained by using 2D cross-

sectional images, we can prepare a large number of training images from a single 

subject. To annotate a large number of training images, this study introduced an 

automated method for annotating 2D cross-sectional images in each of the nine 

directions by using the fracture lines annotated on the 3D bone surface model. The 

proposed fracture detection method was validated on 93 subjects with fractures, and 

the AUC was 0.824, the recall was 0.805, and the precision was 0.907. It was also 

applied to 112 subjects without fractures, and 108 subjects (96.4%) were predicted 

correctly. 

These studies discuss three kinds high-dimension of signals or images to improve 

the recognition performance in biomedical applications with artificial intelligence. 

At first, it showed that RRI, a biomarker for detecting physical condition, can be 

detected with higher accuracy and shorter observation time than conventional 

methods by measuring and voting at multiple points on the facial video. The first 

study discusses on high-dimension of RRI measurement signals. In addition, by 

comparing the intensity signal from the facial video image among three wavelengths 

and among multiple regions of interest, it was possible to detect spoofing by 3D 

objects, which is a problem in face recognition. The second study discusses on high-

dimension of the blood flow measurement signal. Furthermore, 3D pelvic fractures 

with complex patterns can be detected by reconstructing the cross-section of CT 

images in multiple directions. The third study discusses on high-dimension of 

fracture detection cross-section. In this way, the range of artificial intelligence 

applications had been expanded by increasing the dimensionality of feature 

extraction from high-dimensional biomedical images. 

Future work includes to proceed feasibility study of these researches, such as 

improving the accuracy of pelvic fracture detection, and extending the function to 

whole-body fracture detection. 
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