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Abstract 

Vegetation is a vital terrestrial component and plays an important role in the ecosystem and 

climate. However, human activities cause changes in vegetation cover leading to vegetation 

degradation with profound effects on the environment and socio-economic development. 

Thus, timely monitoring and forecasting vegetation condition is essential for biodiversity and 

ecosystem conservation. Although vegetation degradation has become a global issue and has 

negatively impacted many regions, field data crucial for monitoring vegetation condition is 

rare or non-existent in many regions, notably in east Africa, thus, vegetation indices (VIs) 

derived from remote sensing data provides useful information and can be applied in 

monitoring vegetation condition in the region. The normalized difference vegetation index 

(NDVI) is the one of the most widely used index in vegetation studies which helps to reveal 

vegetation vigor in regions. The main objective of this research was to develop time series 

forecasting models using univariate pixel-wise NDVI data between 2000 and 2019 to monitor 

and forecast vegetation condition in east Africa. Pixel-wise NDVI data was extracted from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra Vegetation Indices, 

(MOD13Q1 product, version 6) at 16 - days temporal resolution and 250 m spatial resolution. 

Holt-Winters, SARIMA and three MLP models MLP 1 (3000 epochs, ReLU AF, Adam 

optimizer), MLP 2 (4000 epochs, TanH AF, Adamax optimizer) and MLP 3 (5000 epochs, 

ReLU AF, Nadam optimizer). were developed. The models were used to forecast NDVI in 

east Africa, in a low (Middle Tana River Basin) and high vegetation (Central and Western 

Uganda and Ituri province in the Democratic Republic of Congo, DRC) regions. The 

temporal analysis of NDVI for 1  1 pixel in the low and high vegetation regions showed a 

temporal pattern with distinct low and peak values with the year 2011 marked by a low NDVI 

in both regions. The observed and predicted NDVI time series graphs for 1  1 pixel in the 

low and high vegetation regions showed that the Holt-Winters and MLP models 

underestimated as well as overestimated NDVI during most of the study period. On the other 

hand, the SARIMA model did not provide a good fit leading to poor estimation. Spatial 

analysis showed that the low vegetation region was forecasted to experience moderate to 

light vegetation deficit while the high vegetation region was forecasted to have moderate to 
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extremely high vegetation condition for the 6 months’ lead. Moreover, the low vegetation 

region was predicted to have NDVI between 0.0 to 0.2 during the October – December 2019 

and January – March 2020 seasons, while the high vegetation region was predicted to have 

NDVI between 0.5 to 1.0 during the same seasons. Comparative analysis of the forecasting 

performance for the models at 6 months lead time were assessed using the root mean square 

error (RMSE), mean square error (MSE), mean absolute error (MAE) and mean percentage 

error (MAPE). The Holt-Winters model achieved better performance for 600  600 pixels 

in the high vegetation region, with a RMSE of 0.084, MAE of 0.0679 and MSE of 0.0071, 

while the MLP 3 model achieved the worst predictive performance. On the other hand, the 

MLP 2 model had the best predictive performance in the low vegetation region with RMSE 

of 0.07207, MSE of 0.00589 and MAE of 0.06417, while the SARIMA model was the worst 

performing model. The results of this thesis are crucial for guiding land use planners and 

forest managers to formulate mitigation strategies and assist in ecosystem and biodiversity 

conservation. Moreover, the research may be used as a foundation for future studies using 

pixel-wise data and for assessing the performance of univariate time series forecasting 

models. 
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CHAPTER ONE 

INTRODUCTION 

Chapter one provides information on the motivation for this research and the background 

information on the research topic. The chapter also describes the problem statement, research 

questions, objectives, justification and the scope of the research. The chapter ends with the 

description of the layout of the thesis. 

1.1 Background information 

Vegetation covers a substantial portion of the earth’s land surface (Rodrigues, 2014), plays 

a key role in the global climate system (Musau et. al., 2018; Du et. al., 2015; Peng, et. al., 

2015) and strongly influences animal distributions and dynamics (Pettorelli, et. al. 2006). 

Dynamic changes in vegetation level are controlled by the balance between climatic and 

anthropogenic factors (Gamoun, 2013; Bhandari, 2011). However, vegetation has been 

greatly affected by human activities such as urbanization, clearing of land for cultivation, 

overgrazing and demand for firewood (Le Houérou, 2009), contributing to the destruction of 

1000 million hectares of the world’s land (Walling & Fang, 2003). In addition, human 

activities are placing increasing pressures on land resources creating conflicts (United 

Nations, 2015) as well as exposing the land surface to erosion, which is exacerbated by poor 

agricultural practices. The severity of global biodiversity loss and degradation of ecosystems 

has negative impacts on food security, nutrition, access to water and people’s health 

worldwide (United Nations, 2015). Thus, monitoring and forecasting vegetation condition is 

important for ecosystem and biodiversity conservation. In addition, accurate and timely 

information on vegetation condition is crucial for policy makers, forest managers and land 

use planners. 

Rangelands constitute the greatest land area in the world and it refers to region with 

shrubs and grasslands as the predominate vegetation and may vary from mild sub-arid 

wooded savannah to desert (FAO, 1986; Pellant et. al., 2020; Rukikaire, 2021). Rangelands 

are primarily used for livestock production such as in the Sahelian and sub-sahelian zones of 
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Africa (FAO, 1986).  However, they are experiencing high grazing pressure and rapid decline 

in tree cover (Waswa, 2012). The sub-Saharan Africa region accounts for more than 950 

million people (approximately 13% of the global population) where, the agricultural sector 

plays a critical role in the economy by employing more than half of the total work force 

(OECD/FAO, 2016).  

The east Africa region exhibits diversity in topography, climate and vegetation. The 

temperature in the region ranges from as low as 12 ºC at the mountain summits and 34 ºC in 

the lowlands. The lowlands cover a large part of the region and are characterized by a semi-

arid climate with an average rainfall of 200 mm whereas the highlands receive above 1500 

mm of rainfall (Nicholson, 1996). The region has a considerable range of vegetation types, 

from tropical forests to semi-dessert grasslands with rangelands covering 79% of the land 

surface in east Africa (Justice et. al., 1986). The semi-arid regions are characterized by short 

vegetation cycles that show large interannual variability both in timing and magnitude of 

vegetation productivity (Cheng, et. al., 2020). Vegetation cover in east Africa is experiencing 

rapid decline through land conversion for agriculture, unsustainable harvesting of timber and 

charcoal production as well as poor land management. Moreover, population increase and 

economic development in the region has accelerated deforestation and degradation (Ahrends 

et. al., 2010; Pfeifer et. al., 2012; Abera, 2020) leading to a decline in forest and woodland 

cover by 5.1% and 15.8% respectively between 2002 and 2008 (Pfeifer et. al., 2013). 

Moreover, vegetation is affected by recurrent severe drought events and agricultural 

expansion (Abera, 2020), while most forests suffer from rapid deforestation (Waswa, 2012). 

For instance, the agricultural area in the region increased to 57% between 1975 – 2000 at the 

expense of natural vegetation, which decreased by 21%, with nearly 5 million hectares of 

natural vegetation lost per year (Brink & Eva, 2009). In addition, there is insufficient 

monitoring of vegetation with 21% of the land experiencing a decline in vegetation cover 

(Waswa, 2012) and a decrease in natural vegetation formations such as forests, bushlands, 

grasslands and wetlands (Githui et. al., 2009).  

Intensive and long-term ground-based assessments can produce fine scale, accurate 

and localized information, however, they are expensive, time and labor intensive and do not 
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provide full coverage and visualization of the spatial dynamism in rangeland ecosystems 

(Ndungu et. al., 2019; Loughran 1989). Furthermore, field data is difficult to use for 

predicting regional or global changes as such data are traditionally collected at small spatial 

and temporal scales and vary in their type of reliability (Pettorelli, et. al., 2006). Additionally, 

the scarcity of in-situ data is a major barrier in vegetation studies in eastern Africa (Abera, 

2020), thus, remote sensing imagery has gained wide application in vegetation studies from 

local to global scales (Rodrigues, 2014). Remote sensing often utilizes ground based sensors 

or satellite imagery (Hatfield, 2008) and the remote sensing images reveals widespread 

changes in vegetation across the globe and is one of the main tools for monitoring vegetation 

condition in a given region (Jamali et. al., 2015). 

Vegetation indices (VIs) derived from remote sensing data are useful indicators of 

vegetation vigor (Campbell, 1987) and may reveal regions with thriving or stressed 

vegetation. The NDVI is one of the earliest remote sensing analytical product used to simplify 

the complexities of multi-spectral imagery and the most popular index for vegetation 

assessment (Huang et. al., 2021). The indicator was developed for studying vegetation traits 

(Kriegler et. al., 1969; Rouse et. al., 1974) and has the ability to delineate vegetation and 

vegetative stress (Huang et. al., 2021). The index is an important vegetation measure as it is 

sufficiently stable to permit meaningful comparisons of seasonal and inter-annual changes in 

vegetation growth and activity (Huete et. al., 2002). The advantage of the NDVI is in its 

rationing concept which reduces many forms of multiplicative noise present in multiple 

bands (Huete, et. al., 2002), mathematical simplicity and ease of interpretation (Julien, 2008).  

Time series analysis of remotely sensed data has gained attention in recent times and 

are indispensable tools in environmental monitoring such as in vegetation studies (Eerens et. 

al., 2014). Analysis of NDVI time series and NDVI based metrics are widely used to monitor 

temporal and spatial dynamics of vegetation (Busetto et. al., 2008). However, applications of 

such methods in forecasting of vegetation indices and dynamic behaviors remains poorly 

explored (Mutti et. al., 2020). Furthermore, forecasting vegetation is still inadequate in the 

east Africa region, thus the need to develop vegetation condition forecasting models for the 

region. 
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Numerous studies have been carried out using stochastic models and more recently 

using artificial neural networks (ANN) for monitoring environmental variables (Mutti et. al., 

2020; Belayneh et. al., 2016). Stochastic models provide flexibility and systematic approach 

for the choice of model hyperparameters (Camelo et. al., 2018), and enables to produce a 

threshold within which the estimates can be tested statistically and used as indications of the 

accuracy of the model (Institute and Faculty of Actuaries, 1997). On the other hand, the ANN 

are designed based on the human brain functioning with a variety of mathematical functions 

to enhance the ability of the models for accurate predictions (Saffariha et. al., 2021). Such 

forecasting models can be used to estimate vegetation condition both temporally and spatially 

to aid in decision making and to prepare effective mitigation measures to reduce effects of 

vegetation degradation at the local and global scale. Thus, in this research, development and 

assessment of forecasting models for vegetation condition in east Africa using univariate 

pixel-wise NDVI data was accomplished.  

1.2 Problem statement 

Vegetation degradation has become a global issue and has negatively impacted the 

environment and socio-economic development of various regions, notably in east Africa. 

Vegetation degradation in the region is attributed to natural and human induced factors such 

as deforestation and overgrazing. Despite the adverse effects of vegetation degradation 

occurrence in the east Africa region, limited research has been conducted to forecast 

vegetation condition at the pixel level. While researches have been conducted on forecasting 

vegetation condition using NDVI data, most of the studies used coarse spatial resolution 

NDVI data and the non-pixel-wise modeling approach which has reduced robustness (Mutti 

et. al., 2020). Moreover, the researches mainly focused on arid and semi-arid regions. 

According to the United Nations (2015), sustainable management of natural resources 

contributes to economic growth and social progress, which can be achieved by developing 

and implementing scientific methods for monitoring and assessing land degradation and 

desertification. Thus, there is a need for a more robust modeling approach that can reveal 
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potential vegetation deficit regions at the pixel level using moderate spatial resolution NDVI 

data to forecast vegetation condition in east Africa. 

1.3 Research objectives 

The main aim of this research was to develop time series forecasting models using univariate 

pixel-wise NDVI data to forecast vegetation condition at 6 months’ lead time in east Africa, 

to assist policy makers in decision making and formulation of mitigation plans to reduce the 

impacts of vegetation degradation in the region. 

The specific objectives were to: 

1) Use a large dataset in order to cover a larger region which may be applied to 

forecast vegetation condition in other regions with similar characteristics. 

2) Monitor the temporal changes in NDVI based on VI data from 2000 to 2019 in 

east Africa. 

3) Evaluate the performance of the forecasting models in forecasting NDVI at 6 

months lead time. 

4) Create spatial maps for the 6 months lead NDVI forecasts at the pixel level for 

easier visualization and identification of potential vegetation deficit regions. 

1.4 Research questions 

This research aims to answer the following research questions: 

1) Can pixel-wise modelling approach using MODIS NDVI data at 250 m spatial 

resolution provide a robust method to forecast NDVI in east Africa? 

2) Which forecasting model is suitable for forecasting NDVI in a low and high 

vegetation regions in east Africa? 

3) How do the developed forecasting models perform in forecasting NDVI in the 

low and high vegetation regions?  

4) Can the spatial maps reveal regions with thriving or deficit vegetation? 

 

 



6 
 

1.5 Justification of this study 

This work is important for attaining African Union Agenda 2063 goal 7 and its priority areas 

of environmental sustainability, biodiversity conservation and natural resource management 

as well as the United Nations Sustainable Development Goals (UN SDGs) goal 15, by 

providing a methodology required to protect, restore and promote sustainable use of 

terrestrial ecosystems, sustainably manage forests and combat desertification, halt and 

reverse land degradation and biodiversity loss (United Nations, 2015). To achieve these goals, 

mitigation measures to reduce the impacts of vegetation degradation is paramount by using 

the readily and freely available remote sensing data to detect changes in vegetation condition 

and develop optimal approaches using forecasting models.  

1.6 Scope of the study 

Although the east Africa region has a total land area of 5.9 million km2, the current research 

focused only on a section of the Middle Tana River Basin in Kenya (henceforth, referred as 

the low vegetation region) and sections of central and western Uganda and Ituri province in 

the Democratic Republic of Congo (henceforth, referred as the high vegetation region). The 

area for the study region was calculated as follows: 1 MODIS tile = 4800   4800 pixels and 

1 pixel = 250 m. Therefore, the area for 1  1 pixel (in km2) = 250  250 = 0.0625 km2. 

Thus, each region in the study area comprised of 600  600 pixels, which is equal to an area 

of 22, 500 km2. Forecasting the vegetation condition was based on monthly mean pixel-wise 

NDVI data extracted from the MODIS MOD13Q1 product, at 250 m spatial resolution, from 

February 2000 to September 2019. The findings of this research can be generalized for other 

regions in east Africa with similar vegetation condition and biophysical characteristics such 

as east Ethiopia and west Tanzania (having similarity with the low and high vegetation 

regions in this research respectively). 

1.7 Dissertation layout 

This dissertation consists of five chapters. Chapter one presents a general introduction, 

problem statement, research objectives, research questions, justification and scope of the 
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research. Chapter two reviews related literature on monitoring and forecasting NDVI and the 

methodologies used in previous studies. Chapter three describes the study area, data used, 

methodology, models’ implementation and validation metrics. The research findings are 

presented in Chapter four under results and discussions, while the final chapter (five) 

provides the conclusion, recommendation and future work. 
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CHAPTER TWO 

LITERATURE REVIEW 

Chapter two provides an overview of remote sensing data, types of remote sensors and 

vegetation indices. This chapter explains time series and its components and different time 

series forecasting methods such as stochastic and artificial neural networks (ANN) models 

used in monitoring and forecasting vegetation condition. It also highlights the advantages 

and disadvantages of the models. 

2.1 Overview  

Vegetation is an important component of terrestrial ecosystem and a crucial element in the 

global climate system (Foley et. al., 2000). Studies involved in vegetation dynamics have 

been active research topics since the late 19th century (Rodrigues, 2014). Incremental, cyclic 

and periodic changes in vegetation structure and condition are complex and continuous 

phenomena affected by multiple factors (Bhandari, 2011) such as climate change and human 

induced factors through extensive land use. 

2.2 Remote sensing data 

Remote sensing refers to the science of obtaining information about objects or areas from a 

distance using satellites (NOAA, 2021). It relies on capturing and interpreting the 

electromagnetic radiation from the earth’s surface or objects in space using remote sensors. 

The sensors collect data by detecting the energy that is reflected from the earth and the 

sensors can be on satellites or mounted on aircraft (NOAA, 2021).  

Remote sensing has become a vital tool and a valuable source of data as it provides 

regular, open and objective data (Love, 2015) at a global scale with long term records and 

high spatial resolutions. There are various applications of remote sensing data such as, in 

monitoring changes in shorelines, measure ocean temperature and wave heights, assessment 

of natural disasters such as flooding, and natural resource management such as monitoring 

land use and mapping wetlands (NOAA, 2021). 
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Moreover, remote sensing has changed the way land resources are viewed, used and 

managed (Huang, et. al., 2021) and has provided opportunities to monitor and evaluate 

vegetation condition using spectral reflectance through the use of vegetation indices (VIs). 

Numerous VIs derived from ratios of spectral reflectance's have been developed, with the 

NDVI been the most commonly used vegetation index (VI) due to its ease of use, high 

temporal cycle and global coverage. 

2.2.1 Types of remote sensors 

As mentioned above, remote sensors capture and interpret electromagnetic radiation from the 

earth’s surface and there are two main types of remote sensors classified according to the 

source of signal they use to explore objects, namely: active and passive. Active sensors 

operate with their own source of emission or light while passive sensors rely on reflected 

light (EOS, 2020; NOAA, 2021; Schoen-Phelan, 2020). 

2.2.1.1 Active sensors 

Active sensors use internal stimuli to collect data about the earth, i.e., they direct their signals 

to the object and then checks the response (EOS, 2020; NOAA, 2021; Schoen-Phelan, 2020). 

Active remote sensing techniques differ by what they transmit (light or waves) and what they 

determine, such as distance, height, atmospheric condition, e.t.c. (EOS, 2020). The advantage 

of active sensors is that they fully function at any time of the day as they do not require 

sunlight and they are relatively dependent of atmospheric scatterings (EOS, 2020).  

Examples of active sensors include: Radio detection and ranging (RADAR) which 

assists in ranging radio signals, light detection and ranging(LiDAR) which determines 

distance with light, laser altimeter which measures elevation with LiDAR and scatterometer 

which measures bounced radiation (EOS, 2020). 

2.2.1.2 Passive sensors 

Passive sensors respond to external stimuli and focus on collecting data from the thermal 

emissions that are reflected by the earth as the sun’s rays hit (Schoen-Phelan, 2020). The 
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disadvantage of passive sensors is that they depend on sunrays bounced by the target, thus, 

can only be applied with proper sunlight. Passive sensors employ multispectral or 

hyperspectral sensors that measure the acquired quantity with multiple band combinations, 

which differ by the number of channels and includes spectra such as visible, microwave, IR, 

NIR and thermal infrared (TIR) (EOS, 2020). 

Examples of passive sensors include: spectrometer which distinguish and analyze 

spectral bands, radiometer which determines the power of radiation emitted by the object in 

particular band ranges such as visible, IR and microwave, spectroradiometer which finds out 

the power of radiation in several band ranges, hyperspectral radiometer operates with the 

most accurate type of passive sensor which differentiates hundreds of ultimately narrow 

spectral bands within visible, NIR and MIR regions, imaging radiometer which scans the 

object or a surface to reproduce the image, sounder which senses the atmospheric conditions 

vertically and accelerometer that detects changes in speed per unit of time such as linear or 

rotational (EOS, 2020). 

2.2.2 Quality of remote sensing data 

The quality of remote sensing data is considered based on attributes, namely: spatial 

resolution, which determines the smallest feature that can be detected, sensor footprint, which 

determines the amount of distortion observed in the data being collected, sampling rate, 

which determines how much overlap there is between samples, dwell rate, which has an 

effect on how much time the instrument has to empty old data, spectral resolution, which 

refers to the indicator of the device’s ability to detect very fine wavelengths intervals and is 

influenced by the atmosphere as some energy can be absorbed by it and signal to noise (SIN) 

ratio which refers to a measure that compares the level of a desired signal to the level of 

background noise (Schoen-Phelan, 2020). 

2.2.3 Vegetation Indices 

Sensors have been developed to measure spectral reflectance at various wavelengths and 

have been used to monitor vegetation cover, such as vegetation indices (VIs), which have 
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allowed researchers to relate differences in reflectance to changes in canopy characteristics 

(Hatfield, et. al., 2008). Spectral VIs utilize the reflectance properties of vegetation and have 

been widely used to infer temporal and spatial variations in vegetation structure. In addition, 

the VIs allow reliable spatial and temporal inter-comparisons of terrestrial photosynthetic 

activity and canopy structural variations (Huete et. al., 2002). Most VIs combine reflectance 

in the red and near infra-red (NIR) and are generally computed for all pixels temporally and 

spatially regardless of the biome type, land cover condition and soil type, thus, representing 

true surface measurements (Rodrigues, 2014). VIs have been applied in various studies and 

have become vital tools to assess changes in ecosystem with respect to vegetation dynamics 

and have been particularly helpful in regions with limited in-situ data. The NDVI is the most 

widely used spectral VIs used to assess live green vegetation in a target (Gitelson, 2012). 

The most common method of calculating NDVI is shown in equation (2.1) (Goward 

et. al., 1991). The formula is based on the fact that chlorophyll absorbs red light while the 

mesophyll leaf structure scatters near the infrared (Stige, et. al., 2006). 

                (2.1) 

where NIR and R refer to the spectral reflectance in the near infrared and red bands 

respectively. 

Generally, NDVI values range between -1 to +1, where negative values represent 

water bodies, values close to zero represent rocks, sand or concrete surfaces and positive 

values represents vegetation such as shrubs, crops, forests etc. Greater NDVI values indicates 

vigorous vegetation greenness (Jones & Vaughan, 2010), due to light absorption by 

chlorophyll, thus, the red spectral reflectance is always lower than the NIR for green 

vegetation (Rodrigues, 2014). 

NDVI has been widely used in various studies such as forecasting forage supply 

(Alhamad et. al., 2007), drought assessment (Sruthi & Aslam, 2015; Karnieli et. al., 2010), 

analysis of vegetation cover (Sun et. al., 2015), land degradation assessment (Yengoh et. al., 

2015), vegetation monitoring (Ahmed, 2016; Anyamba & Tucker, 2005), prediction of 

African buffalo forage quality (Ryan et. al., 2012), monitoring rangelands (Ndungu et. al., 
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2019), animal ecology (Pettorelli et. al., 2011), epidemiological studies (Gascon et. al., 2016) 

and monitoring vegetation changes in ASALs (Trodd & Dougill, 1998). 

The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the 

Earth Observing System (EOS) satellites on the EOS-AM platform on June 1998 and the 

EOS-PM platform in December 2000. MODIS is a 36 channel radiometer covering 0.415 – 

14.235 μm wavelengths, with a spatial resolution from 250 m to 1 km at nadir (Running, et. 

al., 1994). MODIS is designed to provide data on terrestrial biospheric dynamics and process 

activity (Running, et. al., 1994) and are available in 3 projections: Sinusoidal, Lambert 

Azimuthal Equal-Area and Geographic, with the Sinusoidal Tile Grid used for most of the 

higher resolution MODIS land products. Global data from MODIS are organized as units that 

are 10 deg by 10 deg at the Equator, known as tiles. The tile coordinate system starts at (0, 0) 

in the upper left (UL) corner and proceeds right (horizontal) and downward (vertical) (Didan, 

et. al., 2015).  

The MODIS vegetation indices (VI) produced at 16 – day intervals provide consistent 

spatial and temporal comparisons of global vegetation conditions and can be used to monitor 

the earth’s terrestrial photosynthetic vegetation activity in support of phenologic, change 

detection and biophysical interpretations (Didan et. al., 2015). The MODIS VI algorithm 

operates on a per pixel basis and applies a filter to the data such that cloud contaminated 

pixels and extreme off-nadir sensor views are considered lower quality while a cloud free, 

nadir view pixel with no residual atmospheric contamination represents the best quality pixel, 

which are used for further compositing (Didan, et. al., 2015). Two VI: normalized difference 

vegetation index (NDVI) and enhanced vegetation index (EVI) are derived from 

atmospherically corrected reflectance in the red, near infrared and blue bands (Didan, 2015). 

The NDVI is the continuity index to the National Oceanic and Atmospheric Administration 

Advanced Very High Resolution Radiometer (NOAA AVHRR). NDVI time series record for 

historical and climate applications, while EVI minimizes canopy – soil variations and 

improves sensitivity over dense vegetation conditions (Didan, 2015). The two VIs 

complement each other in global vegetation studies and improve upon the detection of 

vegetation changes and extraction of canopy biophysical parameters (Huete, et. al., 2002). 
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MODIS NDVI data was selected in this research due to its correlation with many 

ecosystem attributes, availability of the data and coverage over the study area at 250 m spatial 

resolution and 16 days' temporal resolution. 

2.3 Time series 

A series refers to an ordered sequence of observations, thus a time series is a sequence of 

observations taken sequentially in time (Box & Jenkins, 1970), i.e., it is a set of time-ordered 

observations of a process where the intervals between the observations remain constant, for 

example, days, weeks, months and years (Cowpertwait & Metcalfe, 2009). The main feature 

of a time series is its temporal dependence, i.e., the distribution of an observation at a certain 

time point is conditional on the previous value of the series and depends on the outcome of 

those previous observations (Charlton & Caimo, 2012). Therefore, the main difference 

between time series models and traditional models is that, in time series models, lag values 

of the target variable are used as predictor variables whereas in traditional models, other 

variables are used as predictors (Charlton & Caimo, 2012). Time series forecasting is an 

important area in machine learning as it adds a time dimension in a machine learning dataset 

and uses the information in a time series to forecast future values of the series. Time series 

data is distinguished from other types of longitudinal data by the number of source of the 

observations (Jebb et. al., 2015). Time series data provides a powerful tool to learn from past 

events, monitor current conditions and prepare for future (van Leeuwen et. al., 2004; Jebb et. 

al., 2015).  

Time series analysis involves developing models that best capture an observed time 

series in order to understand underlying causes by making assumptions about the form of the 

data and decomposing the time series into constituent components (Brownlee, 2020).  The 

main aims of a time series analysis are to describe all available data and provide meaningful 

interpretation to the problem, i.e., to model the stochastic mechanisms that gives rise to an 

observed series and to forecast the future values of a series based on the history of that series 

(Cryer & Chan, 2008; Charlton & Caimo, 2012).  
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Time series analysis of remote sensing data adds a temporal dimension to the data 

which can be used to examine change, phenology and noise data (Sakamoto et. al., 2005). 

Remote sensing VIs time series data provide crucial information to track vegetation 

phenological cycle, thus, analysis of VIs time series enables the extraction of appropriate 

metrics to describe vegetation condition and dynamics to help us monitor vegetation cover 

as well as understand vegetation phenological changes (Bradley & Mustard, 2008). Using 

high temporal resolution remote sensing data such as the ones obtained through the MODIS 

sensor have been found to contain more information than high spectral or spatial resolution 

remote sensing data (Mutti et. al., 2020; Key et. al., 2001). Furthermore, consistent NDVI 

time series data are paramount in monitoring ecological resources that are being altered by 

climate and human impacts (van Leeuwen et. al., 2006). 

2.3.1. Components of time series 

The four components of time series are trend, cycle, seasonality and irregular variation, 

which are described in the sections below. 

2.3.1.1. Trend  

Trend refers to the systematic change in the level of a series, where both the direction and 

slope of a trend may remain constant or change throughout the series. The trend in the data 

is important as it shows variability in the data, thus must be taken into consideration when 

performing time series analysis, by either modeling it explicitly or removing it from 

mathematical transformations (McCleary et. al., 1980). The first approach is done when the 

trend is theoretically interesting while the second approach is done when the trend is not 

pertinent to the goals of the analysis (Jebb et. al., 2015). 

2.3.1.2. Cycle 

A cycle refers to a pattern of fluctuation that occurs across a period of time, with the patterns 

not having a fixed duration. The cycle is a non-seasonal component in time series data, and 
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may be present with a trend and/or seasonality or without any of these components (Jebb et. 

al., 2015). 

2.3.1.3. Seasonality 

The seasonality component of a time series is the repeating pattern of movement within a 

period of one year or less and is attributed to seasonal factors (Cowpertwait & Metcalfe, 

2009). Although the underlying pattern remains fixed, the magnitude of a seasonal effect may 

vary across periods and can be embedded within overarching trends (Jebb et. al., 2015). 

Seasonality is a seasonal component of time series data and is associated with calendar 

feature such as days, weeks or months. 

2.3.1.4. Irregular variation (randomness) 

The irregular component represents statistical noise and is analogous to the error terms 

included in various types of statistical models (Jebb et. al., 2015). It constitutes any remaining 

variation in a time series after the trend, cycle and seasonality components have been 

partitioned out (Jebb et.al., 2015). The irregular component is referred to as white noise when 

the component is completely random, and is vital in judging the adequacy of a time series 

model (Jebb et. al., 2015).  

2.4 Time series forecasting models 

Forecasting involves making future projections on the basis of historical and current data 

(Kalekar, 2004). Forecasting models are either deterministic or stochastic. A deterministic 

model only makes a single set of assumptions about the values of important variables to 

represent future observations. On the other hand, a stochastic model is one in which at least 

one significant variable is assumed to vary in a stochastic manner. In such models, the future 

path of these variables is treated as uncertain and they depend on the random behavior of 

these variables. Such models allow validity of the assumptions to be tested statistically and 

produce estimates not only of the expected value of the future observations but also of the 

variation about the expected value (Institute and Faculty of Actuaries, 1997; Schobel, 2012).  
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As mentioned in chapter 1, section 1.1, there are various techniques used in vegetation 

studies such as stochastic and ANN models. Stochastic models commonly applied in 

forecasting economic indices such as Holt-Winters and SARIMA models have been 

increasingly used for monitoring ecological and environmental variables (Mutti et. al., 2020).  

Fernàndez-Manso et. al., (2011) used SARIMA model to forecast short-term NDVI 

in each 10-day period using maximum value composite (MVC) bands of the NDVI obtained 

from NOAA AVHRR data and concluded that time series models could be used for 

vegetation monitoring. Alhamad et. al. (2006) applied a point based biophysical simulation 

of forage production coupled with 1 km AVHRR NDVI data to determine the feasibility of 

projecting forage conditions 84 days into the future using the Box-Jenkins model. They noted 

that vegetation revealed a bimodal growth pattern which exhibited two periodic peaks of 13 

and 26 weeks. They concluded that the ARIMA model offered a promising approach to near-

term projection of forage conditions up to 84 days. Mutti et. al., (2020) combined the use of 

SARIMA, Holt-Winters, Box-Jenkins and SARIMA with an explanatory variable 

(SARIMAX) and BJT models to model NDVI time series at six desertification hot-spots 

using MODIS MOD13A2 product at 1 km spatial resolution. They concluded that the use of 

non-pixel-wise models losses the robustness of pixel-wise models and that NDVI can be 

forecasted using its past values alone without the need of other explanatory data. Recent 

studies have applied ANN in environmental monitoring. e Silva et. al., (2020) analyzed 

changes in land cover to estimate a future scenario for 2035 using ANN for the Taperoà River 

Basin in northeastern Brazil. They applied the multi-layer perceptron (MLP) model using 

Landsat satellite images and concluded that the MLP model showed satisfactory results. 

Prediction of pixel-wise NDVI in this study was achieved using the Holt-Winters, 

SARIMA and MLP models which are explained in the sections below. 

2.4.1. Exponential smoothing 

Exponential smoothing was proposed in the 1950s (Brown, 1959; Holt, 1957; Winters, 1960). 

It originated with Robert G. Brown in 1944 while working for the US Navy as an Operations 

Research analyst by developing a tracking model for fire control information on the location 
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of submarines, which was essentially the simple exponential smoothing of continuous data 

(Gardner, 2005). Exponential smoothing is the procedure of continually revising a forecast 

in light of more recent events by assigning exponentially decreasing weights as the 

observation gets older, without the necessity of fitting a parametric model (Brown, 1959; 

Kalekar, 2004; Hyndman & Athanasopoulos, 2018; Gelper, et. al., 2010; Hyndman et. al., 

2008).  

In exponential smoothing, the trend component is in itself a combination of level (l) 

and a growth term (b), where, the level and growth can be combined in a number of ways, 

giving five future trend types, as shown in equations (2.2) to (2.6) (Hyndman et. al., 2008). 

For instance, let Th denote the forecast trend over the next h time periods, and let  denote a 

damping parameter (0 <  < 1). Then, the five trend types are shown in equations (2.2) to 

(2.6) (Hyndman et. al., 2008). 

None:                                  (2. 2) 

Additive:                           (2. 3) 

Additive damped:        (2. 4) 

Multiplicative:                          (2. 5) 

Multiplicative damped:            (2. 6) 

The damped trend method is appropriate when there is a trend in the time series but 

the growth rate at the end of the historical data is unlikely to continue more than a short time 

into the future. The damped equations dampen the trend as the length of the forecast horizon 

increases in ordered to improve the accuracy at long lead times. After choosing a trend 

component, a seasonal component is introduced which can be either additive or multiplicative 

and finally an error is included, either additively or multiplicatively. However, the nature of 

the error component is often ignored because the distinction between additive and 

multiplicative errors makes no difference to point forecasts (Hyndman et. al., 2008).  
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Table 2.1 shows a summary of different types of exponential smoothing methods. 

Cell NN describes the SES, cell AN describes the Holt-linear method, while the Holt-Winters 

additive method is given by cell AA and the Holt-Winters multiplicative method is given in 

cell AM, whereas the other cells corresponds to less commonly used methods (Hyndman et. 

al., 2008). 

Table 2.1. Types of exponential smoothing methods 

Trend component   Seasonal component  

 N (none) A (additive) M (multiplicative) 

N (none) NN NA NM 

A (additive) AN AA AM 

M (multiplicative) MN MA MM 

D (damped) DN DA DM 

The three main exponential smoothing methods are: single (simple) exponential 

smoothing (SES), double exponential smoothing and triple exponential smoothing (Holt-

Winters). The SES is applied to data which does not contain trend or seasonal components 

while the double exponential smoothing model is applied to data which has a trend 

component. On the other hand, the triple exponential smoothing method (also known as the 

Holt-Winters model) allows modeling time series’ level, trend and seasonality by the use of 

three updating equations and multi-step forecasting with a simple linear combination of these 

elements (Brito et.al., 2021). It is worth mentioning that the exponential smoothing models 

are non-stationary by definition, are able to capture the dynamics of time series and are useful 

for time series data with non-linear characteristics (Hyndman & Khandakar, 2008). 

The most commonly used exponential smoothing models are further described below. 

2.4.1.1. Single exponential smoothing (SES) model 

The single exponential smoothing (also known as simple exponential smoothing) is the 

simplest form of the exponential smoothing models, suitable for forecasting data with no 
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clear trend or seasonal pattern. In SES, forecasts are calculated using weighted averages, 

where the weights decrease exponentially as observations come from further in the past, and 

the smallest weights are associated with the oldest observations (Hyndman & 

Athanasopoulos, 2018). The SES model is expressed as shown in equation (2.7) (Nau, 2020). 

             (2. 7) 

Where α denotes a smoothing constant, L  represent the current level of the series 

estimated from the data up to the present. 

The forecast for the next period is simply the current smoothed value as shown in 

equation (2.8). 

                        (2. 8) 

2.4.1.2. Double exponential smoothing model 

There are two variations of the double exponential smoothing method, namely Brown’s 

method (one smoothing parameter linear method) and Holt’s method (two smoothing 

parameters linear method) (Muchayan, 2019).  

Brown’s double exponential smoothing, also known as Brown’s linear exponential 

smoothing (LES) uses two different smoothed series that are centered at different points in 

time (Nau, 2020). The standard form of Brown’s LES model is expressed as equation (2.9) 

(Nau, 2020). 

                   (2. 9) 

The forecast Yt+k for any k>1 is expressed as shown in equation (2.10) 

                          (2. 10) 

where 

                         (2. 11) 
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                  (2. 12) 

Where, Lt is the estimated level at period t and Tt is the estimated trend at period t 

Brown’s LES uses a single smoothing parameter which places a constraint on the data 

patterns as the level and trend are not allowed to vary at independent rates, thus, Holt’s LES 

model addresses the issue by including two smoothing parameters: α and β for the level and 

trend respectively (Nau, 2020). Holt’s LES model is computed using equations (2.13) to (2.15) 

(Nau, 2020), with the estimate of the level and trend computed as in equation (2.13) and 

(2.14) respectively, while the forecast is calculated as shown in equation (2.15). 

            (2. 13) 

           (2. 14) 

                         (2. 15) 

2.4.1.3. Triple exponential smoothing model 

The Holt-Winters method was proposed by Holt (1957) and Winters (1960) and uses 

exponentially weighted moving averages to update estimates of the seasonally adjusted mean 

(level), slope and seasonals (Cowpertwait & Metcalfe, 2009). The Holt-Winters model is 

applied on time series data which exhibit patterns of increasing or decreasing trend with the 

presence of seasonality (Aryee, et. al., 2019; Chatfield, 1978). The model has low 

dependence on historical data and considers all previous values while giving weight to the 

most recent values. Moreover, the model requires low data storage, is simple and easy to 

automate as well as implement and provides better forecasting results compared to other time 

series models such as ARIMA. 

The Holt-Winters model is defined using three smoothing parameters: α, β and γ 

which are associated with the level, trend and seasonal components respectively. Two 

variations exist for the Holt-Winters model: the additive and multiplicative models. In the 

additive case, the time series shows steady seasonal fluctuations regardless of the overall 
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level of the series while in the multiplicative case, the size of the seasonal fluctuations vary 

depending on the overall level of the series (Kalekar, 2004; Aryee, et. al., 2019).  

The Holt-Winters model with additive seasonals is computed as shown in equations 

(2.16) to (2.19). The forecasting equation for xn+k made after the observation at time n is 

shown in equation (2.19) (Cowpertwait & Metcalfe, 2009).  

        (2. 16) 

             (2. 17) 

              (2. 18) 

       (2. 19) 

where: at, bt and st are the estimated level, trend and seasonal effect respectively 

at time t, p is the period, and α, β and γ are the smoothing parameters for the level, trend 

and seasonal components respectively. 

The Holt-Winters model with multiplicative seasonal variation is derived as 

shown in Equations (2.20) to equation (2.23) (Cowpertwait & Metcalfe, 2009). 

             (2. 20) 

           (2. 21) 

                (2. 22) 

      (2. 23) 

2.4.2. Artificial neural networks (ANN) 

Artificial neural networks are supervised learning non -linear models based on the operation 

of biological neurons (Ornella, et. al., 2020; Abraham, 2005; Mishra & Desai, 2006). They 

are viable computational models comprised of densely interconnected adaptive processing 
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units (Hassoun, 1995; Balkin & Ord, 2000) with a wide application in pattern classification, 

speech synthesis and recognition, adaptive interfaces between humans and complex physical 

systems, forecasting and prediction, image data compression, etc. (Hassoun, 1995; Graupe, 

2013). ANN learn based on a black box process and their performance is affected by input 

adequacy, network architecture and model validation (Fung, et. al., 2020). 

The basic processing elements of neural networks are artificial neurons or nodes, 

where, each node performs simple computations and each conveys a signal from one node to 

another, labeled by a weight indicating the extent to which a signal is amplified or diminished 

by a connection (Mehrothra, et. al., 1997). Figure 2.1 shows a typical artificial neuron, where 

the signal flow from inputs x1, ....... xn is considered unidirectional (marked by arrows) as 

well as the output signal flow (O) (Abraham, 2005). 

 

 

 

 

 

Figure 2. 1. An artificial neuron 

The neuron output signal (O) is expressed using the relationship indicated in equation 

(2.24) (Abraham, 2005). 

                (2. 24) 

Where, wj  is the weight vector, and the function f(net) is the activation (transfer) 

function. The variable net is defined as a scalar product of the weight and input vectors as 

illustrated in equation (2.25) 

             (2. 25) 

where T is the transpose of a matrix. 

θ  f x2 w2 

x3 

Output (O) x1 
w1 

w3 
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The output value O may also be computed by equation (2.26). 

        (2. 26) 

Where θ is the threshold level. 

2.4.2.1. Neural networks optimizers 

Neural networks are difficult and slow to train, thus, optimization methods are used to reduce 

this difficulty (Riedmiller & Braun, 1992; Kingma & Ba, 2015). There are various optimizers 

used in neural networks such as Stochastic gradient descent (SGD), Adaptive momentum 

estimation (Adam), Adamax, Nesterov-accelerated adaptive moment estimation (Nadam) etc. 

Gradient descent is a simple, robust optimization algorithm that follows the negative gradient 

of an objective function in order to locate the minimum function (Brownlee, 2021). Adam 

proposed by Kingma & Ba (2015), is a commonly used optimizer which implements 

heuristics to estimate the mean and variance of the gradient and are used to generate more 

stable updates during training (Bello et. al., 2017), while Adamax is a variant of Adam based 

on the infinity norm (Kingma & Ba 2015). On the other hand, Nadam (Dozat, 2016) is an 

extension of the Adam algorithm that incorporates Nesterov momentum and can result in 

better performance of the optimization algorithm (Brownlee, 2021). 

2.4.2.2. Back propagation 

An ANN is usually learned by adjusting the weights and biases in order to minimize a cost 

function using the error back propagation algorithm (Ornella et. al., 2020). Back propagation 

is the popular method for training multi-layer perceptron (MLP) with the term popularized 

through the publication of the book ‘Parallel Distributed Processing’ by Rumelhart et. al., 

(1986). The algorithm represented a landmark in neural networks in that it provided a 

computationally efficient method for the training of MLP with the training process 

proceeding in two phases (Haykin, 2009): 

1. In the forward phase, the synaptic weights of the network are fixed and the input 

signal is propagated through the network, layer by layer until it reaches the output, 
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thus, changes are confined to the activation potentials and outputs of the neurons in 

the networks. 

2. In the backward phase, an error signal is produced by comparing the output of the 

network with a desired response and the resulting error signal is propagated through 

the network, layer by layer, however, the propagation is performed in the backward 

direction. In this phase, successive adjustments are made to the synaptic weights of 

the networks while the calculation of the adjustments for the output layer is 

straightforward.  

Further details on back propagation algorithm can be found in Rumelhart et. al., 

(1986) and Bishop (1995). 

2.4.2.3. The ANN architecture 

The ANN architecture consists of four elements, namely, the number of layers, the number 

of neurons in each layer, the activation function of each layer and the training algorithm 

(Benardos & Vosniakos, 2007). The number of layer consists of three types of neuron layers, 

namely, the input, hidden and the output layers, while the number of neurons in each layer is 

specified by the number of input and output parameters that are used to model each problem. 

The activation functions are chosen based on the type of data such as binary, decimal, etc., 

and the type of layer. On the other hand, the training algorithm influences the training speed 

and performance of the ANN rather than the architecture itself (Benardos & Vosniakos, 

2007). 

2.4.2.4. Activation functions (AFs) 

Activation functions (also known as transfer functions) defines the output of a neuron in 

terms of the linear combination of inputs (Mas & Flores, 2008). The activation function is 

used to limit the amplitude of the output of a neuron and is denoted as φ, which defines the 

output of a neuron in terms of the induced local field v (Haykin, 2009). There are different 

types of activation function including: rectified linear activation (ReLU), logistic (sigmond), 

threshold function, hyperbolic tangent (TanH) etc. Details of other types of AFs can be found 
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in Nwankpa et. al., (2018). 

2.4.2.4.1. The sigmoid function (logistic function) 

The sigmoid function (logistic function) is the most commonly used function (Mas & Flores, 

2008), where the input to the function is transformed into a value between 0.0 and 1.0, with 

inputs larger than 1.0 transformed to the value 1.0 and values smaller than 0.0 snapped to 0.0 

(Brownlee, 2019). The sigmoid function is defined as a strictly increasing function that 

exhibits a graceful balance between linear and nonlinear behavior with the shape of the 

function for all possible inputs as an S-shape (Haykin, 2009). The sigmoid function is defined 

as shown in equation (2.27) (Mas & Flores, 2008). 

                            (2. 27)  

where a > 0 is the slope parameter, the larger the value of a, the steeper the curve is. 

2.4.2.4.2. The hyperbolic tangent function (TanH) 

The hyperbolic tangent function (TanH) refers to the ratio between the hyperbolic sine and 

the cosine functions, with the range between -1 and +1 (Karlik & Olgac, 2010). The TanH 

function is preferred over the sigmoid function as models that used TanH are easier to train 

and often have better predictive performance (Brownlee, 2019). The TanH is denoted as 

shown in equation (2.28), where x is the input value, if x is negative, then a value 0.0 is 

returned, otherwise the value is returned. 

                   (2. 28) 

2.4.2.4.3. The rectified linear activation (ReLU) 

The rectified linear activation (ReLU) function is the identity for positive arguments and zero 

otherwise (Clevert et. al., 2016) and is currently the most popular activation function for 

neural networks which was first proposed for restricted Boltzmann machines (Nair & Hinton, 

2010) and later for neural networks (Glorot et. al., 2011). The ReLU is a simple calculation 

that returns the value provided as input directly or the value 0.0 if the input is 0.0 or less 
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(Brownlee, 2019) and is expressed as shown in equation (2.29). 

                   (2. 29)  

2.4.2.5. Epoch 

The number of epochs is a hyperparameter that defines the number of times that the learning 

algorithm will work through the entire training dataset and can be set to an integer value 

between one and infinity (Brownlee, 2018). 

2.4.2.6. Types of ANN architectures 

The basic ANN architectures are divided into feed-forward networks and recurrent networks. 

In feed-forward networks, the signal flow from the input to the output units, that is 

unidirectional in a feed-forward direction. The data processing may have a single layer 

(single layer neural network) or multiple layers (multi-layer neural network) with no feed-

back connections. In the feed-forward networks, the transfer functions of the neurons do not 

affect the feed-forward behavior (Priddy & Keller, 2005). The advantage of feed-forward 

ANN is that they do not require a user specified problem solving algorithm but instead ‘learn’ 

from examples and possess an inherent generalization ability (Benardos & Vosniakos, 2007). 

The critical elements in a feed-forward neural network are the number of hidden layers and 

hidden neurons which affects the generalization ability of the neural network model 

(Benardos & Vosniakos, 2007). On the other hand, the recurrent networks contain feedback 

connections and may also be a single or multi-layered network. Recurrent networks are 

applied in nonlinear time series prediction, system identification and temporal pattern 

classification (Abraham, 2005).  

2.4.2.7. ANN forecasting models 

The advantages of ANN forecasting models are that they do not assume the underlining 

distribution for the data and they can extract the complex non-linear relationships in time 

series data. ANN forecasting models are categorized into two broad groups, namely: 
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1. Recursive multistep neural network (RMSNN) which is similar to ARIMA models in 

forecasting approach and has a single output node. A RMSNN model forecast one 

time step ahead and the network is applied recursively using previous predictions as 

inputs for subsequent forecasts (Mishra & Desai, 2006; Mishra et. al., 2007; Ornella, 

et. al., 2020). 

2. Direct multistep neural network (DMSNN) is a type of network which has a single or 

multiple neurons in both the input and hidden layers and have several neurons in the 

output layer representing multiple month lead time forecasts (Mishra & Desai, 2006; 

Mishra et. al., 2007; Ornella et. al., 2020). 

Both the RMSNN and DMSNN models use present index values and several 

months of past index values as inputs. Figure 2.2 shows the architectures of the RMSNN 

and the DMSNN (Ornella et. al., 2020). 

 

 

 

 

 

 

 

(a) RMSNN                         (b) DMSNN 

Figure 2. 2. Architectures of forecasting ANN models: (a) Recursive multistep neural 

network and (b) Direct multistep neural network 

The multi-layer feed-forward neural network (MLP) using the direct multistep 

approach was used in this study which is explained in the section that follows. 
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2.4.2.8. Multilayer perceptron (MLP) model 

A multilayer perceptron (MLP) is a feed-forward neural network and the most commonly 

used ANN which consists of a set of input units (input layer), one or more sets of computation 

nodes (the hidden layer) and one set of output nodes (the output layer) (Mas & Flores, 2008; 

Hamid et. al., 2011). Figure 2.3 shows the architectural graph of a MLP model with one 

hidden layer. MLP uses self-learning mechanisms by samples in the prediction of natural 

phenomena using environmental variables as the inputs of the network. The modeling starts 

with learning by samples and the transfer functions between the neurons are determined to 

achieve the most accurate weight of neurons (Jahani et. al., 2016). Each neuron receives the 

value of the weighted input variables periodically from other neurons and sends the new 

value to other processors, in addition, using a learning algorithm, the weights of neurons are 

adjusted continuously in the hidden layers to minimize the differences between target and 

network output values (Jahani et. al., 2020). 

In a three-layer feedforward neural network, the input layer receives the data vector 

x, while the output layer gives the output vector, y. An activation function is applied to 

activate the neurons in the hidden layer, which can be expressed as shown in equation (2.30) 

(Ornella et. al., 2020). 

               (2. 30) 

 

Input layer        Hidden layer      Output layer 

 

 

 

 

Figure 2. 3. Architectural graph of MLP with one hidden layer 
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2.4.3. The family of autoregressive moving average (ARMA) models 

The family of ARMA models are flexible and among the most commonly used methods used 

to describe stationary time series. The models consist of the autoregressive (AR) part which 

describes how consecutive observations in time influence each other while the moving 

average (MA) parts capture possible unobserved shocks by allowing modeling of different 

phenomena observed in various fields (Guerrier et.al., 2019). The most commonly used 

family of ARMA models are explained in the sections that follows. 

2.4.3.1. Autoregressive (AR) model 

The AR model were first introduced by Yule (1926) and are a form of regression that links 

the observations of a particular moment with the values of previous observations at a specific 

time interval, with the term autoregressive indicating that it is a regression of a variable 

against itself (Ahmar & del Val, 2020; Hyndman & Athanasopoulos, 2018; 

NIST/SEMATECH, 2012). In an AR model, the forecast is done using a linear combination 

of past values of the variable. The AR model of order p can be written as in equation (2.31) 

(NIST/SEMATECH, 2012). 

      (2. 31) 

Where Xt is the time series, μ is the process mean, At is the white noise and  are the 

autoregressive parameters to be estimated, p is the order of the AR model and  

                           (2. 32) 

2.4.3.2. Moving average (MA) model 

The MA model was presented by Slutsky (1937), and uses the past forecast errors in a 

regression-like model, i.e., MA is a linear regression of the current value of the series against 

the white noise or random shocks of one or more prior values of the series 

(NIST/SEMATECH, 2012; Hyndman & Athanasopoulos, 2018). The MA model is 

expressed as shown in equation (2.33) (NIST/SEMATECH, 2012). 
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       (2. 33) 

where: Xt is the time series, μ is the mean of the series, At-i are white noise terms and 

θ1, ...., θq are the parameters of the model. The value of q is called the order of the MA model. 

2.4.3.3. Autoregressive moving average (ARMA) model 

Wold (1938) combined both the AR and MA models and showed that ARMA processes can 

be used to model all stationary time series as long as the appropriate order of p, the number 

of AR terms and q, the number of MA terms was appropriately specified (Makridakis & 

Hibon, 1998). The ARMA model was popularized by Box and Jenkins (1970) (thus, came to 

be known as the Box-Jenkins model) as tools for modelling and forecasting stochastic 

processes by developing a systematic methodology for identifying and estimating models 

that could incorporate AR and MA models (NIST/SEMATECH, 2012; Makridakis & Hibon, 

1998). The ARMA model is expressed as in (2.34) (NIST/SEMATECH, 2012). 

                              (2. 34) 

Where the terms in the equation (2.34) have the same meaning as in the AR and MA 

models. 

The Box-Jenkins model use the backshift operator B, which has the effect of changing 

time period t, to time period t – 1. Thus, BXt = Xt – 1 and B2 Xt = Xt – 2 (NCSS Statistical 

Software, 2021; Hyndman & Athanasopoulos, 2018). Hence, using the backshift operator, 

the ARMA model may be rewritten as shown in equation (2.35), which maybe abbreviated 

as shown in equation (2.36). 

    (2. 35) 

                                 (2. 36) 

Where:  
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                       (2. 37)  

and 

                        (2. 38) 

2.4.3.3.1. Stages in building a Box-Jenkins time series model 

There are three development stages for a Box-Jenkins model, namely: identification, 

estimation and diagnostic checking. It is important to decide which family of models is to be 

fitted to the time series before starting the development stages to build the model. In the 

identification stage, the most suitable models to fit to the data can be selected by examining 

various types of graphs. Secondly, efficient estimates of the model parameters can be 

obtained during the estimation stage, by employing the method of maximum likelihood. 

Finally, the fitted models can be checked for any possible inadequacies during the diagnostic 

checking stage. In case the validation test reveals serious model anomalies for the fitted 

model which appears to be the most appropriate, then the necessary model modifications can 

be made by repeating the aforementioned three stages of model development (Hidel & 

McLeod, 1994). Figure 2.4 (Hidel & McLeod, 1994) shows the summary of the development 

stages of the Box-Jenkins model, and the stages are further explained in the sections that 

follows. Further details on the development stages can be found in Hidel & McLeod (1994). 

2.4.3.3.1.1. Identification stage 

The purpose of the identification stage is to determine if the series is stationary and if there 

is any significant seasonality that needs to be modeled. Stationarity can be assessed from a 

run sequence plot which should show constant location and scale and can also be detected 

using an autocorrelation plot. Non stationarity is often indicated by an autocorrelation plot 

with very slow decay. On the other hand, seasonality can be assessed from an autocorrelation 

plot, seasonal sub-series plot or a spectral plot.   (NIST/SEMATECH, 2012; Hidel & McLeod, 

1994). The autocorrelation plots are used to check the randomness in the time series data, 

while the seasonal sub-series plots detect the seasonality and is only useful if the period of 
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the seasonality is already known. On the other hand, the spectral plots are used to examine 

the cyclic structure in the frequency domain (NIST/SEMATECH, 2012; Hidel & McLeod, 

1994). 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 Figure 2. 4. Stages in the development of the Box-Jenkins model 

In order to achieve stationarity, Box and Jenkins recommend the differencing 

approach. As aforementioned, the purpose of the identification stage is to detect seasonality 

and if it exists, to identify the order for the seasonal AR and seasonal MA parameters. It is 

advisable to apply a seasonal difference to the data and regenerate the autocorrelation and 

partial autocorrelation plots which may help in the model identification of the non-seasonal 

component of the model. 
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autocorrelation plots. For an AR (1) process, the sample autocorrelation function (ACF) 

should have an exponentially decreasing appearance, although a mixture of exponentially 

decreasing and damped sinusoidal components may be observed for higher order AR process 

(NIST/SEMATECH, 2012). In the case of higher order AR processes, the sample 

autocorrelation plot should be supplemented with a partial autocorrelation plot, where, the 

partial autocorrelation of an AR (p) process becomes zero at lag p + 1 and greater. This is 

achieved by placing a 95% confidence interval on the sample partial autocorrelation plot and 

may be plotted using software or approximated using  , with N denoting the sample 

size (NIST/SEMATECH, 2012). 

On the other hand, the autocorrelation function of a MA (q) process becomes zero at 

lag q + 1 and greater and can be examined using 95% confidence interval for the sample ACF 

on the sample autocorrelation plot (NIST/SEMATECH, 2012).  

A mixed model approach is used when the ACF and partial autocorrelation function 

(PACF) does not work. For instance, in ARIMA (p, d, q) model, the ACF will be a mixture 

of exponential decay and damped sine waves after the first q - p lags, while the PACF will 

have the same pattern after p – q lags. Studying the first few correlations of each plots will 

assist to obtain the p and q terms. However, directly identifying the p and q terms using this 

method is difficult, thus a trial and error approach is used. To overcome this problem, recent 

methods such as final prediction error (FPE) and Akaike information criterion (AIC) are used 

to automate the model identification process and can be implemented using statistical 

software. Table 2.2 shows a summary of model identification using the sample ACF 

(NIST/SEMATECH, 2012). 

2.4.3.3.1.2. Estimation stage 

Estimation of the parameters for the Box-Jenkins model can be achieved using software that 

fits Box-Jenkins models. Various approaches such as non-linear least squares and maximum 

likelihood estimation (MLE) methods are used (NIST/SEMATECH, 2012). The maximum 

likelihood equation is solved using a nonlinear function maximization, while backcasting is 
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used to obtain estimates of the initial residuals. The estimation process is further explained 

in Box & Jenkins (1970).  

2.4.3.3.1.1. Diagnostic checking 

The final step after fitting the model is diagnostic checking, which is carried out by studying 

the autocorrelation plots of the residuals to check if large correlation values can be found. If 

the autocorrelation and partial autocorrelation are small, the model is considered adequate 

and forecasts are generated, however, if autocorrelations are large, the values of p and q are 

adjusted and the model is re-estimated (NCSS Statistical Software, 2021; Hidel & McLeod, 

1994). 

Table 2.2. Summary of model identification using the sample ACF. 

Shape  Indicated model 

 Exponential, decaying to zero   Autoregressive model.  

Use the partial autocorrelation plot to identify the 

order of the autoregressive model.  

Alternating positive and 

negative, decaying to zero 

 Autoregressive model.  

Use the partial autocorrelation plot to help identify the 

order.  

One or more spikes, rest  

are essentially zero  

 Moving average model, order identified by where 

plot becomes zero.  

 Decay, starting after a few lags   Mixed autoregressive and moving average model.  

 All zero or close to zero   Data is essentially random.  

 High values at fixed intervals   Include seasonal autoregressive term.  

 No decay to zero   Series is not stationary.  
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2.4.3.4. Autoregressive integrate moving average (ARIMA) model 

The ARMA model can be extended to non-stationary series by allowing the differencing of 

the data series, resulting in autoregressive integrate moving average (ARIMA) models, which 

allows each variable to be stated by its own lagged values and stochastic error terms (Durdu, 

2010). In ARIMA model, the past observations are analyzed to formulate a model describing 

the inner correlation among them and the time series is extrapolated into the future according 

to the model (Han, et. al., 2010). ARIMA model is denoted as ARIMA (p, d, q) and can be 

written as shown in equation (2.39). 

               (2. 39) 

Where 

        (2. 40) 

       (2. 41) 

where, Xt is the observed series, θ1 and φ1 are model parameters, p and q are orders 

of the model. B is the backward shift operator (BkXt = Xt – k). Random errors at are assumed 

to be independently and identically distributed with a mean of zero and a constant variance 

of σ2 (white noise), d describes differencing operation to data series to make the data series 

stationary and d is the number of differencing. 

2.4.3.5. Seasonal autoregressive moving average (SARIMA) model 

The seasonal ARIMA (SARIMA) includes both the non-seasonal factors of the ARIMA 

model and seasonal factors in a multiplicative model, i.e., it uses differencing at a lag equal 

to the number of season (s) to remove additive seasonal effects (Hyndman & Athanasopoulos, 

2018). The model is useful for modeling seasonal time series in which the mean and other 

statistics for a given season are not stationary across the years (Hipel & McLeod, 1994), i.e., 

when the time series data exhibits seasonality-periodic fluctuations that recur with 

approximately the same intensity each year. Thus, SARIMA model is suitable for forecasting 
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vegetation condition using monthly NDVI data since the NDVI values are subject to seasonal 

variations, with high NDVI values after a rainy season and low NDVI values in the dry season. 

In addition, the SARIMA model has relatively few parameters required to describe the time 

series and is popular due to its ease in implementation using statistical softwares, although, 

it is slower and requires more computational time compared to the exponential smoothing 

methods. Moreover, the model can only extract linear relationships in time series data and is 

not suitable for describing time series having stationarity of second order moments within 

each season across the years (Hipel & McLeod, 1994). 

SARIMA model can grasp the historical information by: 

1. Seasonal and regular differences in order to achieve stationarity. 

2. Autoregressive (AR) which takes into account the past values. 

3. Moving average (MA) which takes into account the current and previous residual 

series. 

Hyperparameters are required to configure a SARIMA model for the trend and 

seasonal components of the time series. The trend component requires three parameters 

which are the same as the ARIMA model, that is: p: trend autoregression order, d: trend 

difference order and q: trend moving average order. The seasonal component requires four 

parameters that are not part of the ARIMA and includes the following elements: P: seasonal 

autoregressive order, D: seasonal difference order, Q: seasonal moving average order and s: 

the number of time steps for a seasonal period i.e., the number of observations per year 

(seasonality). The seasonality parameter influences the other parameters in the seasonal 

component (P, D and Q). 

Thus, a SARIMA model is denoted as: SARIMA (p, d, q)  (P, D, Q) s, where: (p, d, 

q) is the non-seasonal part of the model and (P, D, Q) is the seasonal part of the model. The 

subscript s refers to the number of seasons per year. As mentioned above, the SARIMA (p, 

d, q)  (P, D, Q) s model is referred to as a multiplicative model, because the non-seasonal 

and seasonal AR operators are multiplied together on the left hand side of the notation while 

the two MA operators are multiplied together on the right hand side. Moreover, the non-

seasonal and seasonal differencing terms are multiplied together with the AR (Hipel & 
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McLeod, 1994). 

If the data is stationary, non-seasonal or seasonal differencing is not required. A 

stationary SARIMA model is indicated as (p, 0, q)  (P, 0, Q) s and such a model is 

sometimes known as seasonal autoregressive moving average (SARMA) model, which may 

be denoted as: (p, q)  (P, Q) s. For a SARIMA model which contains moving average (MA) 

parameters only, then the model is denoted as (0, d, q)  (0, D, Q) s, whereas if a model 

contains no MA parameters, then the SARIMA model is expressed as (p, d, 0)  (P, D, 0) s. 

In the case of a stationary non-seasonal model, the SARIMA model is written as ARMA (p, 

q) instead of SARMA (p, q)  (0, 0)1. Similarly, a non-stationary non-seasonal ARIMA 

model is denoted as ARIMA (p, d, q) rather than SARIMA (p, d, q)  (0, 0, 0)1 (Hipel & 

McLeod, 1994). 

Using the back shift operator, the SARIMA model can be expressed as shown in 

equation (2.42). 

        (2. 42) 

where: ΘP, θp, q are polynomials of orders P, p, and q respectively.  

2.4.3.5.1. Stages in constructing a SARIMA model 

Similarly, to the Box-Jenkins model, the SARIMA model can be fitted to a given seasonal 

time series data using the identification, estimation and diagnostic checking as explained in 

section 2.4.3.3.1 and summarized in Figure 2.5. It is advisable to use at least seven years of 

seasonal data and at least 50 data points for a SARIMA model in order to get reasonable 

MLE for the model parameters (Hidel & McLeod, 1994). Table 2.3 shows a summary for the 

behavior of identification functions for SARIMA models (Hidel & McLeod, 1994). In 

addition to the ACF and PACF techniques, inverse autocorrelation function (IACF) and 

inverse partial autocorrelation function methods are used which are explained in details in 

Hipel & McLeod (1994). 
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Table 2.3. Summary for the behaviour of identification functions for SARIMA models 

Function  Types of models  

 Pure AR 

(p, d, 0)  (P, D, 0)s 

Pure MA  

(0, d, q)   (0, D, Q)s 

Mixed 

(p, d, q)  (P, D, Q)s 

ACF Attenuates Truncates  

after lag q + sQ 

Attenuates 

PACF Truncates  

after lag p + sP 

Attenuates Attenuates 

IACF Truncates  

after lag p + sP 

Attenuates Attenuates 

IPACF Attenuates Truncates  

after lag q + sQ 

Attenuates 
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Figure 2. 5. Flowchart showing summary of the stages in the construction of a SARIMA 
model 
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CHAPTER THREE 

MATERIALS AND METHODOLOGY 

This chapter presents the study area, its location in east Africa and its characteristics. The 

following sections describe the data used, computational resources (virtual machine and 

supercomputer), method for determining models hyperparameters, implementation of the 

forecasting models and models validation metrics. 

3.1 Study area 

The area of interest in this research mainly focused on a section of the Middle Tana River 

Basin (MTRB) in Kenya (representing a low vegetation region) and sections of western and 

central Uganda and Ituri province in the Democratic Republic of Congo (DRC) (representing 

a high vegetation region) as shown in Figure 3.1 and Figure 3.2. Figure 3.1 shows the location 

of the study area while Figure 3.2 shows the satellite map showing the difference in 

vegetation cover between the two regions. Both regions have an area of 22, 500 km2 

equivalent to 600  600 pixels. The regions receive bimodal rainfall seasons, occurring 

between March to May and October to December (Townshend & Justice, 1986; Chapman & 

Chapman, 2004). Table 3.1 shows the characteristics of the study area. 

The low vegetation region is part of the Tana River Basin in Kenya which covers 

22% of the country’s total land mass (an area of 126, 000 km2) and is home to 18% of the 

country’s population (Beukering et. al., 2015; Agwata, 2005). The Basin has a rich and 

diverse ecosystem including montane, grasslands, mangroves, wetlands, coastal forests and 

cropland (Beukering et. al., 2015; Wetlands International Kenya, 2015). The MTRB is 

characterized as an arid and semiarid land (ASAL) and lies at coordinates 0º to 2º south and 

38º to 40º east (Figure 3.1 (a)). Sections of Kitui, Garissa and Tana River counties in Kenya, 

form the MTRB region used in this study. The region receives an annual mean rainfall below 

800 mm and annual average temperature between 30 ºC to 33 ºC (Baker et. al., 2015; 

Kipchirchir, 2014). The region is extensively used for livestock, agriculture, tree harvesting 
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and uncontrolled sand mining leading to removal of trees without regeneration (Knoop et. al., 

2012). 

The high vegetation region has a tropical climate and lies at coordinates 0º to 2º north 

and 30º to 32º east (Figure 3.1 (a)). The region receives an annual average rainfall of 1500 

mm and an average temperature ranging between 16 ºC to 25 ºC (Byrnes, 1992).  The main 

economic activity in Western and Central Uganda is agriculture, which is practiced for food 

availability and a means for cash generation (Wichern et. al., 2017). Similarly, the main 

economic activity in Ituri is agriculture (both for staple and for cash crop production), as well 

as livestock production, mining and charcoal (Douma, et. al., 2009). 

Table 3. 1. Characteristics of the study area 

Region Elevation Type of vegetation 

Kitui 400 m to 1800 m  a. s. l Scrublands, wooded bushlands 

Garissa 20 m to 400 m a. s. l Shrub savannah and woody trees 

Tana River 0 m to 200 m a. s. l Scrubland, thorny thickets, shrubs, grasses 

Central Uganda 1200 m  to 1500 m a. s. l Wooded savannah 

Western Uganda 1200 m to 1500 m a. s. l Long grass and forest 

Ituri province 1200 m to 1500 m a. s. l Tropical forest, savannah, giant evergreen trees, 

thick woody vines, short trees, bushes and ferns 

(Source: Verdcourt et. al., 1975; Malonza et. al., 2006; Bélair et. al., 2010; Bernard, 1998; 

County Government of Tana River, 2018; Obua et. al., 2010) 

Figure 3.1 shows the map of the study area. The lower right map shows the low 

vegetation region located in the Middle Tana River Basin (comprising sections of Garissa, 

Kitui and Tana River counties) in Kenya. The lower left hand map shows the high vegetation 

region located in sections of Ituri Province in Democratic Republic of Congo, western and 

central Uganda. The inset map on top shows the east Africa map and the MODIS tiles used 
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in this research. The MODIS h21v08 tile was used to extract pixels for the high vegetation 

region while the h21v09 tile was used to extract pixels for the low vegetation region. 

 

Figure 3.1. Map of the low vegetation region (Middle Tana River Basin) and high 

vegetation region (Western and Central Uganda and Ituri Province in DRC) (Source: 

Author). 

Figure 3.2 shows the satellite map of the study area. The inset map on the top shows the 

location of the study area in Kenya (Garissa, Kitui and Tana River counties), Uganda 

(western and central regions) Democratic Republic of Congo (Ituri Province). The lower right 

map shows the low vegetation region, while the lower left map shows the high vegetation 

region. 
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Figure 3.2. Satellite map of the low vegetation region (Middle Tana River Basin) and high 

vegetation region (Western and Central Uganda and Ituri Province in DRC) (Source: 

Author; Satellite map source: Google). 

3.2 The normalized difference vegetation index data 

The MODIS/Terra VI (MOD13Q1 v006 product) with 250 m spatial resolution and 16 – days 

composite was obtained from the Land Processes Distributed Active Archive Center (LP 

DAAC) using the Earthdata Search tool (Earthdata Search, 2019). The MOD13Q1 product 

contains 12 scientific datasets (SDSs) namely: 250 m 16 days NDVI, 250 m 16 days EVI, 

250 m 16 days VI Quality, 250 m 16 days red reflectance, 250 m 16 days NIR reflectance, 

250 m 16 days blue reflectance, 250 m 16 days MIR reflectance, 250 m 16 days view zenith 

angle, 250 m 16 days sun zenith angle, 250 m 16 days relative azimuth angle, 250 m 16 days 

composite days of the year and 250 m 16 days pixel reliability (Didan, 2015).  

In this research, the first layer (250 m 16 days NDVI) was extracted to monitor 
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vegetation condition in the study area. For each region, 452 images covering a period of 

approximately 19 years, from February 2000 to September 2019 was used. The images were 

extracted from sections in the h21v09 and h21v08 tiles to represent the low and high 

vegetation regions respectively (Figure 3.1). As mentioned before, the top right corner of the 

h21v09 tile was used to extract pixel-wise NDVI data for the low vegetation region while the 

bottom left corner of the h21v08 tile was used to extract pixel-wise NDVI data for the high 

vegetation region. To cover the study area in the low and high vegetation regions, 600  600 

pixels was extracted in both tiles (h21v08 and h21v09). 

Due to the large number of pixels (600  600 = 360, 000 pixels) covering the study 

area, it was challenging to perform the temporal analysis of NDVI using all the pixels in the 

two regions as plotting the 600  600 pixels would have resulted in 360, 000 graphs (1 graph 

for each pixel), which would have made it cumbersome to perform NDVI time series analysis 

as well as to study the temporal pattern. Moreover, using the entire 600  600 pixels to 

perform a grid search for the models’ hyperparameters and to develop the models would have 

required higher computational power, costly and time consuming. Thus, to address these 

challenges, 1  1 pixel (subset data) was extracted from each tile in both regions and was 

used to analyze the temporal pattern of the NDVI time series data. The first pixel in the top 

right corner of the h21v09 tile and the first pixel from the bottom left corner of the h21v08 

tile were extracted to perform the time series analysis. In addition, the subset data was also 

used to grid search the models’ hyperparameters and develop the models, since pixel-wise 

modeling requires high computational power and are costly. Hence, it is recommended to use 

a subset of the data to develop the models and then use the developed models to the entire 

dataset. and used to train and test the models developed using the subset data. After 

developing the models using the subset data, the models were trained and tested using the 

entire data (600  600 pixels) to cover the entire study area. 

The retrieved images were in the hierarchical data format (HDF), sinusoidal tile grid 

projection and the file names contained the Julian date of acquisition, which was useful when 

creating the NDVI time series. Jupyter notebook was used in order to integrate coding, 
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monitor the computational output and visual the plots from the NDVI time series data. The 

notebook was useful to extract the 1  1 pixel, perform temporal analysis, grid search models’ 

hyperparameters and to develop the models. However, extracting the 600  600 pixels, 

training and testing the models for the entire study area was performed on the Linux 

command line (also known as terminal/shell/console) on the Oracle’s VM and supercomputer. 

This was because, the saving and loading of the data back into the memory using Jupyter 

notebook would have been slower and time consuming when performed using a laptop. 

The first step was to load the libraries needed to perform the NDVI time series 

analysis. The GDAL library was used to enable working with the HDF files, while the numpy 

package was used to work with arrays. Pandas (McKinney, 2010) library was used to create 

the dataframe and save the data into CSV file. The calendar module was used to convert the 

Julian dates to Gregorian dates. Due to high computational power of pixel-wise modeling, 

parallel computing was implemented, which was achieved using concurrent.futures module. 

After loading the libraries, the date format was converted from Julian to Gregorian 

calendar as the Gregorian calendar is the most widely used and accurate calendar. The next 

step was to extract the pixel(s) using GDAL library in order to open the HDF files, examine 

and list the subdatasets (SDSs) in the MODIS MOD13Q1 data, and then load the NDVI 

subdataset. The pixel-wise NDVI data was then converted into a 2D numeric array. The final 

step was to save the pixel-wise NDVI dataframe into CSV file since the HDF files have 

slower loading speed compared to CSV files. In addition, CSV doesn't require additional 

memory to save or load data. The CSV file contained 452 rows representing all the NDVI 

images extracted during the study period (February 2000 – September 2019). The 1  1 pixel 

CSV file contained 2 columns, with the first column representing the date and the second 

column representing the NDVI value. Whereas, the 600  600 pixels CSV file contained 

360, 001 columns, with the first column representing the date and the rest of the columns 

representing the NDVI values for each pixel. The valid range for the NDVI extracted from 

the MOD13Q1 product was -2000 to 10000, however, traditionally NDVI values range 

between -1 to +1, thus, a scale factor of 0.0001 (Didan, 2015) was applied to rescale the 

extracted pixel-wise NDVI data between -1 and +1. The mean of all 16 – days composite 
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pixel-wise NDVI in every month was calculated to provide monthly mean pixel-wise NDVI 

data. After resampling using the mean, the final CSV file contained 236 rows, 2 columns for 

1  1 pixels and 360, 000 columns for the 600  600 pixels.  

All scripts used in data extraction, grid search and model development as well as the 

time series analysis were written in Python programming language (Van Rossum & Drake, 

2009) and the OS used was Ubuntu 16. 04. 

3.3 Virtual machine 

Pixel-wise modelling requires huge computational efforts (Mutti et. al., 2020) thus, a virtual 

machine (VM) from Oracle Cloud Infrastructure (OCI) was used to perform this research. 

The VM provides flexible image management and supports various operating systems (OS) 

such as Microsoft Windows Servers and enterprise Linux OS such as CentOS, Oracle Linux 

and Ubuntu. The VM enables deployment of applications in multi-region, multi-Availability 

Domain (AD) and multi-fault domain configurations and provides a secure and flexible 

network at a lower cost. The VM also caters for a low latency block storage service which 

provides a highly available, persistent, network-attached storage volume optimized to deliver 

low latency and high Input/Output Operations Per Second (IOPS). Oracle block volume 

provides versatile system boot disks that can be backed up and restored to new volumes 

(Oracle, 2020).  

The VM instance provides different shapes. This study used the VM.Standard2.8, 

which has 8 OCPUs (Oracle Compute Unit) and 120 gigabytes (GB) of memory. The instance 

shape supports up to 1 Petabyte (PB) of remote block volume. Ubuntu was used as the OS 

and the platform image was Canonical-Ubuntu-16.04-2020.02.18-0. Table 3.2 shows the 

summary of the specifications of the VM. 
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Table 3. 2. Summary of the specifications of   of the virtual machine from Oracle Cloud 

Infrastructure (OCI) 

Compute shape VM.Standard2.8 

Oracle Compute Unit (OCPU) 8 

Processor Intel Xeon Platinum 8167M 

Base frequency 2.0 GHz 

Maximum turbo frequency 2.4 GHz 

Maximum virtual network 
interface cards (VNICs)  
Total: Linux 

8 

Memory 120 gigabytes (GB) 

Remote block volume 1 Petabyte (PB) 

Operating systems (OS) Ubuntu 

Platform image Canonical-Ubuntu-16.04-2020.02.18-0 

Maximum Network Bandwidth 8.2 Gbps 

 

3.4 Hyperparameters optimization 

Hyperparameters are higher level properties of the algorithm statistical model which strongly 

influence its complexity, speed in learning, application results (Chicco, 2017) and are 

important to minimize the loss function. Hyperparameters are key to produce accurate model 

classification or prediction (Dogo et. al., 2018; Roy, 2021; Jamieson & Talwalkar, 2016; 

Brownlee, 2020). A model’s hyperparameter is external to the model and cannot be estimated 

from the data, thus, various approaches are used such as grid search, manual search, random 

search etc.  

Grid search is the most widely used approach for hyperparameter optimization due to 

its simplicity in implementation and being the default choice for open source machine 

learning packages (Bergstra & Bengio, 2012; Chicco, 2017; Jamieson & Talwalkar, 2016). 
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The approach methodically builds and evaluate a model for each combination of algorithm 

parameter specified in a grid (Liashchynskyi & Liashchynskyi, 2019). 

The grid search approach was used in this research and was implemented using the 

GridSearchCV class from scikit-learn library which performs an exhaustive search and 

generates candidates from a specified grid parameter values (Pedregosa, et. al., 2011). Tables 

3.3, 3.4 and 3.5 shows the search space used in the grid search for the hyperparameters for 

Holt-Winters, MLP and SARIMA models used in the research. 

Table 3. 3. Search space for hyperparameters for the Holt-Winters model 

Trend component Additive (add), multiplicative (mul) 

Seasonal component Add, mul 

Seasonal periods 12 (for 12 months yearly data) 

Table 3. 4. Search space for hyperparameters for the MLP model 

Optimizer search space Adam, Adamax, Nadam 

Activation search space ReLU, TanH, linear 

Number of epochs 2000, 3000, 4000, 5000 

Table 3. 5. Search space for hyperparameters for the SARIMA model 

Trend order 0, 1, 2 

Seasonal order 0, 1, 2 

Trend No trend, constant, linear and constant with 
linear trend 

Seasonal length 12 (for 12 months yearly data)  
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3.5 Implementation of the forecasting models 

The section below describes the experimental procedure used to implement the models used 

in this research. 

3.5.1 Implementation of the Holt-Winters model 

This section is based on: Omar M. S. and Kawamukai H. (2021). Prediction of NDVI using 

the Holt-Winters model in high and low vegetation regions: A case study of east Africa. 

Scientific African, 14, e01020, pp. 1 - 10.   

Since the pixel-wise NDVI time series data exhibited both trend and seasonal 

variation, the Holt-Winters model was used in this research instead of the SES and double 

exponential smoothing models. The Holt-Winters model was implemented using the 

‘statsmodels.tsa.holtwinters.ExponentialSmoothing’ class from the statsmodels library; a 

python module for statistical analysis and statistical data exploration (Skipper & Perktold, 

2010). The model was automatically tuned to calculate the optimal values for the α, β and γ. 

The results from the grid search returned the hyperparameters for the trend, seasonal and 

seasonal periods (number of time steps) as add, add and 12 (for 12 months’ yearly data) 

respectively, resulting in an additive model. The dataset was split (based on temporal 

sampling) into training and testing sets at a ratio of 80% to 20% respectively. The training 

set was used to develop the model while the testing set was used to evaluate the model’s 

performance. The ‘fit()’ function was used to fit the model on the training set and the 

‘forecast()’ function was used to make the predictions. Detailed explanation of the functions 

and classes can be found in the statsmodels module (Skipper & Perktold, 2010). The 

predicted pixel-wise NDVI data in CSV format was then used to create spatial maps for the 

low and high vegetation regions using matplotlib library (Hunter, 2007). 

The model was first trained on a sample size of 10  10 pixels and 100  100 pixels 

for the low and high vegetation regions. The model was then retrained using the same 

hyperparameters for the 600  600 pixels (total area for the study region) to get the 6 months 
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forecast pixel-wise NDVI data. Forecast evaluation metrics such as MAPE, RMSE and MAE 

were computed to evaluate how close the predicted values are to the true values. 

3.5.2 Implementation of the SARIMA model 

This section is based on: Omar M. S. and Kawamukai H. (2021). Comparison between the 

Holt-Winters and SARIMA models in the prediction of NDVI in an arid region in Kenya 

using pixel-wise NDVI time series. Academic Journal of Research and Scientific Publishing, 

2 (23), pp. 1 – 15. 

Similarly, to the Holt-Winters model, the SARIMA model was implemented using 

the ‘SARIMAX’ class from the statsmodel library. The trend and seasonal hyperparameters 

were defined using the ‘order’ and ‘seasonal_order’ arguments respectively and their 

configurations was obtained from the results of the grid search. The order (1, 0, 1) and 

seasonal_order = (0, 0, 2, 12) was used to define the model. The order argument defines the 

AR parameters, differences and MA parameters of the model as 1, 0, and 1 respectively, while 

the seasonal_order argument denotes the seasonal component ((P, D, Q) s) of the model, with 

the length of the seasonal period (s) as 12, for the 12 months’ yearly data. 

Similarly, to the Holt-Winters model, the dataset was split (based on temporal 

sampling) into training and testing sets at a ratio of 80% to 20% respectively. The training 

set was used to develop the SARIMA model while the testing set was used to evaluate the 

model’s performance. The ‘fit()’ function was used to fit the model on the training set and 

the ‘forecast()’ function was used to make the predictions. Detailed explanation of the 

functions and classes can be found in the statsmodels module (Skipper & Perktold, 2010). 

The SARIMA model was first trained on a sample size of 1  1 pixel in the low 

vegetation region and later retrained for 600  600 pixels for the low vegetation region. 

Forecast evaluation metrics was computed to evaluate the performance of the model. Due to 

time, budget constraints and limitations of the computational resources, 100  100 pixels 

was used for the high vegetation region. 
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3.5.3 Implementation of the MLP models 

This research employed the feed-forward multi-layer network using the direct 

multistep approach.  The MLP models were developed by comparing the loss function of 

different MLP models from the grid search using various activation functions, number of 

epochs and optimization algorithms. Three MLP models which had the best score from the 

grid search were developed: MLP 1 (3000 epochs, ReLU, Adam), MLP 2 (4000 epochs, TanH, 

Adamax) and MLP 3 (5000 epochs, ReLU, Nadam). As mentioned in section 2.4.2.4., the 

activation function determines the relationship between the input and output nodes. In this 

research, two activation functions consisting of ReLU and TanH were used.  

MLP models are slow and expensive to train (Fung et. al., 2020; Hansson et. al., 2016), 

thus, to reduce the computational burden in the model development, a small subset of the 

dataset (using 1  1 pixels) was fitted to speed up the search for the models’ hyperparameters 

as explained in section 3.2. After the hyperparameters were determined, the entire 600  600 

pixels for the entire study area was fed to the network for 6 months lead pixel-wise NDVI 

prediction. The MLP models were implemented in Keras (Chollet et. al., 2017), a deep 

learning library for python, running on top of the machine learning platform: TensorFlow 

(Abadi et. al., 2015). 

Since the MLP models are slow to train and are thus, time consuming, a 

supercomputer from the Research Institute for Information Technology, Kyushu University 

was used instead of Oracle’s VM. The supercomputer system is based on Intel Xeon Gold 

(Skylake architecture) CPUs and NDIVIA Tesla P100 (Pascal architecture) GPUs, with peak 

performance around 10 PFLOPS. Table 3.6 shows an overview of the specifications for the 

subsystem B used in this research. More details on the supercomputer can be found at: 

https://www.cc.kyushu-u.ac.jp/scp/eng/system/ITO/ 
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Table 3. 6. Summary of the specifications of Subsystem B of the supercomputer from the 

Research Institute for Information Technology, Kyushu University 

Machine  Fujitsu PRIMERGY CX2570 M4 

 Central Processing 

Unit (CPU) 

Intel Xeon Gold 6140 (Skylake-SP) (2.3 

GHz (Turbo 3.7 GHz), 18 core x 2 / 

node 

 Graphics Processing 

Unit (GPU)  

NVIDIA Tesla P100 (Pascal) (1,328 - 

1,480 MHz, 56 SM (3584 CUDA core)) 

x 4 / node 

Computing node Theoretical Peak 

Performance 

CPU : 2,649.6 GFLOPS / node (Double 

Precision) 

GPU : 5.3 TFLOPS (with Boost Clock) / 

1GPU (Double Precision) 

 Amount of Memory Double Data Rate 4 (DDR4): 384 GB / 

node 

High bandwidth Memory 2 (HBM2): 16 

GB / 1 GPU 

 Memory Bandwidth DDR4 : 255.9 GB/sec / node 

HBM2 : 732 GB/sec / 1GPU 

 CPU-GPU Connection Peripheral Component Interconnect 

Express (PCI-Express) Gen.3 x16 

(16GB/sec) 

 GPU-GPU Connection NVLink (20GB/sec x 1or2) 

Number of Nodes  128 

Total Number of 

Cores 

 CPU : 4,608 

GPU : 1,835,008 
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Total Theoretical 

Peak Performance 

 CPU : 0.34 PFLOPS (Double Precision) 

GPU : 2.71 PFLOPS (Double Precision) 

Total Amount of 

Memory 

 DDR4 : 49 TB 

HBM2 : 8.19 TB 

Interconnect  InfiniBand Enhanced Data Rate (EDR) 

4x (100Gbps) 

Local Storage of 

Node 

 1TB Hard disk drive (HDD) x 2 Serial 

advanced technology attachment 

(SATA) 

800GB HDD x 1 (SATA)  

The network used in this study consisted of 24 nodes in the input layer, 100 nodes in 

the hidden layer and 6 nodes in the output layer (indicating a one to six-month lead time), 

represented using the notation: 24/100/6. The input nodes corresponded to the number of 

lagged observations of the monthly mean pixel-wise NDVI data which were used to discover 

underlying pattern in the pixel-wise NDVI time series to predict future NDVI values. The 

nodes in the hidden layer allowed the network to detect the feature, capture the pattern in the 

data and perform nonlinear mapping between the input and output variables (Mishra & Desai, 

2006; Mishra et. al., 2007). This research used one hidden layer as it has been proved to be 

sufficient for ANN to approximate any complex nonlinear function with desired accuracy 

(Hornik et. al., 1989). 24 previous monthly mean pixel-wise NDVI values were tested for 

optimal NDVI series within this range.  

The network was trained for 3000, 4000 and 5000 epochs using Adam, Adamax and 

Nadam optimizers for MLP 1, MLP 2 and MLP 3 respectively and optimized using the MSE 

loss function using back propagation algorithm. The default values for the optimizers 

provided by Keras (Chollet et. al., 2017) were used. Further details on defaults values of 

Adam, Adamax and Nadam optimizers can be found on Keras (Chollet et. al., 2017). 

After fitting the model to the training set, the model was used to make predictions by 

giving the last sequence of the input data, which was reshaped into a 2-D array before making 
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the predictions using the ‘predict()’ function. The above process was repeated for each pixel 

to get the pixel-wise NDVI prediction for 6-month lead for the study area. The performance 

of the predictions resulting from the MLP models was evaluated using MSE, RMSE and 

MAE. The predicted pixel-wise NDVI data in CSV format was then used to create spatial 

maps using matplotlib library (Hunter, 2007). The NDVI values were classified in the range 

between –1 to +1, with -1 representing a water body and +1 indicating high NDVI value.   

3.6 Models validation metrics 

The testing dataset was used as the input to evaluate the performance of the Holt-Winters, 

SARIMA and MLP models using statistical indicators, namely: MAE, MAPE, MSE and 

RMSE.  

The metrics were implemented using scikit-learn, a python module that provides tools 

for predictive data analysis (Pedregosa, et.al. 2011). All metrics were imported from the 

‘sklearn.metrics’ module, which implements functions for assessing prediction errors 

(Pedregosa, et.al. 2011). The following functions from the ‘sklearn.metrics’ module were 

used to implement the above mentioned metrics: 

1. ‘mean_squared_error’ function computed MSE and RMSE. 

2. ‘mean_absolute_error’ function computed MAE. 

3. ‘mean_absolute_percentage_error’ function computed MAPE. 

The evaluation metrics are described in the sections that follows. The symbols n, ŷi 

and yi used in the equations (3.1) to (3.4) refers to: n is the number of observations, yi is the 

observed value and ŷi is the predicted value. 

3.6.1. Root mean square error 

Root mean square error (RMSE) shows the difference between the forecasted and observed 

values. It represents the sample standard deviation of the difference between predicted and 

observed values and measures the overall performance across the entire dataset and provides 

a good measure of the model. RMSE varies from zero for perfect estimates to large positive 
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values for poor estimates (Neupane et. al., 2021). RMSE is computed as shown in equation 

(3.1). 

            (3. 1)  

3.6.2. Mean absolute error  

Mean absolute error (MAE) is the mean absolute value of the absolute errors and is used to 

measure how close the forecast values are to the observed values (Neupane et. al., 2021). 

MAE is a risk metric corresponding to the expected value of the absolute error loss 

(Pedregosa, et.al. 2011). The MAE value zero represents a perfect fit with the values always 

greater than or equal to zero (Sharma & Deo, 2021). MAE is computed as indicated in 

equation (3.2). 

           (3.2) 

3.6.3. Mean square error  

Mean square error (MSE) uses the values of the predictor variables associated with the future 

observations and the magnitude of the estimated variance (Allen, 1971). MSE is a risk metric 

corresponding to the expected value of the squared (quadratic) error (Pedregosa, et.al. 2011). 

Equation (3.3) was used to calculate MSE. 

            (3.3) 

3.6.4. Mean absolute percentage error 

Mean absolute percentage error (MAPE), is also known as mean absolute percentage 

deviation (MAPD) and refers to the average of the absolute percentage error of forecasted 

values with smaller values indicating better forecast results (Sharma & Deo, 2021). MAPE 

is calculated as shown in equation (3.4). 

           (3.4) 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

Chapter four presents the research findings on the forecasting of vegetation condition in east 

Africa (low and high vegetation regions) and prediction of NDVI using pixel-wise NDVI 

data, stochastic and ANN models. The following sections provides the temporal, spatial, 

statistical and comparative analysis of the models for the low and high vegetation regions. 

These findings were accepted for publication in peer reviewed journals titled Scientific 

African Journal and Academic Journal of Research and Scientific Publishing as mentioned 

in Chapter three and part of the results were presented during the 6th International Conference 

on Energy and Environmental Science (ICEES 2022) and Annual Research Presentation 

Conference on Spatial Information Science (CSIS DAYS 2021). 

 Introduction 

Vegetation plays an important role in protecting the land surface from erosion, preventing 

desertification and conserving soil and water (Sun et. al., 2015). Moreover, vegetation covers 

such as forests supply water, provide livelihoods, mitigate climate change and are essential 

for sustainable food production (FAO & UNEP, 2020). However, vegetation cover is under 

threat due to human activities such as extensive use of land for agriculture, overgrazing and 

deforestation which are driven by a rapid population growth. Nearly 5 million hectares of 

natural vegetation is lost per year. The east Africa region has seen an increase in agricultural 

land to 57% between 1975 – 2000 at the expense of natural vegetation, which decreased by 

21% (Brink & Eva, 2009). In addition, there is insufficient monitoring of vegetation with 

21% of the land experiencing a decline in vegetation cover (Waswa, 2012) and a decrease in 

natural vegetation formations such as forests, bushlands, grasslands and wetlands (Githui et. 

al., 2009). Thus, monitoring the temporal changes and predicting future trends of NDVI is 

very important for understanding changes in vegetation condition which may assists in 

resource allocation and planning, especially in the low vegetation region, which is 

characterized by extensive use of land for livestock grazing. 
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Pixel-wise NDVI time series was used to develop forecasting models using MODIS 

NDVI data extracted from MOD13Q1 product. Pixel-wise NDVI data was used for its 

robustness, although it required higher computational power. The monthly mean NDVI time 

series was derived from the average values of NDVI data in each month during the study 

period. Although NDVI is affected by other factors such as rainfall, temperature, soil 

moisture etc, this research demonstrated that it is possible to monitor and forecast vegetation 

condition in a region as NDVI can be forecasted by taking into consideration its past values 

alone (Mutti, et. al., 2020). 

In this study, the Holt-Winters and SARIMA models with 12 months’ seasonal period 

was applied as NDVI is influenced by factors that have an annual seasonal pattern such as 

seasonal precipitation. All models (Holt-Winters, MLP and SARIMA) were developed using 

the optimal values obtained from the grid search to ensure that the models with the best 

accuracy were used.  

The models’ performance was evaluated using the RMSE, MSE, MAPE and MAE, 

which are widely used statistical metrics in vegetation studies to evaluate discrepancies 

between the actual and predicted data. Lower values of the aforementioned statistical metrics 

correspond to a model with better predictive performance. Moreover, a small difference 

between MAE and RMSE means a smaller variance in the individual errors in the data. 

Forecasted pixel-wise NDVI spatial maps at 6 months lead were created from the forecasting 

results using matplotlib library (Hunter, 2007). 

 Temporal analysis using 1  1 pixel NDVI data in the low and high vegetation 
regions 

Time series analysis in vegetation monitoring provides an opportunity to predict future NDVI 

values based on lagged NDVI values. The temporal trends of 1  1 pixel’s monthly mean 

NDVI from February 2000 to September 2019 for the low and high vegetation regions are 

shown in Figure 4.1 and 4.2 respectively. As mentioned in section 3.2, the first pixel from 
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the top right corner of h21v09 and the first pixel from the bottom left corner of h21v08 

MODIS tiles were selected for the low and high vegetation regions respectively.  

The monthly mean NDVI showed a temporal pattern with distinct low and peak 

values in both regions. High NDVI values were observed in the high vegetation region 

compared to the low vegetation region which may be attributed to the slower greening speed 

in arid regions (Yao et. al., 2019), and is mainly driven by precipitation anomalies (Adler et. 

al., 2017; Fensholt & Rasmussen 2011; Gu et. al., 2015). In both regions, NDVI was marked 

by low and peak values with monthly variations throughout the study period. This trend can 

be attributed to seasonal climate patterns, with low NDVI values during the dry season and 

high NDVI values during the rainy season. Similar observation was found in previous studies 

such as Kinyanjui (2010). In both regions, the year 2011 was marked by low NDVI values 

which may be attributed to the worst drought that occurred in east Africa due to the the 

failures of both the preceding rainy seasons and the prevailing La Niña conditions in late 

2010 and early 2011 (AghaKouchak 2015; FEWS NET 2011; Lott et. al., 2013). Moreover, 

the failure in the rainy seasons led to crop failures (Funk 2011). Notably, the low vegetation 

region recorded an NDVI value of approximately 0.2 as plants were sparser or growing less 

than average pointing to poor plant growth during the growing season (NASA Earth 

Observatory, 2011). On the other hand, the high vegetation region had an NDVI around 0.4 

indicating good plant growth due to leafier photosynthesizing plants (NASA Earth 

Observatory, 2011). 

The results also showed the ability of vegetation to recover after a drought period 

such as an increase in NDVI in the year 2012 after the 2011 east Africa drought which may 

be attributed to a wet period in the late 2011 and early 2012 (AghaKouchak 2015). 

Figure 4.1 shows a relatively dry area indicating sparse vegetation. Mean NDVI 

ranged between 0.0 to 0.6 indicating a region with shrubs and grasslands (Ndungu et. al., 

2019). However, there were periods with healthy vegetation, with NDVI values over 0.5 such 

as in the years 2007, where Kenya experienced heavy downpours at the beginning of October 

2006 (International Federation of Red Cross and Red Crescent Societies, 2008), El-Nino 

events in 2009/2010 (GoK, 2013) and a wet period in 2012 (AghaKouchak 2015). The year 
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2005 was marked with the lowest NDVI indicating an extreme dry period due to failure of 

the October – December short rainy season (Hastenrath et. al., 2007; Wakabi, 2006) resulting 

in poor vegetation condition. 

Figure 4.2 indicates a region with relatively healthy vegetation, with mean NDVI 

ranging between 0.3 to 0.8, indicating a region with dense vegetation (Ndungu et. al., 2019). 

NDVI values were over 0.5 for most of the study period.  

 

 

Figure 4.1 . 1  1 pixel NDVI time series in the low vegetation region from February 2000 
to September 2019. The pixel was extracted from the top right corner of the h21v09 

MODIS tile. 
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Figure 4.2. 1  1 pixel NDVI time series in the high vegetation region from February 2000 
to September 2019. The pixel was extracted from the bottom left corner of the h21v08 

MODIS tile. 

 Analysis of results using the Holt-Winters model 

The section below provides the temporal, spatial and statistical analysis of the results using 

the Holt-Winters model in the low and high vegetation regions. 

4.3.1 Observed and predicted NDVI time series (1  1  pixel) using the Holt-

Winters model in the low and high vegetation regions 

Figures 4.3 and 4.4 presents the 1  1 pixel time series for the training, testing and forecasted 

NDVI for in the low and high vegetation regions respectively. The training data was plotted 

using a blue line while the red and green lines indicates the testing and forecasted data 

respectively. In both regions, the time series for predicted NDVI using the Holt-Winters 

model underestimated as well as overestimated during the study period. This may be 

attributed to climatic conditions such as temperature and rainfall which may cause unusual 

NDVI values which in turn may cause distortion to the optimized values of the smoothing 

parameters thereby causing estimation errors in the Holt-Winters model (Goodwin, 2010). 
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Furthermore, a high NDVI value in the current month may cause an overestimation, thus, the 

next month’s prediction will also be high.  

In Figure 4.3, the Holt-Winters model forecasted low NDVI values between 0.2 - 0.4, 

indicating a region with sparse vegetation. The Holt-Winters model underestimated as well 

as overestimated most of the study period. However, it follows a similar pattern as the 

observed NDVI at the end of the study period. In the high vegetation region (Figure 4.4), the 

Holt-Winters model presented a good model as the NDVI values ranged between 0.5 - 0.7, 

denoting a region with good and healthy vegetation. The Holt-Winters model overestimated, 

especially towards the end of the study period, with an exception in 2018, where it followed 

similar behaviour as the NDVI data. The outliers may be due to the vegetation’s phenological 

cycles as a result of seasonal changes or human activities among other factors (Wang et. al., 

2016). 

 

Figure 4.3. 1  1 pixel NDVI time series of the training data (blue), testing data (red) and 
forecasted data using Holt-Winters model (green) in the low vegetation region. 
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Figure 4. 4. 1  1 pixel NDVI time series of the training data (blue), testing data (red) and 
forecasted data (green) using Holt-Winters model in the high vegetation region 

4.3.2 Spatial analysis for the 6 months NDVI forecast using the Holt-Winters 

model in the low and high vegetation regions 

The prediction results for the 6 months lead NDVI forecast in CSV format was converted 

into spatial maps to assess the vegetation condition at the pixel level for the low and high 

vegetation regions. The resulting maps visualized NDVI for 12 categories (Figure 4.5 and 

Figure 4.6), with the lowest category indicating a water body and the highest category 

indicating extremely high vegetation condition. Figure 4.5 and 4.6 shows the spatial maps 

for the 6 months forecast NDVI in the low and high vegetation regions respectively.  

A large section of the low vegetation region (Figure 4.5) was predicted to have 

moderate to light vegetation deficit in the first month (October 2019), with areas such as 

Garissa and parts of Tana River counties (Figure 3.1), in the severe vegetation deficit 

category. This can be attributed to the climate conditions in the previous month as sunny and 

dry weather in September 2019 experienced in ASAL regions led to low NDVI in October 

2019. The above normal rainfall during the October – December 2019 season (NDMA, 2019) 

led to improved vegetation condition in November and December 2019, with most of the 
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region predicted to experience moderate vegetation deficit conditions as compared to the 

previous month, with light vegetation observed in Kitui county (Figure 3.1) and along the 

river bank. 

The spatial distribution of vegetation in January 2020 was predicted to reduce 

compared to December 2019, with almost the whole region experiencing light vegetation 

deficit, with the exception of areas along the river bank which was predicted to have moderate 

vegetation. This may be as a result of the onset of the dry season and an increase in 

temperature. Persistent poor climatic conditions in February 2020, may have caused a severe 

vegetation deficit mostly in Garissa county, with a high spatial distribution in the moderate 

vegetation deficit category. The vegetation condition reduced further in March 2020 as low 

NDVI was predicted in the entire region as a result of prevailing dry conditions during the 

dry season (January – March 2020). 

The high vegetation region (Figure 4.6) was predicted to experience moderate to 

extremely high vegetation condition. This may be due to the above normal rainfall 

experienced in many districts in Uganda and the DRC (Mayuge District Local Government 

2020; FEWS NET 2020) may have contributed to good vegetation condition in the high 

vegetation region for the 6 months (October 2019 to March 2020) as shown in Figure 4.6. 

4.3.3 Statistical analysis of the Holt-Winters’ performance in the low and high 

vegetation regions 

To quantify the performance of the Holt-Winters model in the low and high vegetation 

regions, the MAE and RMSE values were computed. Tables 4.1 – 4.3 presents the MAE and 

RMSE values for 10  10, 100  100 and 600  600 pixels respectively. Forecast error 

measures for the 600  600 pixels were also calculated using MAPE as showed in Table 4.4. 
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Figure 4. 5. Spatial distribution for the 6 months NDVI forecast using Holt-Winter model 
in the low vegetation region 

 

Figure 4. 6.Spatial distribution for the 6 months NDVI forecast using Holt-Winters model 
in the high vegetation region. 
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Overall, the model performed better in the low vegetation region compared to the 

high vegetation region for the 10  10 and 100  100 pixels, with the lowest MAE and 

RMSE of 0.0389 and 0.0519 for 10  10 pixels and lowest MAE and RMSE of 0.0392 and 

0.0565 for 100  100 pixels respectively. Although NDVI is criticized of saturation problem 

in high biomass conditions (Gao et. al., 2000; Tucker 1977), the Holt-Winters model 

performed better in the high vegetation region compared to the low vegetation region for the 

600  600 pixels achieving the lowest MAE and RMSE of 0.0679 and 0.084 respectively. 

This result might be caused by the weak reception ability of the NDVI, due to the reception 

of the green light spectrum from the high vegetation region. If the density of leaves and plants 

are dense, the green light reflection from leaves and plants can be easily received while the 

reflection from land surface or soil surface is blocked by the receiver of imagery satellite 

photo-sensors. On the other hand, in the low vegetation region, the strong light reflection 

from land or soil surface, which passes through plants and leaves are not blocked by them, 

causing huge estimation errors in vegetation estimation. That is why there was poor 

estimation results in the low vegetation region for the 600  600 pixels. The result may also 

be attributed to NDVI’s calculation which is sensitive to atmosphere, soil and pixel 

component and the spectral response to these factors is not exactly the same in the two 

spectral bands used for NDVI calculation (Huang et. al., 2021; Julien, 2008).  

The validation results between the forecasted and actual data for the low and high 

vegetation regions are presented in Table 4.4. In the high vegetation region, MAPE resulted 

in an infinite value as a result of division by zero (Puah et. al., 2016). MAE and RMSE 

resulted in finite values and were used to overcome the problem of MAPE. The results from 

the forecast error measures showed that the Holt-Winters model achieved significant 

accuracy based on the RMSE values as the model showed satisfactory accuracy and is good 

at predicting NDVI by learning seasonal changes. The forecast error measures also showed 

that the Holt-Winters model achieved better accuracy in the high vegetation region than in 

the low vegetation region for 600  600 pixels. 
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Table 4.1. Evaluation of the Holt-Winters additive model in the low and high vegetation 

regions for 10  10 pixels. (All computations were done on a remote server, instance 

Shape: VM.Standard2.8). 

Region MAE RMSE Computation time (sec) 

High vegetation  0.0488  0.0615 14.1140 

Low vegetation 0.0389 0.0519 19.9854 

Table 4. 2. Evaluation of the Holt-Winters additive model in the low and high vegetation 

regions for 100  100 pixels. (All computations were done on a remote server, instance 

Shape: VM.Standard2.8). 

Region MAE RMSE Computation time (sec) 

High vegetation  0.0629  0.0787 3186.0698 

Low vegetation 0.0392 0.0565 1239.9131 

Table 4.3. Evaluation of the Holt-Winters additive model in the low and high vegetation 

regions for 600  600 pixels. (All computations were done on a remote server, instance 

Shape: VM.Standard2.8). 

Region MAE RMSE MSE Computation time (sec) 

High vegetation  0.0679 0.084 0.0071 38847.0363 

Low vegetation 0.0744 0.096 0.0092 38378.3088 
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Table 4. 4. Forecast error measures between the actual and predicted NDVI for the low and 

high vegetation regions. 

Region MAE RMSE MAPE 

High vegetation  0.0906 0.1253 ∞ 

Low vegetation 0.1186 0.1468 28.1183 

 Analysis of results using the MLP models 

The section below provides the temporal, spatial and statistical analysis of the results using 

the MLP models in the low and high vegetation regions. 

4.4.1 Observed and predicted NDVI time series (1  1  pixel) using the MLP models 

in the low and high vegetation regions 

Figures 4.7 to 4.9 and Figures 4.10 to 4.12 presents the 1  1 pixel time series for the training, 

testing and forecasted NDVI using the MLP models for in the low and high vegetation 

regions respectively. The training data was plotted using a blue line while the red and green 

lines indicates the testing and forecasted data respectively. In both regions, the time series 

for the forecasted NDVI using the MLP models underestimated as well as overestimated 

during the study period. As seen in all figures for both the low and high vegetation regions, 

the MLP 1 and MLP 3 models overestimated NDVI as a result of overfitting due to the ReLU 

AF (Nwankpa et. al., 2018). Moreover, the ReLU AF is fragile during training causing some 

of the gradients to die (Nwankpa et. al., 2018) which leads to some neurons being dead 

leading to zero activation and hindering learning, thus, causing the weights not to activate in 

future points (Goodfellow et. al., 2016). 

However, the MLP 2 model underestimated NDVI but followed a similar pattern as 

the test data at the end of the study period for the low vegetation region. On the other hand, 

the MLP 2 underestimated as well as overestimated NDVI for the high vegetation region. 
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Figure 4. 7. 1  1 pixel NDVI time series of the training data (blue), testing data (red) and 
forecasted data (green) using MLP 1 model in the low vegetation region 

 

Figure 4. 8. 1  1 pixel NDVI time series of the training data (blue), testing data (red) and 
forecasted data (green) using MLP 2 model in the low vegetation region 
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Figure 4. 9. 1  1 pixel NDVI time series of the training data (blue), testing data (red) and 
forecasted data (green) using MLP 3 model in the low vegetation region 

 

Figure 4. 10. 1  1 pixel NDVI time series of the training data (blue), testing data (red) and 
forecasted data (green) using MLP 1 model in the high vegetation region 
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Figure 4. 11. 1  1 pixel NDVI time series of the training data (blue), testing data (red) and 
forecasted data (green) using MLP 2 model in the high vegetation region 

 

Figure 4. 12. 1  1 pixel NDVI time series of the training data (blue), testing data (red) and 
forecasted data (green) using MLP 3 model in the high vegetation region 
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4.4.2 Spatial analysis for the 6 months NDVI forecast using the MLP model in the 

low and high vegetation regions 

The three MLP models were used to forecast NDVI during the short rain season 

(October – December 2019) and during the dry season (January – March 2020) in the low 

and high vegetation regions. The time-lead prediction was achieved using the previous 

month’s data to forecast NDVI of the following month, such that, using September 2019 data 

to forecast NDVI for October 2019, until all 6 months lead predictions was completed. 

Overall, the MLP models can be used for multi-step lead forecasting of NDVI using 

univariate pixel-wise NDVI data without additional data such as precipitation fed into the 

neural networks. 

Similarly, to the Holt-Winters model, the prediction results using the MLP models 

for the 6 months lead NDVI forecast in CSV format was converted into spatial maps to assess 

the vegetation condition at the pixel level for the low and high vegetation regions. The 

resulting maps visualized NDVI for 12 classes: between -1 to +1 (Figure 4.13 to Figure 4.18). 

As seen in the figures, the lowest class (-1) indicates a water body, while the highest class 

(+1) indicates high NDVI value, which inturn means extremely good vegetation condition. 

The forecast maps for the two seasons are presented in Figures 4.13 to 4.15 for MLP 1, MLP 

2 and MLP 3 respectively for the low vegetation region and Figures 4.16 to 4.18 for MLP 1, 

MLP 2 and MLP 3 models respectively for the high vegetation region. 

The forecast maps for the two seasons are presented in Figures 4.13 to 4.15 for MLP 

1, MLP 2 and MLP 3 respectively for the low vegetation region. The forecasted NDVI maps 

for the MLP 1 (Figure 4.13) showed that the whole study area was predicted to have low 

NDVI in the range between 0.0 to 0.2 during the short rain season (October – December 

2019) and dry season (January – March 2020). Few pixels on the west side of the region have 

green patches indicating moderate NDVI, while the region along the river bank was predicted 

to have higher NDVI values (above 0.5) due to the thriving of vegetation throughout the year.  

The forecasted NDVI maps from the MLP 3 (4.15) model showed a similar behavior 

as the forecasted maps from the MLP 1 model. On the other hand, the forecasted NDVI maps 

from the MLP 2 (Figure 4.14) showed moderate NDVI (between 0.2 – 0.5) for a large section 
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of the study area, while some pixels in a few spots have low NDVI of 0.1. Similarly, to the 

forecasted maps from MLP 1 and MLP 3, the NDVI along the river bank is higher due to the 

thriving vegetation. Although the low vegetation region is an ASAL, vegetation thrives along 

the river bank due to the ability of the river bed to retain water (The European Space Agency, 

2021). Generally, the NDVI in the entire study area was predicted to range between 0.2 to 

0.6 during the October – December 2019 period which may be attributed to the short rains 

season, however, the NDVI was forecasted to be lower in the range between 0.0 to 0.4 during 

the January – March 2020 period which may be a result of the dry season and an increase in 

temperature.  

 

Figure 4. 13. Spatial distribution for the 6 months lead NDVI forecast maps produced by 
MLP 1 in the low vegetation region. 
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Figure 4. 14. Spatial distribution for the 6 months lead NDVI forecast maps produced by 
MLP 2 in the low vegetation region 

 

Figure 4. 15. Spatial distribution for the 6 months lead NDVI forecast maps produced by 
MLP 3 in the low vegetation region 
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The spatial distribution for the 6 months lead NDVI forecast maps for the high 

vegetation region are presented in Figures 4.16 to 4.18 for MLP 1, MLP 2 and MLP 3 models 

respectively. Generally, all the models predicted high NDVI values ranging between 0.5 to 

1.0 in the region during the October – December 2019 and January – March 2020 seasons. 

This may be due to the above normal rainfall experienced in many districts of Uganda and 

the DRC (Mayuge District Local Government 2020; FEWS NET 2020) which may have 

contributed to good vegetation condition in the region. 

 

Figure 4. 16. Spatial distribution for the 6 months lead NDVI forecast maps produced by 
MLP 1 in the high vegetation region 
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Figure 4. 17. Spatial distribution for the 6 months lead NDVI forecast maps produced by 
MLP 2 in the high vegetation region 

 

Figure 4. 18. Spatial distribution for the 6 months lead NDVI forecast maps produced by 
MLP 3 in the high vegetation region 
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4.4.3 Statistical analysis of the MLP models in the low and high vegetation regions 

Tables 4.5 and 4.6 shows the statistical analysis for the MLP models in the low and high 

vegetation regions respectively. The MLP 2 model achieved better predictive performance 

in both regions with the lowest RMSE, MSE and MAE. The MLP 2 showed better predictive 

performance as TanH AF provides better training performance for multi-layer neural 

networks (Neal, 1992) and produces zero centered output thus, aiding in the back propagation 

process (Nwankpa et. al., 2018). In addition, the network training converges faster if the 

average of each input variable is close to zero, resulting in a minimal cost function. On the 

other hand, the MLP 3 model produced the worst performance in both regions achieving the 

lowest RMSE, MSE and MAE. 

Table 4. 5. Evaluation of MLP models in the low vegetation region for 600  600 pixels. 
(All computations were done on the supercomputer) 

Model RMSE MSE MAE 

MLP 1 
(3000 epochs, ReLU, Adam) 

0.11180  0.01603 0.09643 

MLP 2 
(4000 epochs, TanH, Adamax) 

0.07207 0.00589 0.06417 

MLP 3 
(5000 epochs, ReLU, Nadam) 

0.11918 0.01797 0.10179 

 

Table 4. 6. Evaluation of MLP models in the high vegetation region for 600  600 pixels. 
(All computations were done on the supercomputer) 

Model RMSE MSE MAE 

MLP 1 
(3000 epochs, ReLU, Adam) 

0.10840 0.01590 0.09073 

MLP 2 
(4000 epochs, TanH, Adamax) 

0.08479 0.00935 0.07189 

MLP 3 
(5000 epochs, ReLU, Nadam) 

0.12569 0.02054 0.02054 
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 Analysis of results using the SARIMA model 

The section below provides the temporal and statistical analysis of the results using the 

SARIMA model in the low and high vegetation regions. Due to budget and time constraints 

and limitation of computational resources, it is worth mentioning that the SARIMA model 

for 600 600 pixels was done for the low vegetation region only. However, the statistical 

analysis was performed for 100 00 pixels for both the low and high vegetation regions. 

4.5.1 Observed and predicted NDVI time series (1  1 pixel) using SARIMA 

model in the low and high vegetation regions 

Figures 4.19 and 4.20 show the 1 1 NDVI time series for the training, testing and predicted 

values using the SARIMA model in the low and high vegetation regions. In Figure 4.19, the 

observed NDVI ranged between 0.0 to 0.6 during the study period, with the lowest observed 

NDVI value at 0.0 in the year 2005 indicating that the region experienced scarce vegetation 

condition during that year which can be attributed to a prolonged dry period. On the other 

hand, the observed NDVI ranged between 0.3 to 0.8 in the high vegetation region as shown 

in Figure 4.20. NDVI values were above 0.5 most of the years during the study period. 

As shown in Figures 4.19 and 4.20, the SARIMA model underestimated at the peaks 

and overestimated at the troughs preventing it from fitting to the testing data, which led to a 

poor forecast. In addition, the SARIMA model predicted that the values further ahead in time 

will be even lower. Thus, despite the model serving as a general estimation of the NDVI time 

series trend, it is insufficient and leads to inaccurate forecasts. Exogenous data such as 

rainfall may be used to capture the heterogeneous rainfall distribution which may improve 

the performance of the SARIMA model (Mutti et. al., 2020). 
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Figure 4. 19. 1 1 pixel monthly mean NDVI time series, showing the training data (blue), 

testing data (red) and the predicted data using SARIMA model (green) in the low 
vegetation region.  

 

Figure 4. 20. 1 1 pixels monthly mean NDVI time series, showing the training data 
(blue), testing data (red) and the predicted data using SARIMA model (green) in the high 

vegetation region. 
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4.5.2 Statistical analysis of the SARIMA model in the low and high vegetation 

regions using 100  100 pixels 

Due to budget and time constraints and limitation of computational resources, the SARIMA 

model for the high vegetation region was analyzed using 100  100 pixels instead of the 600 

 600 pixels. Table 4.7 shows the statistical analysis for the SARIMA model in the low and 

high vegetation regions respectively using 100  100 pixels. Despite the down scaling of the 

number of pixels to 100  100, the assumption is that the results for the 600  600 pixels 

using the SARIMA model for the high vegetation region will be poor. An evaluation of the 

results from the temporal analysis of the SARIMA model with the other models (Holt-

Winters and MLP) using the 1  1 pixel showed that the SARIMA model does not fit well 

to the test data, thus leads to poor predictions, with a downward trend for future predictions. 

Thus, the SARIMA model presents a poor estimation of NDVI. Moreover, comparing the 

results from 100  100 pixels using the Holt-Winters model (Table 4.2) showed that the 

SARIMA model achieved the worst predictions for the high vegetation region. According to 

Brito et. al., (2021), SARIMA models are more reliable when forecasting longer intervals 

(two years ahead) and their limitations after being trained on short observation periods are 

due to overfitting problems. This may explain why the SARIMA model had the worst 

potential for the estimation of NDVI in the high vegetation region since forecasting in this 

research was for mid-term (6 months) only. 

Table 4. 7. Evaluation of the SARIMA model in the low and high vegetation regions for 
100  100 pixels. (All computations were done on the supercomputer) 

Region RMSE MSE MAE 

Low vegetation  0.1235 0.0165 0.1052 

High vegetation 0.1318 0. 0246 0.108 
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 Comparative analysis of the models in forecasting NDVI in the low and high 

vegetation regions 

This section presents the comparative analysis of the models (Holt-Winters, SARIMA and 

MLP) in the forecasting of NDVI in the low and high vegetation regions. The proposed 

models in this research were validated to assess how well the models forecasted NDVI using 

statistical indicators described in Chapter 3, section 3.6. Table 4.8 and 4.9 presents the results 

of the performance of the models in the low and high vegetation regions respectively. The 

best models were the MLP 2 model (4000 epochs, TanH activation function and Adamax 

optimizer) and the Holt-Winters model for the low and high vegetation regions respectively. 

These models outperformed the other models in all the three statistical metrics, indicating 

that the models performed well with the data. In both models (MLP 2 and the Holt-Winters), 

the MAE (0.06417 and 0.0679 respectively) is significantly lower than the RMSE (0.07207 

and 0.084 respectively) indicating a small variance in the error. 

As shown in Table 4.8, the MLP 2 model (4000 epochs, TanH activation function and 

Adamax optimizer) was more accurate and had better metrics than the other models using 

univariate pixel-wise NDVI time series data. The RMSE, MSE and MAE (0.07207, 0.00589 

and 0.06417 respectively) is significantly smaller for the MLP 2 compared to the other 

models, indicating more accurate forecasting ability. On the other hand, the SARIMA model 

was the worst performing model having the worst metrics, thus may lead to inaccurate results. 

Table 4.9 shows that the Holt-Winters model achieved better predictive performance 

in the high vegetation region with the lowest RMSE, MSE and MAE of 0.084, 0.0071 and 

0.0679 respectively. On the other hand, the MLP 3 model (5000 epochs, ReLU, Nadam) was 

the worst performing model with the lowest RMSE, MSE and MAE of 0.12569, 0.02054 and 

0.10476 respectively. 
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Table 4.8. Evaluation of the models using statistical metrics for 600  600 pixels in the low 

vegetation region 

Model RMSE MSE MAE 

Holt-Winters (additive) 0.096 0.0092 0.0744 

SARIMA(1, 0, 1)(0, 0, 2)12 0.1344 0.0181 0.1112 

MLP 1 
(3000 epochs, ReLU, Adam) 

0.11180  0.01603 0.09643 

MLP 2 
(4000 epochs, TanH, Adamax) 

0.07207 0.00589 0.06417 

MLP 3 
(5000 epochs, ReLU, Nadam) 

0.11918 0.01797 0.10179 

Table 4. 9. Evaluation of the models using statistical metrics for 600  600 pixels in the 

high vegetation region 

Model RMSE MSE MAE 

Holt-Winters (additive) 0.084 0.0071 0.0679 

MLP 1 
(3000 epochs, ReLU, Adam) 

0.10840 0.01590 0.09073 

MLP 2 
(4000 epochs, TanH, Adamax) 

0.08479 0.00935 0.07189 

MLP 3 
(5000 epochs, ReLU, Nadam) 

0.12569 0.02054 0.10476 

 
The results from this research suggests that using univariate pixel-wise NDVI data, 

the MLP 2 and Holt-Winters models (for the low and high vegetation regions respectively) 

can provide better results for RMSE, MSE and MAE, hence, it is concluded that the two 

models performed well for the two regions in the study area. Overall, the NDVI forecasting 

models in this research produced satisfactory results and allowed statistical indicators such 

as RMSE, MSE and MAE to be used to evaluate the models. The outcomes from the models 

showed good performance as values < 0.5 suggests good performance of prediction models 

(Can et. al., 2005). 
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CHAPTER FIVE 

CONCLUSION 
This chapter concludes with a summary of the research findings, limitations encountered 

when carrying out the research, some recommendations for policy makers and future work. 

The possibilities of using remote sensing data and NDVI in particular, for monitoring 

and forecasting vegetation conditions are great. The east Africa region mainly engage in 

agriculture and livestock keeping and is vulnerable to natural disasters such as droughts, 

famine and floods. In addition, the region experiences increased vegetation degradation 

mainly caused by human activities and climate changes such as increasing temperature and 

inadequate rainfall, especially in the ASAL regions. 

Normalized difference vegetation index (NDVI) can be used to differentiate 

vegetation cover across a region by revealing vegetation changes and identify regions of 

vegetation deficit using temporal and spatial analysis of NDVI time series data. This can be 

achieved using NDVI time series plots to analyze temporal patterns and maps to analyze the 

spatial distribution to determine the overall vegetation condition in a region. 

This research assessed and forecasted vegetation condition using univariate pixel-

wise NDVI data (from February 2000 – September 2019) in east Africa in a low and high 

vegetation regions. MODIS NDVI data was used at it gives a continuous time series with a 

global spatial coverage and short temporal duration. In addition, the moderate resolution data 

is helpful to capture field scale variability. 

Pixel-wise modeling provides robustness, although it requires higher computational 

power, thus, creates a need to use high speed computing. The most crucial step during the 

models’ development was to select the best hyperparameters as they are the key to develop 

forecasting models which will result in accurate predictions. Thus, to minimize the 

computational time required to develop the models using the entire dataset for the study area, 

a subset of the data (1  1 pixel) was used to analyze the temporal pattern of the NDVI time 

series, grid search the models’ hyperparameters and eventually develop the models.  

Temporal analysis of NDVI is useful to monitor and detect vegetation condition as it 

provides information on vegetation phenological phases by low or high NDVI values. The 
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low and high vegetation regions have different climatic and vegetation condition. The 

temporal pattern of NDVI showed that the vegetation in the regions had undergone 

significant changes since 2000 to 2019. NDVI had a distinct temporal pattern as observed 

from the 1  1 pixel NDVI time series analysis, with the high vegetation region having high 

NDVI values and the low vegetation region having low NDVI values. Both regions had 

periods of high and low NDVI values such as a low NDVI in 2011, followed by a high NDVI 

in 2012.  

The comparison of the forecasting performance of the Holt-Winters model in the low 

and high vegetation regions was conducted at three levels: 10  10, 100  100 and 600  

600 pixels which is helpful to guide similar research based on computational capacity of 

institutions, especially in developing countries. However, this research placed more 

importance on the results from the 600  600 pixels as one of the objectives was to use a 

large dataset in order to cover a larger area which may be applied to forecast vegetation 

condition in other regions with similar characteristics. Thus, the results from the higher pixel 

level were used as they covered a larger area as well as give an insight on the expected results 

for similar research in the east Africa region. 

NDVI is often criticized of saturation problem in high biomass regions, however, the 

result obtained in this research showed that the Holt-Winters model achieved better predictive 

performance in the high vegetation region compared to the low vegetation region for the 600 

 600 pixels with the lowest MAE, RMSE and MSE of 0.0679, 0.084 and 0.0071 

respectively. The better predictive performance of the model in the high vegetation region 

may be due to the reception of the green light spectrum which causes the green light to be 

easily received by satellite photo sensors whereas for the low vegetation region, the strong 

light reflection from the land or soil surface are not blocked resulting in poor prediction. 

The comparative analysis between the models showed that the MLP 2 model (4000 

epochs, TanH AF and Adamax optimizer) showed the best skill to forecast NDVI in the low 

vegetation region at 6 months’ lead time, while the SARIMA model showed the worst skill. 

The MLP 2 using the TanH activation function showed better predictive performance as TanH 

activation function produces zero centered output thus, aiding in the back propagation 
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process. Moreover, the network training converges faster if the average of each input variable 

is close to zero, resulting in a minimal cost function. ANN models have been widely accepted 

as useful methods for modeling complex non-linear relationships in time series data. Thus, 

the good performance of the MLP 2 model in this research has provided new evidence of 

such properties of these models. On the other hand, the Holt-Winters model achieved the best 

predictive performance while the MLP 3 model resulted in the worst performance in the high 

vegetation region. 

Overall, the models showed reasonable predictive skills in forecasting NDVI at 6 

months’ lead time and may be helpful in forecasting NDVI in order to reduce vegetation 

degradation as well as for decision making in ecosystem and biodiversity conservation. 

Moreover, the 6 months’ lead time NDVI forecast will assist forest managers and land 

planners to effectively plan and devise methods that will ensure proper utilization of 

vegetation to help minimize and overcome vegetation degradation.  

Spatial mapping of NDVI could reveal thriving vegetation or vegetation deficit 

regions which may be studied to determine the factors affecting vegetation condition such as 

climate change, anthropogenic activities or plant’ phenological changes. Thus, the forecasted 

NDVI spatial maps revealed clear patterns of regions with thriving or deficit vegetation 

which may suggest that there are other variables which may influence vegetation condition. 

The maps revealed that although the low vegetation region is an ASAL, the region along the 

river bank has high NDVI values.  

Although NDVI is affected by other factors such as rainfall, temperature, soil 

moisture etc., this research demonstrated that it is possible to monitor and forecast vegetation 

condition in a region using NDVI data only as NDVI can be forecasted by using its lagged 

values only.  

Even though this research proposed a novel method in forecasting NDVI using pixel-

wise modeling, it is however, as with the majority of researches, subject to several limitations. 

The NDVI data used had a comparatively shorter temporal length compared to NOAA 

AVHRR NDVI data, (which has more than 30 years’ data, though with a lower spatial 

resolution of 0.05º, approximately 5.5 km) which may influence the effectiveness of the 
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forecasting models used in this research. Thus, temporal analysis using long term NDVI 

historical databases could help characterize vegetation condition and the implications 

humans have on it at the local and global scale.  

As noted before, vegetation condition may be affected by climatic conditions such as 

rainfall and temperature. However, existing rainfall and temperature data are in coarse spatial 

resolution such as 27.25 km resolution for rainfall data from Tropical Rainfall Measuring 

Mission (TRMM), 55 km resolution rainfall data from Climate Hazards Group InfraRed 

Precipitation with Station (CHIRPS) and 1 km resolution land surface temperature (LST) 

data from MODIS Terra Land Surface Temperature/Emissivity Daily (MOD11A1) or 

MODIS Terra Land Surface Temperature/Emissivity 8-Day (MOD11A2). Due to the coarse 

spatial resolution of such data, it became difficult to perform a correlation analysis between 

rainfall, temperature and NDVI using the pixel-wise approach. In addition, the coarse spatial 

resolution of the rainfall and temperature data made it difficult to have a correct coordinate 

match with the moderate resolution NDVI data used in this research for pixel-wise modeling. 

Accurate and timely data that describes vegetation condition is crucial to assess 

vegetation development and to best understand and monitor land use practices. The challenge 

of meeting local and global demand in land usage while conserving and protecting vegetation 

will require different stakeholders to focus on mitigation of vegetation degradation through 

the use of readily and freely available remote sensing data and developing forecasting tools 

to allow making informed decisions that are environmentally friendly and economically 

feasible.  

The forecasting models used in this research should be used with caution since their 

behavior will change and adapt differently depending on the NDVI data used and the 

characteristics of a region such as climatic conditions, types of vegetation, land use and land 

cover etc. 

This study was limited to two regions (low and high vegetation regions) in east Africa. 

The NDVI forecasts spatial maps at the pixel level revealed areas with vegetation deficit 

which may offer opportunities for further research to focus on how local communities are 
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adapting to the impacts of vegetation degradation and the mitigation methods they are using 

to reduce the impacts. 

Although in-situ data provides better opportunity to identify actual cases of 

vegetation degradation, the data relies on traditional methods of data collection which are 

time consuming and costly. Thus, policy makers can utilize various data sources such as the 

freely available remote sensing data and various assessment tools. 

The results of this research may promote increased awareness for the local 

communities, especially in the low vegetation region to use vegetation and land resources 

sustainably and avoid practices that promote vegetation degradation for long-term use of the 

resources. 

Future research perspectives will be to explore other ANN models such as 

convolutional neural networks (CNN) as well as perform the analysis for short-term, mid-

term and long-term forecasts. 
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