
 

 

 

 

 

 

 

 

PERSONAL CLASSIFICATION SYSTEMS AIDED BY FUZZY LOGIC 

 

 

 

 

 

 

 

TAKAHIRO TAKEDA 

 

 

 

 

 

 

 

MARCH 2014 

 





 

 

 

 

 

 

 

 

PERSONAL CLASSIFICATION SYSTEMS AIDED BY FUZZY LOGIC 

 

 

BY 

 

 

TAKAHIRO TAKEDA 

 

 

A dissertation submitted in partial fulfillment of the requirement for the degree of  

 

 

DOCTOR OF ENGINEERING 

UNIVERSITY OF HYOGO, JAPAN 

 

 

 

MARCH 2014 

 





 

 

 

 

 

 

 

 

 

 

 

 

To my mother, father, and sister for helping me bold the 

foundations in my life and allowing me to give my studies.   



 
 

 

Acknowledgments 
 

 

I would like to appreciate, first of all, Professor Yutaka Hata of University of Hyogo for giving 

me the opportunity to study under him.  I am grateful to Associate Professor Syoji Kobashi of 

University of Hyogo, and Associate Professor Kei Kuramoto of University of Hyogo that they 

guide my education to a direction I may not have otherwise considered.  Their wise counsels 

and supports are invaluable.   

I would like to thank Doctor Kazuhiko Taniguchi and Tadahito Egawa of Kinden 

Corporation, Mister Kazunari Asari of The Kansai Electric Power Company Inc. and Mister 

Toshiyuki Sawayama of New Sensor Incorporated for providing an experimental environment, 

and helpful discussion in the field of sensor.  

I would like to thank Professor Yoshitada Sakai of Division of Rehabilitaion Medicine, 

Kobe University Graduate School of Medicine and Doctor Hiroshi Nakajima in OMRON 

Corporation for helpful discussion in the field of health monitoring. 

The author also would like to thank to all volunteers.  I must also thank all members in 

Information Systems Laboratory for their encouragement and fruitful discussions.  

  

 

 

  



 

 

PREFACE 

This dissertation introduces personal classification systems aided by fuzzy logic.  The 
classification systems are used in our daylily lives such as vending machine, security system, 
heath management system and so on.  Especially, the biometric security and health condition 
estimation are important to our society.  Generally speaking, human movements are 
individually different by our physical function such as gender, age, height and so on and 
physiological function such as health condition, mental state, habit and so on.  It is considered 
that by measuring the movement, we are able to know the functions of a person.  The 
dissertation describes four classification methods based on movement measurement; an object 
classification method to adults, children, toddlers and other object from distance distribution 
data, a foot-age estimation method from sole pressure distribution data, a walking ability 
evaluation method from sole pressure distribution data, and a biometric personal 
authentication method from sole pressure distribution data.    

In the object classification method using time-of-flight (TOF) principal camera, the 
system classifies moving objects to adults, children, toddlers and other objects such as 
animals or baggage.  The TOF camera acquires distance distribution images.  The moving 
objects are detected from the images by fuzzy k-means clustering method.  The classification 
system extracts height, thickness, aspect ratio and occupancy of a silhouette as features of the 
detected object to classify it.  These features are gnomically calculated from distance 
information and camera installation parameters.  For classification, the system determines 
fuzzy degree of adult, child, toddler and objects, and the object. In experiment, the method 
classified subjects with good classification rate.  

In the foot-age estimation method from sole pressure distribution, we estimate a foot-age 
by classifying the walker to young age, middle age and elderly group.  The sole pressure 
distribution while walking is acquired by mat-type load distribution sensor.  The method 
extracts step length, step center-of-sole-pressure (COP) width, CSP trajectory and time of 
double support period.  The fuzzy degree of young, middle and elderly are calculated by 
statistically determined fuzzy membership function, and the foot-age is estimated from these 
fuzzy degrees by fuzzy MIN-MAX center-of-gravity method. In addition, an automated 
diagnosis and advice system based on foot-age is proposed.    

In the walking ability evaluation method from sole pressure distribution data, we develop 
a gait level index which is quantitative index to evaluate gait level by classifying the data to 
patients or commons.  The method extracts gait speed, time of double support and gait 
balance as gait features.  The gait level index is estimated by fuzzy MIN-MAX center-of-
gravity method.  In experiment, we took sole pressure data from 10 patients and 90 commons. 
As the results this method estimated gait level index.  

The biometric security system based on walking authenticates person by gait features 
extracted from shape of sole and white shift from sole pressure distributions. The fuzzy 
degree of similarities are decided by using statistically learned fuzzy membership functions 
for right and left sole, independently.  The fuzzy degree of sole pressure data is calculated by 
combining fuzzy degrees of right and left sole.  In experiment, the system authenticated 
person with better accuracy than other method based on walking.  

Finally, we conclude this classification methods for security and healthcare system.     
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1 Introduction 

In our life, classification systems are used for various fields.  Here, the classification system is 
defined as a system which classifies something to categories provided in the common 
characteristics.  For example, a vertebrate animals are categorized into “Mammals”, “Aves”, 
“Amphibian” , “Reptile”, and “Fish”.  And, they are classified by their birth, living space, 
shape, respiration and so on.  Moreover, security systems classify us to administrated person 
or not, and vending machines also classify monies with high accuracy.  Therefore, the 
classifications are important in our society.  However, the systems sometimes request us to 
manual inputs and manual classifications.  Representative examples are as follows; the age of 
a chopper is checked when the shopper is trying to buy liquor or cigarettes, medical doctors 
determine health condition of a patient by their subjective experience.  The manual 
classifications induce problems such as low user-friendliness, false classification and high 
human costs.  Recently, a necessity of automated classification system is increase with 
incensement of automation system and subdivision of categories.  There are three types 
automated classification system.  As the first type, the system uses manual inputted 
information such as network authentication, diagnosis based on medical interview sheet and 
so on.  Generally said, it has higher accuracy and lower user-friendliness.  Second type 
automated classification system uses a property which records information of the person.  For 
example, an identification (ID) card, a key and a clinical record are used for personal 
authentication or diagnosis.  It has middle accuracy and user-friendliness.  As the third, the 
system measures classification target directory.  It is used for vending machine and biometric 
authentication.  In this study, we focus on the classification system based on directory 
measurement for their user user-friendliness.  When classification target is standardized 
objects, the system can be developed by simple pattern matching method, because a time 
unchangeableness of the target is high.  However, the human beings and other living bodies 
might vary at measurement date and time.  Therefore, it is difficult to develop a classification 
systems for human by their time variability and individuality.    

There are many sensors to measure human and living bodies.  The camera which is one 
of non-contact sensors acquires appearance body from single shot photograph, and it obtains 
motions and activities of the body from moving images.  The non-contact sensors can 
measure targets with long range and wide view.  In generally, the obtained images include 
background, noise, and non-target object.  It is needed to extract the body from image by 
background subtraction and clustering method.  However, because sometimes noisy object 
interrupts by an occluding, it is difficult to extract the target.  To improve extraction rate, 
distance information is used for human detection.  By using the distance information, we can 
find the occluded person.  The distance information is acquired by stereoscopic vision camera, 
laser triangulation camera and time-of-flight (TOF) principal camera.  The force plate which 
is one of contact sensors acquires center-of-gravities among human standing.  The contact 
sensors obtain information at a surface of a human body.  For example, pressure sensor 
acquires a pressure between the sensor and contacted point of the body, and the thermal 
sensor measures a body temperature.  A measurement area of the type sensor is narrow, but it 
can mea rue the information certainly.  
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This study proposes classification systems for human based on fuzzy logic.  The fuzzy 
logic is one of soft computing method to treat ambiguous values such as “Tall”, “Fast”, “Big”, 
“Long” by multi-valued logic, and it is widely used for human-related sciences and 
successfully solves these problems.  Biometrics is one of these attractive applications.  It 
requires feature extraction and matching tasks.  Especially, fuzzy logic has been successfully 
applied to many biometric matching systems.  In the applications, fuzzy logic achieved higher 
robustness, adaptively and precision.  Here, fuzzy rules are derived from human experiences 
and knowledge to understand fuzzy values of characteristics.  To classify human, fuzzy 
degrees are obtained from developed fuzzy rules and fuzzy membership functions.  In this 
study, the fuzzy degree is treated as a similarity degree of a category.  Then, our systems 
classifies target objects by the fuzzy degree.  One of merits of using the fuzzy logic, it can be 
feed backed by human experiences and knowledge, therefore, the system is comprehensible 
for human. 

This article describes four personal classification systems.  In the Chapter 2, an object 
classification method from distance distribution images is proposed.  The method is proposed 
as night vision security system by classifying moving objects.  In the system, a TOF camera 
measures distance distribution image.  The TOF camera is one of active infrared camera, and 
it is able to measure distance information at daytime and nighttime.  The target objects are 
detected and extracted by background subtraction and fuzzy k-means clustering method.  
Fuzzy if-then rules and fuzzy membership functions are derived from human characteristics 
and average heights of generations.  The system classifies target object to adults, children, 
toddlers and the other object.  Here, other objects is considered as animal, baggage, car and so 
on.  In the Chapter 3, a walking ability estimation method from sole pressure distribution is 
proposed.  The sole pressure distribution is pressure distribution at sole of subject while 
walking, and it is acquired by mat-type lad distribution sensor.  The method is proposed as a 
diagnosis system for walking ability.  In the system, a foot-age which is one of age related 
indexes is developed to evaluate the walking of subject.  By using the foot-age, we are able to 
know our walking abilities without medical knowledge.  To estimate the foot-age, the system 
classifies the subject to young age, middle age and elderly groups based on fuzzy inference.  
Then, the fuzzy MIN-MAX center-of-gravity method estimates foot-age of the subjects.  In 
the Chapter 4, a gait level estimation method from sole pressure distribution is proposed.  The 
method is proposed as a diagnosis support system for rehabilitation.  In the rehabilitation field, 
an personalized rehabilitation program is made for each patients related to their gait level.  
Now, medical doctors or physical therapists evaluate the gait level by their experience and 
subjectively.  To make a quantitative index to evaluate the gait level of a patient, our system 
estimates gait level index by classifying the acquired sole pressure data to patient or commons.  
In Chapter 5, a biometric security system is proposed.  The biometric system authenticates 
person from their sole pressure distribution.  The walking is most natural motion in our daily 
motions, and the system do not retardation us.  The shape and weight shift related features are 
extracted, and fuzzy degrees are calculated as an authentication score.  From the fuzzy degree, 
the biometric system identifies and verifies the walking person. Finally, the Chapter 6 
conclude this article.  
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2 Fuzzy Object Classification Method from Distance 

Distribution Images  

This chapter proposes a fuzzy logic based object classification method from distance 
distribution images acquired by laser infrared time-of-flight (TOF) camera.  The method 
classifies detected objects to adults, children, toddlers and other objects form appearance 
based features.  Section 2.1 introduces the object classification system.  Section 2.2 explains 
TOF principle and our sensor system.  Section 2.3 shows fuzzy aided object detection method 
from a distance distribution image.  Section 2.4 shows fuzzy logic based object classification 
method.  Section 2.5 describes experimental results.  Section 2.6 discusses the object 
classification system.  Section 2.6 concludes this chapter.   
 
2.1 Introduction 

A detection system of people distribution situations has received much considerable attention 
over the years in various fields.  For example, these detection systems are used for energy-
saving, security, navigation, amusement and computer vision fields [1]-[3].  In energy-saving 
fields, the system monitors or counts a number of people in the room to optimize air-
conditioning or illumination control [4].  In amusement or computer vision fields, motion 
capture systems are used to control machine or reconstruct movements of people [5], [6].  In 
security fields, surveillance camera investigates and prevents crimes by monitoring the people 
distribution [7].  Security systems need a high accuracy and environmental stability.  There 
are a lot of wide challenges to detect people distribution from the visible image by an imaging 
device.  Generally, most of them employ CCD camera, thermo-graphic image and infrared 
laser camera.  The CCD camera acquires visible moving image, and the general infrared 
sensor acquires thermal image.  These images are strongly influenced on illumination 
environment or temperature environment.  It makes increasingly difficult to extract restrictive 
characteristics like texture, edge and change in signal value with robust and cost-efficiency.  
Thus, it is under-qualified for the security system in night.  On the other hand, thermo-graphic 
and infrared laser cameras are used in night-vision systems.  These cameras form an image 
using infrared radiation.  The thermo-graphic camera is a passive infrared camera, and it 
measures infrared thermal emission from humans or animals.  The camera is adapted to living 
body.  However, because a resolution of this camera is low, the camera sometimes detects 
falsely a warm object as human.  For example, it detects concrete road heated up by strong 
sunshine.  Moreover, a high temperature objects may cause the afterimage.  Meanwhile, 
human senses 3-dimensional (3D) information such as distances by psychological factors and 
physiological factors.  Therefore, it is very important to obtain the distance information for 
intelligent complex system like human’s sense.  The stereo vision system is able to acquire 
distance information [8], but it needs much processing for calibration of two cameras.  The 
infrared laser camera is an active sensing camera, and it measures distance distribution by 
time-of-flight (TOF) principle.  The TOF principle is a possible method for fast optical 
acquisition of distance information.  The principle measures distance from phase delay of 
radiated and received infrared waves.  The phase delay is occurred from the distance between 
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target and camera.  Thus, the infrared TOF camera is able to acquire distance information, and 
it forms surfaces of objects.  The infrared TOF camera provides the objects by 3D position 
and configuration of the object obtained from distance distribution.  The camera is also 
available to night.  On the past works, Ikemura et al. [9] proposed a human detection method 
by Haar-like filters from distance distribution image acquired a TOF camera.  These filters 
find a difference between top of head and shoulders of human.  Since the TOF camera is set to 
install on ceiling of room, it is not applicable to outdoor usage.  On the other hand, K. Ho et al. 
[10] proposed object detection method by background subtraction and clustering based on 
fuzzy inference.  The method is able to use outdoor.  However, it did not classify objects to 
human or not.  This method extends the human detection system proposed by Ref. [10].   

In this method, we propose an object estimation method by using the infrared TOF 
camera.  The method detects moving objects, and it classifies them to humans or other objects.  
The system classifies humans to adults, children and toddlers depending on their height.  The 
height is primary factor to classify human, and it can be estimated by using the TOF camera.  
We aim to develop a method for any TOF camera and security system.  Several security 
systems are limited the sampling intervals.  Thus, we do not employ dynamic features such as 
human behaviors which depend on sampling intervals.   In this method, a k-means clustering 
method [10] detects moving objects.  To classify them, height, thickness, aspect ratio and 
occupancy of the objects are calculated as features.  The method estimates the objects based 
on fuzzy logic aided by human characteristics and average height in Japan.  In our 
experiments, we employed seven volunteers and two dogs.  Animals such as dog are hard to 
measure by TOF camera, because their pelage is strong noise source.  As the results, the 
method measured height of subjects with low estimation error.  We tested out method for 
animal, single target and multiple targets.  The method estimated subjects with 84.9 ± 16.3% 
(mean ± standard deviation) in classification rate. 
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2.2 Time of Flight Camera 

In this study, we acquire a distance distribution by using infrared time-of-flight (TOF) camera.  
The infrared TOF camera measures distance based on phase-measuring TOF principle.  The 
TOF principle is a possible method for fast optical acquisition of distance.  According to the 
distance between the target and the camera, reflected waves are delayed in phase compared to 
the source radiated wave.  Where, the distance corresponding to on full cycle dmax is given by 
Equation 2.1 from speed of light c and modulation frequency fM.  

max 2 M

c
d

f
   [m] (2.1)

As the equation, camera range is depends on the modulation frequency.  For example, at a 
modulation frequency of 30 MHz, the dmax is 4.997 m at a speed of light 299792458 m/sec.  
To measure a distance between camera and object, infrared LED array of the camera emit 
modulated light pulses.  The modulated signal can be thought of a sinusoidal signal as shown 
in Figure 2.1.  In the figure, the vertical lines shows refracted signal of 4 period phase shifts.  
The camera system measures its precise time of arrival and phase delay between emitted and 
received signal.  The target distance d can be calculated from the delay   by Equation 2.2.   

max 2
d d





    [m] (2.2)

t

I

 
Figure 2.1.  Time of flight sampling of reflected modulated signal. 

 
Table 2.1  Specification of TOF cameras. 

TOF camera SR-4000 D-IMager 
Dimension (H × W × D) 65 × 65 × 68 mm 54 × 170 × 49 mm 

Frame rate max 54fps 15, 20, 25, 30 fps 
Spherical distance (range) 14 bit (0 ~ 16381) 11 bit (0 ~ 1500) 

Field of view 43.6° × 34.6° 30° × 44° 
Pixel array size (w × h) 176×144 pixels 160 × 120 pixels 

Focus length 10 mm - 
Detection range  0.3 ~ 5.0 m 1.2 ~ 9.0 m 

Absolute accuracy ±10 mm ±30 mm 
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In this article, we employ two infrared TOF cameras “SwissRanger SR-4000, MESA 
imaging AG” and “D-IMager EKL3104, Panasonic Corporation” to test the availability of our 
developed algorithm.  Table 2.1 shows specification of SR-4000 and D-IMager.  SR-4000 
measures distance distribution for the range from 0.8 m to 5.0 m, and the image resolution is 
176 × 144 pixels.  D-IMager measures distance distribution for the range from 1.2 m to 9.0 m, 
and the resolution is 160 ×120 pixels.  The SR-4000 has higher accuracy than D-IMager.  On 
the other hand, the D-IMager is able to measure wider area than SR-4000.  Figure 2.2 shows 
appearances of these cameras.  These cameras reconstruct the incoming light wave and image 
the distance distribution as depth map image in real-time.  Figure 2.3 shows camera 
coordinate system.  In this paper, the notation D(x, y, t) denotes the distance distribution data 
of a sampling time t.  The notation x and y are local coordinate value.  The distribution D is 
quantified by measurement of 3D position P(XW, YW, ZW) as shown in Figure 2.3, and it 
consists of distance distribution image d(x, y).  Figure 2.4 and Figure 2.5 show examples of 
distance distribution images acquired by SR-4000 and D-IMager, respectively.  Left figure 
shows 2D distance distribution as shown in Figure 2.6.  And right figure shows 3D position of 
the distribution as shown in Figure 2.7. 

65mm

65mm

68mm

49mm
170mm

54mm

(a) SR-4000 (b) D-IMager 
Figure 2.2.  Appearances of TOF cameras. 

 

X

Y

xd

yd

Z

(XW, YW, ZW)

d

x

y

Focus

object

 
Figure 2.3.  Camera coordinate systems of TOF cameras. 

 



Chapter 2.  Fuzzy Object Classification Method from Distance Distribution Images | 7 
 

 

Figure 2.8 shows proposed experimental system.  In this figure, the notation H denotes 
camera installation height, and the θ dose a depression angle.  In our system, to estimate 
human height, the H is set from 1.6 m to 2.5 m, and the θ is limited to less than 30 degree.  
The measurement range is set as 5 m for both cameras.  The camera continuously monitors 
acquisition area and sends the distance distribution image data to personal computer by wired 
connection.  The frame rate of the experimental system is 15 fps.  

 

5.0m

0.3m
 

 (a) 2D view (b) 3D view 
Figure 2.4.  Examples of distance distribution image of SR-4000. 

 

9.0m

1.2m

9.0m

1.2m
 

 (a) 2D view (b) 3D view 
Figure 2.5.  Examples of distance distribution image of D-IMager. 
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 Figure 2.6.  Explanation of 2D view. Figure 2.7.  Explanation of 3D view. 
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2.3 Object Detection   

The estimation system detects moving objects from distance distribution image D(x, y, t) 
acquired by the infrared TOF camera.  For detection, background subtraction, noise rejection 
and transformation are performed as the pre-processing.  Then, the system detects human by 
fuzzy k-means clustering.  Figure 2.9 shows procedure of pre-processing and human detection.  

The acquired image includes background objects and some noises.  The system performs 
background subtraction to separate interest objects from the acquisition image dRAW(x, y) by 
background model dB(x, y).  In this system, the background model dB(x, y) is developed from 
statistics information of background [11], and it is defined by Equation 2.3.    

     , , ,B B Bd x y d x y x y      [m] (2.3)

Here, the notation  ,B x yd  denotes a mean value of the pixel in background data, and 

 ,B x y  denotes a deviation of the pixel (x, y).  These mean and deviation values are 
calculated from distance distribution data at camera installation.  Moreover, the notation κ 

Height: H

depression angle: θ

TOF camera

Ground

Personal computer 

object

W
al

l

measurement range

 
Figure 2.8.  Camera installation of our system. 

 

Start

Background subtraction

Nose reduction

Coordinate transformation 

Fuzzy k-means clustering

Mask image production

Finish

Distance distribution

 
Figure 2.9.  Procedure of object detection method. 
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denotes coefficient and ζ does maximum noise value of the distance distribution.  In this paper, 
these parameters are experimentally determined, and we set κ= 1.0 and B  = 0.075 m (1.5% 
in detection range).  Then, the subtracted distance dSUB(x, y) is obtained by Equation 2.4.  

           
 

0 , , , , ,
,

,

B B RAW B B
SUB

RAW

if d x y x y d x y d x y x y
d x y

d x y otherwise

         
  

[m] (2.4)

Figure 2.10 shows an example of acquisition image dRAW(x, y) and background subtracted 
image dSUB(x, y).  Then, the system reduces noises from background subtracted image dSUB(x, 
y).  Figure 2.11 illustrates major noise sources of TOF principal cameras.  When objects exist 
outside range of the TOF camera, the reflected wave delays over one cycle.  Thus, the TOF 
camera confuses the distance of outside objects with inside objects.  By the confusing, noises 
are generated.  As shown in Figure 2.11(c), when the radiated wave reflects at edge of object, 
border of objects, human hair and pelage, the noises are generated.  To reduce these noises, 
the system applies median filter and labeling process to background subtracted image dSUB(x, 
y).  And if an area of labeled pixels is less than 1.0%, we reject the pixels as the noise.  We 
obtain the noise reduced distance distribution dDN(x, y).  Figure 2.12 shows an example of 
background subtracted image dSUB(x, y) and noise reduced image dDN(x, y).  In this method, 
the TOF camera is installed with depression angle.  For feature extraction, the system corrects 
the camera installation angle θ by coordinate transformation.  The 3D position of noise 
reduced data PDN is rotated around the x-axis by rotational transform matrix of Equation 2.5.   

 

0.3m

5.0 m

 
 (a) raw data  (b) background subtracted image 

Figure 2.10.  Example raw data and background subtracted image. 
 

Edge of  objectOutside of range

Reflection plane

CCD for a pixel

d

0

dmax

2π

outside of range


 

 (a) examples of noise (b) outside of range (c) edge of object 
Figure 2.11 Major noise sources of TOF camera.  
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Here, the notation PSRC is rotated 3D position and (XS, YS, ZS) denote world coordinate values 
of the rotated image.  Figure 2.13 shows an example of coordinate transform process. 

To detect moving objects, the system performs the clustering method using fuzzy 
inferences which like ISODATA clustering algorithm [10], [12].  The algorithm based on k-
means clustering, and it automatically decides the number of clusters k.  The system clusters 
moving objects from the 3D position PSRC.  The k-means method clusters the 3D position data 
to clusters c = {c1, c2, …, ck}.  We consider the distance of each cluster dij is short, when the 
method divides an object to two or more clusters.  Here, the notation dij denotes a Euclidean 
distance between centroids of ci and cj in the X-Y-Z space.  The notation dmin(k) denotes the 
shortest distance among all dij for the k.  For example, when the k is 3, the dmin(3) is minimum 
value among d12, d23 and d31.  Moreover, we consider small clusters are generated from noises.  
The size of cluster si is calculated from ci, and smin(k) denotes the size of the smallest cluster.  
From the knowledge, we obtained following fuzzy if-then rules.   

Rule 1 :  IF a minimum distance dmin(k) is LONG, THEN a fuzzy degree μD(k) of distance 
 is high.   

Rule 2 :  IF a size of the smallest cluster smin(k) is MANY, THEN a fuzzy degree μS(k) of the 
 cluster size is high.   

 
 (a) background subtracted image  (b) noise reduced image 

Figure 2.12.  Example background subtracted image and noise reduced images. 
 

0.3m

5.0 m

 
 (a) source image  (b) transformed image 

Figure 2.13 An example of correct camera installation depression angle.  
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Here, the fuzzy membership function LONG and MANY shown in Figure 2.14 are defined as 
Equations 2.6 and 2.7, respectively.  Here, the th1 of LONG is determined as 20% of 
measurement range.  The th2 of MANY is determined as 5% of pixel array size of the TOF 
camera.   

 21
12

1

exp

1.0

d th
if d th

LONG th

otherwise

           


 (2.6)

 22
12

2

exp

1.0

n th
if n th

MANY th

otherwise

           


 
(2.7)

Fuzzy degrees μD(k) and μS(k) are calculated as Equations2.8 and 2.9, respectively.   

      min
min ,D d kk LONG S d  [degree] (2.8)

      min
min ,S S kk MANY S n  [degree] (2.9)

Here, fuzzy singleton function Sα(β) is defined by Equation 2.10.  

 
1

0

if
S

otherwise
 




 
   

[degree] (2.10)

From these fuzzy degrees, a fuzzy degree μClass(k) of appropriateness of current number k is 
calculated by Equation 2.11. 

     Class D Ck k k    [degree] (2.11)

Here, the fuzzy degree μClass (k) has higher value when the number of cluster k is smaller than 
the number of objects.  When k is bigger than the number of objects, the degree is low.  The 
cluster number k is decided by the fuzzy degree μClass(k) as following process.   

1. The number of clusters k is initialized as 2.  
2. System performs k-means clustering method for k =2. 
3. A fuzzy degree μClass (k) is calculated. 
4. If the fuzzy degree μClass(k ) ≥ 0.5, then, the number k is updated as k+1. 
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Figure 2.14.  Fuzzy membership functions of clustering method. 
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5. The system repeats the calculation while the fuzzy degree μClass(k) ≥ 0.5.  If the fuzzy 
degree μClass(k) < 0.5, then, we the number of cluster k is decided as k-1. 

The system executes k-means clustering method by using the decided number k.  Then, the 
system obtains the number of clusters.  Moreover, the system detects moving objects o = {o1, 
o2, …, oi, …, ok} as clusters, and it obtains 2D mask images MI = {mi1, mi2, …, mii, …, mik} 
of these objects.  Here, the notation i means index of objects.  Figure 2.15 shows an example 
of the 2D mask images (k=3). 
 
2.4 Object Classification 

2.4.1 Feature Extraction 

To classify clusters, we extract features form each cluster.  In our method, the system 
calculates a height, thickness, aspect ratio and occupancy as human body characteristics.  To 
extract these features, we make a circumscribe rectangle cri for the mask image mii as shown 
in Figure 2.16.  Here, the notation H(cri) and W(cri) denote height and width of the 
circumscribe rectangle, respectively. . 

The height of object hi is calculated from camera installation parameter (H, θ) and 
contact point between upside of object oi and the circumscribe rectangle (xH,i, yH,i).  From 
these parameters, the height of cluster is geometrically calculated by Equation 2.12 from 
Figure 2.17. 

mi1 mi2 mi3

 
 (a) noise reduced image (b) 2D mask image 

Figure 2.15.  Examples of 2D mask images obtained by fuzzy clustering process. 
 

(xH, yH)

H(cr1)

W(cr1)
 

Figure 2.16.  Examples of circumscribe rectangle and heat point of a mask image.  
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Here, Ψi is calculated by Equation 2.13. 

,
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arcsin H i
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[rad] (2.13)

The height of objects is the primary factor to estimate a moving object.  The height of adults 
is taller than that of children.  Moreover, the height of human depends on the person.  

The thickness is defined as breadth from back to front of body trunk.  The thickness of 
cluster thi is calculated from 3D position data PSRC.  To calculate the thickness, we determine 
the standard division (SDi) of ZW for any extracted object oi.  As shown in Figure 2.18, the 
thickness of cluster is defined as SDi × 2.  If the object is human, the thickness is also ranged 
from 150 mm to 800 mm.   

The aspect ratio ari and occupancy oci of object oi are obtained from the circumscribe 
rectangle and mask image mii.  Figure 2.19 shows a definition of aspect ratio and occupancy 
of an object.  Equation 2.14 calculates the aspect ratio from the height and width of the 
circumscribe rectangle.   

 
 

i
i

i

W cr
ar

H cr
   [n.u] (2.14)

The area S(mii) of the mask image mii is calculated for the occupancy.  Then, the occupancy is 
calculated by Equation 2.15. 

 
   

i
i

i i

S mi
oc

W cr H cr


   
[n.u] (2.15)
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 (a) side view (b) front view 
Figure 2.17.  Height calculation method from distance information and camera insulation 

parameters. 
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Figure 2.18.  Examples thickness of a cluster.  
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By using these features, the system classifies objects.  In the human body, the aspect ratio is 
vertically long, and occupancy is not too large.  Figure 2.20 and Figure 2.21 shows an 
example of relationship between aspect ratio and occupancy of a subject who is swinging 
down one’s arms.  There is an inverse correlation between aspect ratio and occupancy.  By 
least-squares method, we obtained a model of ideal occupancy ioc  to aspect ratio shown by 
Equation 2.15.  

0.563 0.763ioc ar      [n.u] (2.16)

The system compares calculated occupancy oci with the ideal occupancy ioc  to classify the 
object oi to human or not.   

 
Figure 2.19.  Definition of aspect ratio and occupancy of a cluster.  
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Figure 2.20.  Example of transaction of aspect ratio and occupancy. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.2 0.4 0.6 0.8 1.0 
aspect ratio

oc
cu

pa
nc

y

measured
ideal oc

 
Figure 2.21.  Relationship of aspect ratio and occupancy. 

 



Chapter 2.  Fuzzy Object Classification Method from Distance Distribution Images | 15 
 

 

2.4.2 Object Classification based on Fuzzy Inference  

The system classifies moving object based on fuzzy inference.  In this method, we classify the 
object to adult, child, toddler and other object.  Human category is divided into adult, child 
and toddler, and they are classified from standard body height.  In this paper, we use standard 
body height in Japan.  The system can be optimized to country or family by these height 
parameters.  Toddlers are intended more than primary school children whose standard body 
height is around 0.8 m.  Similarly, children are intended for primary school children whose 
standard body height is around 1.2 m, and standard height of adults is around 1.6 m.  The 
animals and other baggage are distinguished by the other features.   

To classify these humans and objects, we use body height hi, thickness thi and occupancy 
oci.  We consider the height of human is around the standard body height (Knowledge 1).  We 
consider the thickness of human is around rational certain value (Knowledge 2).  The 
occupancy of human is obtained similar value with the ideal occupancy calculated by 
Equation 2.15 (Knowledge 3). From these knowledge, the following fuzzy if-then rules are 
derived.   

Rule 3 :  IF the height hi of the object oi is TALL, THEN a fuzzy degree of adults μTall(oi) is 
 high.   

Rule 4 :  IF the height hi of the object oi is MIDDLE, THEN a fuzzy degree of children 
 μMid(oi)  is high.   

Rule 5 :  IF the height hi of the object oi is SHORT, THEN a fuzzy degree of toddlers 
 μSshort(oi) is high.   

Rule 6 :  IF the thickness thi of the object oi is AROUND rational certain value of human, 
 THEN a fuzzy degree of human μThick(oi) is high.   

Rule 7 : IF the occupancy oci of the object oi is CLOSE to ideal occupancy ioc , THEN a 
 fuzzy degree of human μOC(oi) is high. 
Here, the fuzzy membership functions, TALL, MIDDLE, SHORT, AROUND and CLOSE are 
defined by Figure 2.22.  In the membership function TALL, MIDDLE and SHORT are 
optimized for Japanese average height.  In the function AROUND, minth and maxth are the 
thresholds that are determined based on average value of human.  These fuzzy degrees μTall(oi), 
μMid(oi), μSshort(oi), μThick(oi) and μOC(oi) are calculated by following equations.   

    min ,
iTall i ho TALL S h  [degree] (2.17)

    min ,
iMid i ho MIDDLE S h  [degree] (2.18)

    min ,
iShort i ho SHORT S h  [degree] (2.19)

    min ,
iThick i tho AROUND S th  [degree] (2.20)

    min ,
iOC i oco CLOSE S oc  [degree] (2.21)

From these fuzzy degrees, the system calculates a fuzzy degree of human μHuman (oi) by 
Equation 2.22.  

     1 2Human i Thick i OC io w o w o      [degree] (2.22)
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Here, w1 and w2 are weighting parameter, and w1 + w2 = 1.0.  The system classifies human to 
adults, children and toddlers by using the height of the object.  The fuzzy degrees of adult 
μA(oi), children μC(oi) and toddlers μT(oi) are calculated by following equations.  

     A i Tall i Human io o o    [degree] (2.23)

     C i Mid i Human io o o    [degree] (2.24)

     T i Short i Human io o o    [degree] (2.25)

Furthermore, the fuzzy degree μO(oi) is complement to the fuzzy degree of human categories. 
It is calculated by Equation 2.27. 

        1O i A i C i T io o o o       [degree] (2.26)

By using these fuzzy degrees, the system estimates the target object oi as a class with the 
highest fuzzy degree.  For example, if μA(oi) = 0.0, μC(oi) = 0.63, μT(oi) = 0.31 and μO(oi) = 
0.06, the system estimates the object oi as children. 
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(a) fuzzy membership function for height of cluster 
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(a) fuzzy membership function for occupancy of cluster  

Figure 2.22.  Fuzzy membership functions for object classification system. 
 



Chapter 2.  Fuzzy Object Classification Method from Distance Distribution Images | 17 
 

 

2.5 Experimental Results   

In our experiments, installation parameters of Infrared TOF cameras were set as H = 1.6 m 
and θ = 10 degree.  The parameters of fuzzy membership functions were experimentally 
determined as below: tth = 10 cm, uth = 60 cm, tOC = 0.2 and uOC = 0.6.  In this paper, we 
tested our method for single target and multiple targets by using two types of cameras: SR-
4000 and D-IMager.  We performed our method by classification rate (CR) defined as 
Equation 2.27.   

 Correctly classified frames
100 %

Number of detected frames
CR    (2.27)

Here, correctly classified frames are counted up when the method classifies the object to truth 
class.   

In first experiment, we tested our method for single target.  We employed seven 
volunteers as shown in Table 2.2.  Each volunteer stood upright in front 4 m of the camera, 
and classified by our proposed method for about 20 sec / 15 fps.  We compared classification 
accuracy between SR-4000 and D-IMager.  Table 2.3 and Figure 2.23 show height estimation 
results of SR-4000 and D-IMager.  The method estimated height of volunteer with 0.051 m 
mean absolute error in SR-4000 and 0.054 m mean absolute error in D-IMager.  As the result, 
the proposed method was able to estimate the height in both SR-4000 and D-IMager with low 
estimation error.  Table 2.4 and Table 2.5 show obtained fuzzy degrees and classification rates 
for single targets by SR-4000 and D-IMager, respectively.  The mean classification rate of 
SR-4000 was 99.0%, and the rate of D-IMager was 98.1%.  The proposed classification 
method equally classified these volunteers in both SR-4000 and D-IMager.  Therefore, in after 
experiments, we tested our method by only SR-4000.  

Table 2.2  Information of volunteers. 
Subject ID Age [years] Height [m] Truth class 

#A 4 0.98 Toddler 
#B 5 1.11 Child 
#C 7 1.13 Child 
#D 9 1.31 Child 
#E 21 1.55 Adult 
#F 23 1.60 Adult 
#G 22 1.72 Adult 

 
Table 2.3  Experimental results for single target. 

 Truth SR-4000 D-IMager 
height [m] Class h(o) [m] SD [m] h(o) [m] SD [m] 

#A 0.98 Toddler 0.932 0.102 0.804 0.078 
#B 1.11 Child 1.068 0.098 1.081 0.032 
#C 1.13 Child 1.247 0.047 1.293 0.030 
#D 1.31 Child 1.246 0.067 1.303 0.028 
#E 1.55 Adult 1.543 0.008 1.520 0.028 
#F 1.60 Adult 1.650 0.008 1.637 0.010 
#G 1.72 Adult 1.786 0.034 1.783 0.015 
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In second experiment, we measured multiple targets.  Table 2.6 shows experimental 
situations and volunteer information.  First, we measured an adult, a child and a box.  Second, 
we measured two children and a box.  The experiment has been done by SR-4000, because we 
confirmed the both camera has similar results for first experiment.  Table 2.7 and Table 2.8 
show estimation results of Case 1 and Case2, respectively.  The classification rate was 84.9 ± 
16.3% (mean ± standard deviation).  Figure 2.24 and Figure 2.25 shows classification results.  
In this figure, colored area shows each cluster, and labels shows classification results.  In the 
label, the notations ‘A’, ‘C’, ‘T’ and ‘O’ denote adults, children, toddler and object, 
respectively.  In the Figure 2.25, a child subject sometimes vanished and connected with an 
adult subject by detection error, and in 76th and 91th frame, the subject false classified to 
toddler.   
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Figure 2.23.  Height estimation results for singe target.  

 
Table 2.4  Obtained fuzzy degree and classification results of SR-4000. 

 Truth 
class 

Mean fuzzy degree [degree] 
CR [%] 

μA(o) μC(o) μT(o) μO(o) 
#A Toddler 0.017 0.261 0.510 0.211 97.2 
#B Child 0.031 0.813 0.039 0.117 97.1 
#C Child 0.003 0.774 0.004 0.220 98.8 
#D Child 0.004 0.817 0.000 0.170 99.6 
#E Adult 0.811 0.000 0.000 0.189 100 
#F Adult 0.990 0.000 0.000 0.010 100 
#G Adult 0.958 0.000 0.000 0.042 100 

 
Table 2.5  Obtained fuzzy degree and classification results of D-IMager. 

 Truth 
class 

Mean fuzzy degree [degree] 
CR [%] 

μA(o) μC(o) μT(o) μO(o) 
#A Toddler 0.000 0.019 0.886 0.095 96.2 
#B Child 0.000 0.960 0.004 0.035 98.1 
#C Child 0.276 0.678 0.000 0.045 93.0 
#D Child 0.370 0.612 0.000 0.018 99.2 
#E Adult 0.863 0.000 0.000 0.151 100 
#F Adult 0.990 0.000 0.000 0.010 100 
#G Adult 0.962 0.000 0.000 0.380 100 
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In addition, we tested the proposed method for two dogs as the animal by SR-4000.  The 
animal is hard to measure by the TOF camera, because the animal pelage is big noise source 
of the TOF camera as shown in Figure 2.26.  We employed a white dog and a black dog.  The 
white dog (about 40 cm) is bigger than black dog (about 20cm).  Figure 2.27 shows 
classification results for a white dog.  In the case, we classified the dog with 100% 
classification rate.  Figure 2.28 shows classification results for a black dog.  In the case, we 
classified the dog with 100% classification rate.  Moreover, we took distance distribution data 
form a white dog with a child (1.25 m), and classified them.  Figure 2.29 shows classification 
results of these targets. As shown in this figure, the system obtained 100 % classification rate 
for them.  From these result, we considered the method detected and estimated animals. 

Table 2.6  Experimental situation. 
Experiment Subject Age [years] Height [m] 

Case 1 
Child 5 1.11 
Adult 34 1.55 

Box (object) - 0.60 

Case 2 
Child 5 1.11 
Child 7 1.13 

Box (object) - 0.60 

 
Table 2.7  Obtained fuzzy degree and classification results of D-IMager. 

 
Subject Height 

Mean fuzzy degree [degree] CR 
[%] μA(o) μC(o) μT(o) μO(o) 

Case 1 
Child 1.11 0.000 0.457 0.391 0.151 78.0 
Adult 1.55 0.934 0.000 0.000 0.066 85.7 

Box (object) 0.60 0.000 0.000 0.000 1.000 100 

Case 2 
Child 1.33 0.130 0.636 0.036 0.202 91.8 
Child 1.11 0.032 0.559 0.302 0.108 50.0 

Box (object) 0.60 0.004 0.021 0.006 0.968 100 
 

 
Figure 2.26.  Acquired distance distribution data of dog. 
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Figure 2.24.  Classification result of Case 1.  
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Figure 2.25.  Classification result of Case 2.  

 



Chapter 2.  Fuzzy Object Classification Method from Distance Distribution Images | 21 
 

 

 

1st frame 16th frame 31th frame 46th frame

61th frame 76th frame 91th frame 106th frame

O O O O

O O O O

 
Figure 2.27.  Classification result of white dog.  
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Figure 2.28.  Classification result of black dog.  
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Figure 2.29.  Classification result of white dog with a child.  
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2.6 Discussions   

In the experiment for multiple targets, the method failed to estimate an adult subject.  We 
discuss the reason that the proposed method classified her to incorrect class.  When we 
measured the distance distribution data, she did multiple frames in and frame out as shown in 
Figure 2.30.  Moreover, because she stood on the screen edge, the sensor could not measure 
her whole body.  In addition as shown in Figure 2.31, our method failed to classify an adult 
subject as object.  In this case, legs of subject existed outside of measurement area.  In this 
case, the occupancy was not matched with ideal occupancy that calculated from aspect ratio 
as shown in Figure 2.32.  

In the experiments, we set the parameters of membership functions TALL, MIDDLE and 
SHORT by Japanese average height.  In Table 2.4, the fuzzy degree of toddler μT(o) of the 
subject #A (toddler, 0.98 m) is lower value than fuzzy degrees of true class of other subjects.  
His estimated height was 0.932 m, and it was taller than average height of toddlers (0.800 m) 
in Japan.  For the reason, we consider that his fuzzy degree became lower.  When we set these 
membership functions fit to him and his family, we can improve the estimation accuracy.  In 
the same way, the proposed method can be optimized any country or family by setting the 
parameter of membership functions for them.   

A O O O O O O O T O
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Figure 2.30.  Example of false classifications by border of measurement area. 

 

 
Figure 2.31.  Example of false classification by legs existed outside of measurement area. 
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Figure 2.32.  Occupancy and aspect ratio of legs existed outside of measurement area. 
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Figure 2.33 shows a classification result of two adults.  From this result, we can see the 
system classified the occluded person.  We consider this is an advantage to use TOF camera.  
However, because, our method classifies object based on the height, if the top of object is 
occluded, our method may fail.   

 
2.7 Conclusion  

In this chapter, we proposed a moving object estimation method by infrared TOF camera.  
The camera measured distance distribution data.  Our method detected and clustered the 
moving objects by fuzzy aided k-means clustering.  The method estimated the objects by 
fuzzy inferences of height, thickness, aspect ratio and occupancy.  In the experiment, we 
tested our method by using two kind infrared TOF cameras.  The SR-4000 measures distance 
distribution with higher resolution than the D-IMager that measures the distribution with 
wider range.  However, the proposed method equally classified these volunteers in the both.  
Thus, our proposed algorithm is high availability to camera.  Moreover, we employed two 
dogs which are strongly noise source for a TOF camera.  The proposed method estimated both 
dogs with 100% classification rate.  This method is useful to moving object estimation in 
daytime and night time.  It is applicable to home security system to classify the subjects to 
family member or not.  It remains as future studies to investigate the applicability of security 
system in large institute, i.e. classification of larger number of people.   
 

A A

 
 (a) raw image (b) classification result 

Figure 2.33.  Example of classification result for occluded scene. 
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3 Foot Age Estimation Method from Sole Pressure Distributions  

This chapter proposes a fuzzy logic based foot-age estimation method form sole pressure 
distribution change while walking.  The method estimates foot-age by classifying the acquired 
sole pressure to young age, middle age and elderly groups.  Moreover, by using the estimated 
foot-age, the method diagnoses walking abilities, and advises to improve the abilities.  Section 
3.1 introduces the foot age estimation system.  Section 3.2 shows overall procedures of the 
system.  Section 3.3 describes our sensor system and data acquisition method.  Section 3.4 
shows gait features extraction method.  Section 3.5 explains foot age estimation method. 
Section 3.6 describes experimental results.  Section 3.7 discusses the system.  Section 3.8 
concludes this chapter.   
 
3.1 Introduction   

Walking is the most natural movement, and we perform it mundanely.  The walking way 
called gait pattern is individually different, and the difference is caused by age, gender, body 
weight, physical condition, habit of a person and so on.  Hence, we are able to find individual 
and health information of the person by analyzing the gait.  On the other hand, the 
quantification of athletic abilities is useful for various fields.  For example, we are able to 
schedule an exercise for individual, and we can quantify the degree of effect of rehabilitations.  
Moreover, quantified athletic ability is useful to health care and risk managements.  Today, the 
athletic ability is quantitatively evaluated by physical fitness test.  However, the physical 
fitness test imposes a big burden on subject.  Additionally, the test requires long time for the 
evaluation.  Thus, we need an evaluation method with few physical burden and short 
evaluation time.  We consider that the athletic ability can be evaluated by the gait analysis.  
The evaluation system based on the gait has few physical and physiological burdens, because 
walking is a natural movement.  The gait motion capture systems, several wearable sensors, 
pressure sensors and the other sensors were known to acquire gait pattern and evaluated it 
[13]-[17].  Fukayama et al. [17] estimated age of walker by optical camera.  The gait features 
such as step length, cadence, gait speed, standard deviation of height and so on were extracted 
from silhouette movie.  This study classified people to child (6-12 years old), adult (13-64 
years old) and elderly people (65-80 years old) by k-nearest neighbor (k-NN) method with 
74.3% in classification accuracy.  However, the method did not diagnose their athletic abilities.  
Moreover, because this method used height of walker as gait feature, camera installation 
parameters such as camera height, angle, positional relation between camera and walkway 
and so on are fixed.  In the same reason, disadvantages of motion capture systems include 
systems need special room and they are not suitable for portable system.  The wearable 
sensors such as acceleration sensor and electrical angle meter acquires gait pattern anywhere.  
However, the acquisition data can be different from sensor insulation parameter such as angle 
and position.  Therefore, these wearable sensors require spatial knowledge about the sensor 
and anatomy [13].  In this study, we focus on pressure sensors.  Pressure sensors acquire 
pressure distribution between the sensor and sole of walker as the gait pattern [18]-[22].  In 
this paper, we call the pressure as “sole pressure”.  The sole pressure distribution is affected 
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by the posture and weight shift of walker.  We easily calculate several gait features from 
dynamic change in sole pressures by simple image processing.  Sole pressures during walking 
are measured by insole-type pressure sensors [18], [19] or mat-type pressure sensors [20]-[22].  
Hessert et al. [18] researched difference between young (30±5.2 years old) and elderly 
(68.7±4.8 years old) people.  In this research, insole-type pressure sensor measured sole 
pressure distribution, and maximum and mean pressures on anatomical region of subjects 
were calculated to compare young and elderly.  This study found the differences were 
confined to calcaneus and hallux regions and to medial side of foot.  Yonekawa et al. [19] 
proposed a fatigue alerting shoes which detects fatigue of walking people.  In this study, 
pressure sensing tips were attached to both right and left shoes on heel and toe side.  These 
pressure sensors measured sole pressure change, and then system extract maximum pressure, 
time of feet on the ground and ratio of current pressure and before fatigued pressure values to 
evaluate a fatigue.  From these features, the method calculated fatigue scale same as opinions 
of subjects.  As shown in these, insole-type pressure sensors are suitable to measure sole 
pressures for a person.  However, because the sensor is calibrated for target person, it is 
inconvenience in diagnosis for many people in hospital or medical welfare.  On the other hand, 
mat-type pressure sensors are able to use without any calibration to target person.  Moreover, 
we are easily able to install and carry the sensor.  We think mat-type pressure sensor is good 
device to diagnose walking abilities of people.  By using mat-type pressure sensor, Sudo et al. 
[21] measured temporal-change of total sole pressure, maximum sole pressure and center-of-
sole pressure, and they found differences from gender and age.  Yamato et al. [22] developed 
large area pressure sensor, and they visualized gait features by image and time chart.  Then, 
these features are compared between healthy subject and hemiplegia patient by Lader chart.  
Shimada et al. [20] evaluated gait ability in elderly people by gait speed and frequency of 
temporal-change of ground contact area.  In it, Lader chart is used for visualization and 
evaluation.  These studies achieved to visualize each gait feature for assistance a diagnosis by 
medical doctor.  However they did not evaluate walking abilities quantitatively.  Thus, we 
need to develop a quantitative index for evaluate walking abilities.   

In the proposal method, to achieve quantitatively evaluation, we propose a novel age 
related index called foot-age as the quantitative index for automated diagnosis system.  Here, 
age related indexes are well known as bone-age, skin-age and body-age.  The foot-age shows 
a degree of the aging of gait condition.  In general, we diagnose our body by comparing these 
age related indexes with our true age.  This study models the foot-age by using several gait 
features extracted from sole pressure distribution.  The goal of this study is to develop an 
evaluation and diagnosis system based on foot-age estimation.  The system diagnoses a bad 
habit and weak muscle of the subject from sole pressure distribution.  In addition, the system 
can advise the subject to exercise the muscle and correct the habit.   

In this Chapter, we introduce a foot-age estimation system based on fuzzy logic [23]-[25].  
The fuzzy logic is one of soft computing techniques, and it explicitly converts human 
knowledge and senses to rules for computation.  In our experiment, we employed 93 male and 
132 female volunteers, and took their sole pressures.  We tested the proposed system by leave-
one-out cross-validation method.  In the result, the proposed method successfully estimated 



26 | Chapter 3.  Foot Age Estimation Method from Sole Pressure Distributions 
 

 

their foot-ages and advices an appropriate exercise for volunteers being higher foot-age than 
the same age group.  
 
 
3.2 Overall processing flow of our system   

Our diagnosis system consists of four processing such as acquisition, gait features extraction, 
foot-age estimation and diagnosis as shown in Figure 3.1.  In acquisition process, mat-type 
load distribution sensor acquires sole pressure distribution while walking.  In gait feature 
extraction, step length, step center of sole pressure (CSP) width, distance of single support 
and time of double support are extracted from the acquisition data.  In foot-age estimation, 
system estimate foot-age as an index of gait ability by fuzzy MIN-MAX center of gravity 
method.  In diagnosis process, the system compares estimated age and true age of the person.  
When the foot-age older than true age, our system provides advises the person to exercise.  In 
estimation and diagnosis process, we used learning datasets for fuzzy membership 
determination and comparison, respectively.  The learning data set consists of collected sole 
pressure data of volunteers with their true age and gender.   
 

 

Start

Data acquisition

Gait features extraction

Foot-age estimation

Diagnosis and advise

Finish

Learning data

 
 

Figure 3.1.  Procedure of diagnosis system based on foot-age. 
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3.3 Load Distribution Sensor   

In this section, we explain our data acquisition system.  Table 3.1 shows specification of our 
data acquisition system.  The system consists of a mat-type load distribution sensor (Arrow 
Industry Co., Ltd. AS-64X256-7PM) a control device (Arrow Industry Co., Ltd. AS-64X256) 
and a personal computer.  Figure 3.2 illustrates the data acquisition system, and Figure 3.3 
shows appearance of the load distribution sensor.  Figure 3.4 explains internal constitution of 
the load distribution sensor.  The sensor has 256 vertical electrode sheets and 64 transverse 
electrode sheets.  In intersection of the vertical and transverse electrode sheets, a resistive 
element is sandwiched.  Every intersection of these sheets are sensing points, thus, the load 
distribution sensor has 64 × 256 sensing points.  When we put the pressure to the sensing 
points, the resistive elements decrease electric resistance value.  The control device converts 
the electric resistances of the sensing points into 8-bit digital signal, and provides the data for 
all pressure values to the personal computer.  Figure 3.5 shows the relationship of pressure 
value and 8-bit digital signal.  The sampling interval is 100 msec. The sampling interval of 
our system is longer than that of the other pressure sensors.  However, we consider that it is 
enough to measure gait pattern.  In this sensor, sampling interval is in a relation of the trade-
off with sampling area.  We think our method based on long sampling interval is able to use a 
large area pressure sensor.  Figure 3.6 shows the load distribution data of one sampling time.  
In this paper, high pressure points are shown by black, especially high pressure points are 
done by red and low pressure points are done by white.  The gray level is ranged from 0 to 
255.  This sensor acquires sole pressure distribution during two or three steps. 
 

Table 3.1  Specification of mat-type load distribution sensor. 
Sensor type Mat 

Sensor size (width × length) 50 × 200 cm 
Size of effective area (width × length) 33 × 176 cm 

Pressure sensor array size (width × length) 64 × 256 channels 
Sensor interval (width × length) 5 × 7 mm  

Output 8bit (0 ~ 256) 
Sampling Interval 100 msec 

 

33cm

176 cm

Control device

Personal 
computer

Load distribution sensor

 
Figure 3.2.  Data acquisition system; the system consists of load distribution sensor, control 

device and personal computer. 
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Figure 3.3.  Appearance of the load distribution sensor. 
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Figure 3.4.  Internal constitution of the load distribution sensor. 
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Figure 3.5.  Relationship of pressure value and 8-bit digital signal of our mat-type load 

distribution sensor. 
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Figure 3.6.  Example of  load distribution data of one sampling time. 
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In data acquisition process, we ask subjects to walk on the load distribution sensor as 
shown in Figure 3.7, and acquire sole pressure distribution change during walking.  They 
walk along the x-axis of the sensor by bare foot or socks.  A person starts walking from 2 m 
away the sensor.  Figure 3.8 shows examples of the sole pressure distribution change while 
one gait cycle.  In this figure, the initial contact (IC), the toe off (TO), the single support and 
the double support are periods of gait cycle.  Here, the gait cycle is used to describe the 
complex activity of walking.  Figure 3.9 shows an example of gait cycle.  The gait cycle 
begins when one foot contacts the ground and ends when that foot contacts the ground again.  
Thus, each cycle begins at initial contact (heel strike) with a stance phase and proceeds 
through a swing phase until the cycle ends with the limb's next initial contact.  Stance phase 
accounts for approximately 60 percent, and swing phase for approximately 40 percent, of a 
single gait cycle [26], [27].  The initial contact means a moment when a heel contacts the 
ground, and toe off means a moment when a toe leaves the ground.  The single support period 
and double support period means a period when person supports a body with single leg and 
double legs, respectively.   
 

over 2mover 2m

1st : start walking

2nd : Walk along the x-axis of the sensor 
x

3rd : Acquire dynamic pressure 4th: stop walking
Figure 3.7.  Data acquisition protocol to acquire sole pressure distribution. 

 

0.1 sec, left single support,
left sole initial contact

0.2 sec, left single support 0.3 sec, left single support

0.4sec, left single support 0.5 sec, left single support 0.6 sec, double support,
right sole initial contact

0.7 sec, double support 0.8 sec, double support,
left sole toe off

0.9 sec , right single support

1.0 sec , right single support 1.1 sec, double support,
left sole initial contact  

Figure 3.8.  An example of the sole pressure distribution while one gait cycle. 
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3.4 Gait Feature Extraction  

This section introduces and evaluates four gait features fX(G) for gait data G of a given person.  
The notation X denotes index of the gait features (X = L, W, D and T).  These features are 
calculated from acquired sole pressure data.  We employ 93 male and 132 female volunteers 
to evaluate these gait features.  In this study, we employ four measure gait features such as 
step length, width of right and left sole, time of double support and trajectory of center of sole 
pressure (CSP).  These features are selected from learning data set and opinions of medical 
doctor.   

First feature is step length fL(G) as shown in Figure 3.10. In this figure, the black 
rectangles are circumscribed quadrangle of each footprint.  To calculate step length, we get a 
coordinate value at origin of the black rectangle, (xi, yi).  Here, the notation i denotes an index 
of steps (i = 1, 2, ..., N).  The step length is defined by x-coordinate value between the heels of 
two consecutive footprints.  Because an acquisition data includes several steps, the system 
calculates the mean step length fL(G) by Equation 3.1.  

   
1

1
1

1

1

N

L i i
i

f G x x
N






 
     

   [pixels] (3.1)

Step length is related to leg muscles of walker. Long step length means high athletic ability 
and short step length means low athletic ability.   

 

Double
support

Right single 
support

Double
support

Left single 
support

Right leg Left leg

Right leg
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SwingR

StanceL

Figure 3.9.  Explanation of gait cycle. 
 

Step length

Step length(x1, y1)

(x2, y2)

(x3, y3)

 
Figure 3.10.  An example of foot shape image and definition of step length. 
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Second feature is step CSP width fW(G) as shown in Figure 3.11.  We calculate the 
coordinate value of CSP by Equation 3.2.  
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Here, m(x, y, t) denotes pressure value at point (x, y) on time t (0 < x < 255, 0 < y < 63).  The 
notations li and wi denote a length and a width of the circumscribed rectangle, respectively.  
The step CSP width is defined by y-coordinate value between the CSP of two consecutive sole 
pressures at the initial contact.  The mean step CSP width fW(G) is calculated by Equation 3.3.  

     
1

1
1

1
1

N

W i i
i

f G y IC y IC
N






 
 
 
 

 
     [pixels] (3.3)

Step CSP width related to balance ability of walker.  We consider extremely long CSP width 
means that the risk of the fall is big.  This feature has low correlation between ages of subjects.  
However, this feature is useful to discover worse balance ability.  Thus, we employ step CSP 
width for foot-age estimation.   

Third feature is distance of single support period fD(G) as shown in Figure 3.12. We 
define the feature as the length of CSPs trajectory while single support period. This feature 
shows a foot gripping force.  To calculate the features, the CSPs of single support period are 
determined. Next, the system calculates the length of CSPs trajectory LTi by Equation 3.4.  

Step CSP width

 
Figure 3.11.  An example of foot shape image and definition of step CSP width. 

 

 
Figure 3.12.  An example of right footprint and CSP trajectory. 
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CSPs trajectory is related to way of weight movement.  When this feature is long, weight of 
walker is moved from heel to toe via the outside of arch. It is good weight movement.  When 
our weight movement is worse, the weight is directly moves heel to toe, and the trajectory is 
short.  Here, in this step, the beginning of single support period is denoted by ta, and the 
ending is done by tb.  Moreover, the system calculates mean value of LT for foot-age 
estimation, and employs foot-age estimation.   

Fourth feature is time of double support period fT(G). The feature is measured by the 
number of frames with both right and left sole pressures. The acquisition system measures this 
feature at interval 100 msec. We calculate the mean value of the feature of every step. Time of 
double support is related to gait speed. Because, our sensor is too short to calculate gait speed 
correctly, we employ time of double support instead to gait speed. Moreover, this feature 
shows ability to stand on single leg.   

Figures 3.13 to 3.16 show features evaluation results for 93 male and 132 female 
volunteers.  Table 3.2 shows correlation coefficients and R2 value between these features and 
their true ages.  From these result, we can see the step length and the distance of single 
support had negative correlation for true ages.  The time of double support of elderly people 
were longer than middle and young people.   
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Figure 3.13.  Feature evaluation result of step length. 
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Figure 3.14.  Feature evaluation result of step CSP width. 
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Figure 3.15.  Feature evaluation result of CSP trajectory. 
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Figure 3.16.  Feature evaluation result of time of double support. 

 
Table 3.2  Numerical results of gait feature evaluation. 

Gait 
Features 

Male subjects Female subjects 
Correlation 
coefficient 

R2 
Correlation 
coefficient 

R2 

Length -0.67 0.447 -0.49 0.237 
CSP width 0.13 0.018 -0.05 0.003 

CSP trajectory -0.67 0.449 -0.61 0.371 
Double support 0.65 0.419 0.54 0.294 
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3.5 Foot Age Estimation by Fuzzy Logic   

The system estimates foot-age based on fuzzy logic.  To estimate foot-age, our system 
determines fuzzy degrees for young age μY(G) middle age μM(G) and elderly group μE(G) 
from these gait features for the data G.  Then, the foot-age of the walking person is estimated 
by fuzzy MIN-MAX center of gravity method.   

We explain how to calculate fuzzy degrees μA(G) for each age group, where A denotes an 
index of the age group (A = Young age group, Middle age group and Elderly group). We 
employ following fuzzy if-then rules for foot-age estimation.   

Rule 1 :  IF gait feature value fX(G) is CLOSEA to the baseline value A
X  of an age group, 

 THEN the fuzzy degree of the feature  A
XP G  is high.   

Rule 2 :  IF classification score A
X  of a gait feature fX(G) in learning process is HIGHA, 

 THEN the fuzzy degree of the feature  A
X

A
XW  is high.  

The fuzzy membership functions CLOSEA and HIGHA are defined by Figure 3.17.  The 
parameters of these fuzzy membership functions are statistically determined by using learning 
data.  Here, we describe learning process to determine the parameters A

X , A
X , A

X , A
X  and 

A  in Figure 3.17 for each gait feature X and age group A.  In this learning process, young, 
middle and elderly groups have NY, NM and NE learning sole pressure data, respectively.  The 
learning process consists of seven steps as below. 

1. We calculate a mean A
Xf and a standard deviation A

XSD  of learning data of target age 
group.  

2. We initialize A
X  ← A

Xf , A
X  ← A

XSD  and A
X  ← A

XSD . 
3. Classification score A

X  of these parameters is calculated by a difference value between 
an average fuzzy degree of the interest age group and that of the other age groups.  For 
example, the classification score A

X  of the young group is calculated by Equation 3.5.   
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Figure 3.17.  Fuzzy membership functions for foot-age estimation. 
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Here, the notation A
jG  denotes a learning data of target age group A. The notation j 

denotes index of the learning data.  The fuzzy degree of a feature is calculated by 
Equation 3.6 with related to parameters A

X , A
X  and A

X .  

    min ,
X

A
fXP G CLOSE S f   [degree] (3.6)

Here, the notation  
Xf fS  denotes a fuzzy singleton function. 

4. We repeat the calculation of classification score for all domains of as following equations.  
A A A A A
X X X X Xf SD f SD     (3.7)

0 4A A
X XSD   (3.8)

0 4A A
X XSD   (3.9)

We obtain the classification score from all domains.  We employ parameters A
X , A

X  and 
A
X  with the highest A

X  among all domains for the fX of interest age group A.  
5. We repeat the determination process for all X and A.  Figure 3.18 shows examples of the 

obtained fuzzy membership functions CLOSEA of step length.  
6. We calculate parameter A  of the fuzzy membership function HIGH by Equation 3.10.  

A A A A A
L W D T          [degree] (3.10)

The fuzzy degree  A
X

A
XW  is defined by Equation 3.11.  

    min , A
X

A A
X X AW HIGH S w    [degree] (3.11)

7. We calculate the fuzzy degree of acquisition data for young, young age group μY(G) 
middle age group μM(G) and elderly group μE(G) by Equation 3.12.  
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    [degree] (3.12)

In this study, we estimate foot-age by fuzzy MIN-MAX center of gravity method [25]. 
Figure 3.19 shows fuzzy membership functions YOUNG, MID and ELD.  The parameters of 
these fuzzy membership functions are determined by minimization of estimation error for 
learning data.  The foot-age is calculated by following process.  
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Figure 3.18  Example of learned fuzzy membership function for each age group. 
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1. The system calculates fuzzy degree for young age group μY(G) middle age group μM(G) 
and elderly group μE(G). 

2. The system calculates a fuzzy membership function FA(G) by performing minimum and 
maximum operation for fuzzy degrees and functions by Equation 3.13.  

           max min , , min , , min ,Y M EFA G G YOUNG G MID G ELD    (3.13)

 Figure 3.20 shows an example of the membership function FA(G).  
3. We estimate a foot-age of walking person as the center-of-gravity gFA(G) of the fuzzy 

membership function FA(G) is defined by Equation 3.14. 
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In a practical health care system, we diagnose walking people by using their estimated 
foot-age and extracted gait features.  The diagnosis system compares the estimated foot-age 
with true age of the walking person.  When the foot age estimated appears to be younger than 
the true age of the person, no advice would be made, otherwise the system will provide 
advises the subject to exercise.  Next, we find features being for from mean value of his/her 
age group.  Furthermore, the system advises the person to exercise a corresponding muscle. 

degree

1.0

0
age

YOUNG MID ELD

100a1 a2 a3 a4  
Figure 3.19  Fuzzy membership functions for three age groups. 
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Figure 3.20  Example of fuzzy membership function FA(G). 
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Table 3.3 shows an example of advice written by a medical doctor.  The medical expert also 
makes several examples of advice to the specific persons.   

 
Table 3.3  Example of advices by a medical doctor. 

Gait features Advice 

Length 
Your muscles of the legs are not enough. And a range of motion of 
ankle/hip joint is limited. You should do squat exercise to build up the leg 
muscles. Moreover, you should stretch to train these joints. 

CSP width 

The long step CSP width means that the risk of the fall is big. To prevent a 
fall, you should exercise a leg muscles and the balance ability. For building 
up the leg muscles, you act the squat exercise and “dynamic flamingo 
therapy (unipedal standing therapy)”. This therapy consists of one minute 
standing with the right foot and the left foot. You should act the therapy 
three sets in a day. For your safety, you had better act the therapy in the 
side of handrail or the desk. 

CSP trajectory 
The CSP trajectory of younger people is longer. The short distance of 
single support means that your weight movement is not enough. You 
should walk with being conscious of weight movement. 

Double support 

The long double support shows low ability to stand on single leg. To 
improve the ability, you should train muscle of the legs and balance ability. 
You should do squat exercise to build up the leg muscles. In addition, 
“dynamic flamingo therapy” is also effective to train the muscles and 
balance ability 
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3.6 Experimental Results   

In our experiment, we employed 93 male and 132 female volunteers as shown in Table 3.4.  
Here, we divide them to young age group (18-34 years old), middle age group (35-64 years 
old) and elderly age group (65-90 years old).  These age groups are decided based on 
marketing field.  All volunteers walked on the sensor without any rehearsal.  We took their 
sole pressure data three times by the load distribution sensor.  We considering fluctuation of 
gait, we used mean gait features of the three sole pressures to foot-age estimation.  We 
estimated their foot-ages by our proposed method (Fuzzy model) and multiple linear 
regression analysis (MRA).  Fuzzy model is one of nonlinear model.  MRA is one of 
multivariate statistics method, and linear prediction model.  Here, our MRA model is defined 
by Equation 3.15.  

          0L L W W D D T TFootage G A f G A f G A f G A f G A      (3.15)

Here, the parameters AL, AW, AD and AT are partial regression coefficients, and A0 denotes 
constant term.  These parameters were statistically determined by using learning data. We 
tested these methods by leave-one-out cross-validation method.  To evaluate accuracy of our 
algorithm, we need their actual gait condition.  However, we cannot take it.  Then we 
evaluated estimated foot-ages by mean absolute error (MAE) between their true ages.  
Because foot-age is one of age-related indexes, we consider that there are linear relationship 
between the estimated foot-age and their true age.  Then, we showed the correlation 
coefficient between estimated foot-age and true-age as a reference of model accuracy.  Then, 
the correlation coefficient was employed for evaluation of estimation models.   

As the results, Figure 3.21 and Table 3.5 show results of foot-age estimation and 
numerical evaluation, respectively.  The proposed method obtained 9.2 and 9.8 years old in 
MAE for male subjects and female subjects, respectively.  The proposed method based on 
fuzzy logic obtained better MAE than MRA model.  We consider this reason that relationship 
between gait features and ages were nonlinear.  Expressly, the time of double support was 
strongly nonlinear.  The estimation accuracy of female volunteers is worse than these of male 
volunteers.   
 

Table 3.4  Volunteer information. 
Age ≤29 30-39 40-49 50-59 60-69 70-79 80-89 Total 
Male 22 11 9 12 10 20 9 93 

Female 14 19 17 29 29 18 6 132 
Total 36 30 26 41 39 38 15 225 

 
Table 3.5  Numerical results of foot-age estimation. 

Method 
Male subjects Female subjects 

MAE 
[year] 

Correlation 
coefficient 

MAE 
[year] 

Correlation 
coefficient 

Fuzzy 9.2 0.85 9.8 0.68 
MRA 11.6 0.72 10.5 0.60 
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(a) Male subjects 
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(a) Female subjects 

Figure 3.21  Foot-age estimation results of the proposed method and MRA method for 93 
male and 132 female subjects. 

 
 
 
 



40 | Chapter 3.  Foot Age Estimation Method from Sole Pressure Distributions 
 

 

 
Table 3.6  Example of gait features of a male subject. 

Gait feature His value 
Mean ± SD of  

40-50 years old subjects 
Length [mm] 529.4 650.6±60.8 

CSP width [mm] 75.4 90.6±30.0 
CSP trajectory [mm] 77.1 130.0±18.5 
Double support [sec] 0.09 0.15±0.04 

 
 
3.7 Discussions   

From Figure 3.21(b), we can see that foot-ages of young volunteers were estimated similar 
values of foot-ages of middle ages volunteers.  In our collected sole pressures, female middle 
age volunteer were worked in a factory, and they walked more than normal people.  Thus, we 
think their athletic abilities were similar to young people, and our method estimated their 
foot-age as similar values.  In learning process to determine fuzzy membership function, we 
used these data as the learning data.  We consider that they might be noise for foot-age 
estimation.  To improve our model, we might collect sole pressure data from other middle age 
people.   

In clinical practice, the system is used as follows.  For example, Table 3.6 shows gait 
features of a 45 years old male subject and Mean ± SD of subjects registered by our database.  
His estimated foot-age is 56.6 years old.  The foot-age is much older than his true age.  Our 
system advises the subject according to Table 3.3.  His step length is shorter than that of 
similar age registered people. Therefore, the system advises him to build up the leg muscles. 
Moreover, because his distance of double support is shorter than that of similar age registered 
people, the system advises him to walk with being conscious of weight movement.  

 
 

3.8 Conclusion   

This paper proposed the foot-age estimation system as a human healthcare system.  In this 
paper, we attempt to find the relation between obtained gait pattern and their true age.  
Although walking abilities in the same age are different from person to person, the whole data 
of the corresponding age is considered as their walking ability.  Therefore, the data mining of 
the difference is one of our research goals.  Figures 3.13 to 3.16 showed that the extracted 
features depended on the age.  Our system was considered as a success to estimate foot-age 
from dynamics of sole pressure distribution while walking.  Foot-age was calculated by fuzzy 
MIN-MAX center of gravity method.  In our experiment, we employed 225 volunteers.  
Fuzzy logic based model estimated foot-age with the lower error than MRA.  Thus, fuzzy 
model excellently express their foot-ages.  By using estimated foot age and extracted gait 
features, we achieved to develop a quantitative evaluation and diagnosis system for walking 
ability.  As shown in Table 3.3, the diagnosis system advises for walker by comparing 
extracted features and features of his/her age groups.   
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4 Gait Level Estimation Method from Sole Pressure 

Distributions  

This chapter proposes a gait level estimation method for evaluating walking abilities of 
patients who undergoing rehabilitation.  The method estimates gait level index which is one of 
quantization index to evaluate walking abilities by classifying acquired sole pressure data to 
patients or commons.  Section 4.1 introduces the gait level estimation system.  Section 4.2 
describes our data acquisition protocol.  Section 4.3 shows gait features extraction method.  
Section 4.4 shows a fuzzy aided gait level index estimation method.  Section 4.5 describes 
experimental results.  Section 4.6 discusses about the estimation system.  Section 4.7 
concludes this chapter.  
 
 
4.1 Introduction   

Reentry, the super-aging society is progressing quickly in developed countries.  In Japanese 
investigation on 2012 [28], the ratio of elderly people was 23.3%, and the ratio is the highest 
in the world.  If the tendency continues, those aged 65 years old or more will account for 30% 
of the population within 10 years.  Due to this tendency, medical and healthcare services for 
elderly people are especially needed.  One of the medical services, rehabilitations is provided 
in hospital and medical welfare.  Patients are admitted into hospitals and medical facilities for 
various reasons, for example, injury, traffic accident, falling and illness.  Some of them cannot 
move alone because of impairment, for example, pain, paralysis and muscle weakness, and 
rest to be required on treatment and so on.  Thus, patients have different causes and conditions.  
One of the main causes is cerebrovascular disease such as cerebral apoplexy.  In this case, leg 
of the patients is affected by paralysis or painful to move.  They need to train way of walking 
of low-impact for diseased parts or alleviation of pain [29]-[31]. Locomotor apparatus disease 
such as by the bone fracture caused by fall is other main cause for rehabilitation.  A muscle of 
their leg weakens by hospitalization [32], [33].  They need to train their muscle by walking 
exercises or strength-training machine such as walking machine.  Moreover, because degrees 
of disorder are different in individuals, patients receive personalized rehabilitation program. 
As it stands, rehabilitation is performed according to gait level of patients.  Doctors and 
physical therapists have to decide the gait level by evaluating their autonomy walk of patients, 
and they plan rehabilitation program based on the evaluation.  These decisions of gait level 
are determined based on their experiences in many cases and subjectivity.  However, these are 
different in individuals [34].  Moreover, some staffs in medical welfare without any therapists 
have difficulties in deciding gait level.  There are dangerous situations with miss directions. 
Thus, any quantitative index to estimate gait level is needed.  As previous studies, we could 
get to know that gait level have relations of body functions such as balance ability [35], gait 
speed [36]-[38].  In either study, relations are verified between gait level and just one of body 
functions. Then these relations do not always be clearly demonstrated.  Thus, we propose a 
gait level estimation system with combining several factors.    
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In this study, to evaluate the autonomy walk, the gait level index is estimated from a gait 
data.  The gait data is acquired as the dynamic foot pressure distribution by a mat type load 
distribution sensor.  The sensor is used for study of gait analysis such as biometrics security 
from gait data and system of estimating gait level of independence.  To estimate the gait level 
index, we compare the gait features extracted from the gait data between commons and 
patients.  The method extracts maximum gait speed, time of double support period, gait 
balance and total time of stance phase as gait features.  Form differences of gait features 
between commons and patients, eight fuzzy if-then rules are derived.  The gait level index is 
estimated by fuzzy MIN-MAX center of gravity method.  In our experiment, we employed ten 
patients and ninety commons, and took their gait data.  We tested our method by leave-one-
out cross validation method, and compared the results with results of two method using 
support vector machines.  The proposed method obtained higher classification rate. 

 
 

4.2 Data Acquisition  

In this section, we explain about our data acquisition method. To acquire sole pressure 
distribution, we use mat-type load distribution sensor (Arrow Industry Co., Ltd. AS-64X256-
7PM) explained by Chapter 3.2.  Because the sensor is compact and potable sensor, we can 
use it for rehabilitation room or a passageway in hospital, retirement home and other medical 
welfares.  In this system, we acquire sole pressure distribution by same way of foot age 
estimation system.  First, subject starts walking from over 2 m away from the load 
distribution sensor without their shoes.  Second, subject walks along x-axis of the sensor.  
Here, we instruct subjects to walk as fast as possible to obtain maximum gait speed.  Third, 
the sensor acquires foot pressure distribution data with 100 msec intervals. Finally, the subject 
stops walking over 2m behind the sensor.  Figure 4.1 shows examples of overlapped foot 
pressure distribution change of two elderly persons and two patients.  From these figures, we 
can see that step length of patient are shorter than the healthy elderly persons, and patients 
walk like drunkenly.  Figure 4.2 illustrates about gait cycle.  In this figure, red zone shows 
right leg contacts on the ground, and blue zone shows left leg contacts on the ground.  The 
notation StanceR and StanceL denote stance phase of right leg and left leg, respectively.  
SwingR and SwingL denote swing phase of right leg and left leg, respectively.  Here, stance 
phase means a period when the leg contacts the ground.  On the other hand, swing phase 
means a period when the leg leaves the ground.  The initial contact (ICR, ICL) and toe off (TOR, 
TOL) of right and left leg mean moments when the leg contacts and leaves the ground, 
respectively.  Single support period and double support period means a period when person 
supports a body with single leg and double legs, respectively. 
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4.3 Gait Feature Extraction  

For estimating gait condition, we extract four gait features.  In our method, maximum gait 
speed v(G), time of double support TDS(G), total time of stance phase TtotalST(G) and gait 
balance B(G) are extracted from acquired gait data G.  In our study, we believe our sensor can 
acquire over four steps, because elderly people and patients have short step length.  Figure 4.3 
illustrates footprints of the gait data G.  The footprint is an overlapped and clustered image 
made from binalized foot pressure distribution.  From the footprint, we calculate stride ST(G) 
of the subject.  The stride is calculated by x-coordinate value between a heel of 2nd step and 
that of 4th step.  Figure 4.4 shows an example of time-series data of the gait data G.  In the 
figure, blue line describes periods that left leg are on the ground, and red line describes 
periods that right leg are on the ground. tIC,i(G) means time of the initial contact of ith step, 
and tTO,i(G) means time of the toe off of ith step.  Then time of gait cycle TGC(G) is defined 
with Equation 4.1 

     ,4 ,2GC IC ICT G t G t G    [sec] (4.1)

Elderly person Elderly person

Patient Patient
 

Figure 4.1  Examples of overlapped foot pressure distribution change of two elderly 
persons and two patients. 
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Figure 4.2  A correspondence of sole pressure and gait cycle. 
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Firstly, we calculate maximum gait speed v(G) from the stride ST(G) and the time of gait 
cycle TGC(G). The method calculates the maximum gait speed v(G) by Equation 4.2.  

   
 GC

ST G
v G

T G
   [cm/sec] (4.2)

Maximum gait speed is one of general assessment methods on gait and reflects the gait ability 
more properly than comfortable walking speed.  Commons who does not have any 
disturbance in gait can walk fast.  If the gait speed is fast, then it shows the subject might be 
commons like.  On the other hand, when the subject walks slowly, we consider that the 
subject is patients like.   

Secondly, we extract time of double support TDS(G).  It shows how long does sobject 
take to take next step.  Patients who have weaken muscle in their leg or some worrys about 
their legs cant take next step fastly.  Then we can use this feature as one of the index for 
extraction.  Taking long double support shows subjects gait might be patients like.  The time 
of double support appeare in green zone of Figure 4.4.  In our method, we calculate mean 
time of double support by Equation 4.3.  

      
3

, , 1
1

1

3DS TO i IC i
i

T G t G t G


    [sec] (4.3)

Thirdly, we extract gait balance B(G). Gait balance means how deferent between right 
leg and left leg.  The balance is defined as the ratio of stance phase of right leg TST,R(G) to that 
of left leg TST,L(G).  Here, the stance phase is defined as Equation 4.4.  

     ST TO ICT G t G t G    [sec] (4.4)

Generally, commons have small imbalance for laterality of their habit.  However, if a subject 
has an impairment of one side of leg, for example, paralysis due to stroke and muscle 

Left step length

Right step length

Stride

1st step 2nd step
3rd step

4th step

Figure 4.3 An example of footprints and gait features. 
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Figure 4.4  An example of time-series data of the gait data. 
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weakness due to femoral neck fracture, stance of healthy side of leg is especially longer than 
the unhealthy side.  Thus, we think patients have poor gait balance.  The gait balance B(G) of 
the gait data G is defined as Equation 4.5.  
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, ,
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if T G T G

T G
B G
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otherwise
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  [n.u] (4.5)

On the gait cycle, time of stance phase is always larger than 0.  Therefore, the gait balance 
B(G) is within from 0 to 2.  When time of stances of both leg are same value, the gait balance 
is 1.  Then, if calculated gait balance is near by 1, we consider gait condition of the subject is 
might be healthy.  If not, gait condition of the subject is might be unhealthy.  Some unhealthy 
people care about their gait balance.  They have a good gait balance.  However, their stance 
phases are longer than commons.  Thus, we employ total time of stance phase for gait 
condition estimation.  The total time of stance phase TtotalST(G) is defined as Equation 4.6.  

     , ,totalST ST R ST LT G T G T G    [sec] (4.6)

Long score of calculated total time of stance phase shows taking long time for each step. 
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4.4 Gait Level Index Estimation by Fuzzy Logic   

Our method estimates gait condition based on fuzzy inference.  We consider following 
knowledge for gait features of commons and patients.    

Knowledge 1 :  The maximum gait speed of commons is faster than that of patients.   
Knowledge 2 : Commons can take next step quickly. However some patient cannot.   
Knowledge 3 :  Commons walk with same stance between right and left. However patients 

 cannot walk with same stance between right and left.    
Knowledge 2 :  Patients walk with too much care about their gait balance then they take 

 long stance of each step.  
From these knowledge, we derive eight fuzzy if-then rules as shown in Table 4.1.  For 
example Rule 1 is represented as “IF maximum gait speed v(G) is Slow and time of double 
support TDS(G) is Long and gait balance is Bad, THEN gait level of the walker is Unhealthy.  
Here, Slow, Fast, Short, Long, Balance, Imbalance, Unhealthy, Worse, Better and Healthy are 
fuzzy linguistic values.  Here, The linguistic values Unhealthy, Worse, Better and Healthy are 
defined by Figure 4.5. And, Slow, Fast, Short and Long are defined by Figure 4.6.  The Bad 
and Good are calculated from membership functions Balance and Stance as shown in Figure 
4.7.  The Balance depends on gait balance, and Stance depends on time of total stance.  From 
these fuzzy membership functions, following fuzzy degrees are calculated. 

      min ,B B GG Balance S B    [degree] (4.7)

      min ,
STST T GG Stance S T    [degree] (4.8)

Table 4.1  Fuzzy if-then rules for gait condition evaluation . 

Rule 
Input Output 

Speed, v(G) DS, TDS(G) Gait balance Gait level 
Rule 1 Slow Long Bad Unhealthy 
Rule 2 Fast Long Bad Worse 
Rule 3 Slow Short Bad Worse 
Rule 4 Slow Long Good Worse 
Rule 5 Fast Short Bad Better 
Rule 6 Fast Long Good Better 
Rule 7 Slow Short Good Better 
Rule 8 Fast Short Good Healthy 

0 100
l

200/3100/3

Degree

1.0
Unhealthy Worse Better Healthy

 
Figure 4.5  Fuzzy membership functions for gait level. 
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Here, the notation  S   denotes a fuzzy singleton function.  The linguistic values Good and 
Bad are calculated by Equation 4.9 and Equation 4.10, respectively.  These equations are 
based on the knowledge 3 and 4. 
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  [degree] (4.9)

   
 

1 0.2B B

ST

G if G
Bad

G otherwise

 



  


  [degree] (4.10)

In this method, a gait level index (GLI) is estimating as an index of the gait condition by 
fuzzy MIN-MAX center of gravity method [39].  Figure 4.8 explains the process of the fuzzy 
MIN-MAX center of gravity method.  Firstly, we get a minimum value from each input fuzzy 
linguistic values.  Then, we perform a minimum operation to the value and corresponding 
fuzzy membership function.  Figure 4.8(b) shows example of the minimum operation for 
Rule2.  We perform the operation for every rule, and eight fuzzy membership functions are 
obtained.  Secondly, we performed maximum operation for these fuzzy membership functions.  
By this operation, a fuzzy membership function GLG for the acquired gait data G is obtained. 
Figure 4.8(c) shows the example of the operation and obtained membership function.  Finally, 
the GLI is calculated as a center of gravity of the fuzzy membership function GLG by 
Equation 4.11.  
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 (a) maximum gait speed (b) time of double support 

Figure 4.6  Fuzzy membership functions for gait speed and double support. 
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Figure 4.7  Fuzzy membership functions for gait balance. 
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Here, the notation l denotes level value of gait condition.  
In our proposed method, fuzzy membership functions Fast, Short, Balance and Stance 

are individually decided by learning gait data of N patients and M commons as following 
process.  

1. Initialize parameters of the function. 
2. Calculate fuzzy degree of commons for all subjects. 
3. Classify these data to Commons and Patients by the calculated fuzzy degree.  Here, when 

the fuzzy degree lager than 0.5, we classify the data to Commons.  Otherwise, the data is 
classified to Patients. 

4. Calculate an entropy H by Equation 4.12.   

10log
FN FP

H
TP TN TN FN

      
 (4.12)

Here, the notation TP and TN denote number of true classified commons and patients, 
respectively.  The FN and TN denote number of false classified commons and patients, 
respectively. 

5. Update parameters, and repeat calculating the entropy. 
6. Decide the function with the highest entropy. 
7. The fuzzy membership function Slow and Long are decided as a complement set of the 

Fast and Short, respectively. 

0
l

Degree

1.0

0
l

Degree

1.0

Fast

Long

Bad

Operated result

0 l

Degree

1.0

GLG

 (a) gait condition (b) minimum operation (c) maximum operation 
Figure 4.8  Procedure of GLI calculation. 
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4.5 Experimental Results   

In our experiment, we took gait data from one hundred volunteers consisted of ten patients 
and ninety commons.  Ten patients underwent rehabilitation in Ishikawa hospital in Japan.  In 
acquisition, therapists were abreast of the patient if it is indicated.  The patients are selected 
by following four qualifications.   

1. Patients in recovery phase rehabilitation ward in Ishikawa Hospital. 
2. Patients whose physical therapist has more than three year’s experiences at rehabilitation 

department. 
3. Patients whose gait level is “independence”, “supervision” and “assistance” 
4. Patients being able to understand instructions in measuring gait.   

The gait conditions or abilities of patients are different individuals as shown in Table 4.2.  In 
this table, gait shows the way of walking on the sensor.  The independent gait means the 
subject walked without any equipment and supports.  The cane walk means the subject 
walked with cane.  Moreover, supports such as assistance, supervision and independent show 
how much therapists take care about subjects at the acquisition.  The assistance means 
therapist did some support to walk on the sensor.  The supervision means therapist supervised 
with keeping abreast of the patient just in case.  The independent means therapist did not be 
abreast of the patient.  These evaluations were evaluated by their physical therapists.  Ninety 
commons did not need any supports.  We evaluated our method by leave-one-out cross 
validation method.  However, we do not have any true value of gait conditions of patients.  
Therefore, we evaluate with sensitivity, specificity and accuracy of classification. In the 
classification, if obtained GLI is above 50, it is classified as Commons.  Else, it is classified as 
Patients.  Here, the sensitivity, specificity and accuracy are defined by following equations.   

TP
Sensitivity

TP FN



 (4.13)

TN
Specificity

TN FP



 (4.14)

TN TP

TP
Accura

FN T
c

N FP
y




  
 (4.15)

 
Table 4.2  Information of patients. 

Patient ID Age [years] Gait Supports 
#1 85 Independent gait Independent 
#2 77 Cane walk Supervision 
#3 70 Cane walk Supervision 
#4 52 Cane walk Independent 
#5 83 Independent gait Independent 
#6 83 Cane walk Assistance 
#7 72 Cane walk Supervision 
#8 84 Cane walk Supervision 
#9 62 Independent gait Independent 
#10 82 Cane walk Independent 
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Figure 4.9 show extracted gait features for all subjects. Figure 4.10 shows estimated GLI 
of patients. And, Figure 4.11 shows GLI estimation result for all subjects.  In the Figure 4.10, 
patients are sorted with their GLI.  From this figure, patients #1 and #9 who walked with 
independently obtained higher GLI than the others, and they were classified to Commons.  
Moreover, the cane walked and supervision patients and assisted walk patient were obtained 
lower GLI.  Table 4.3 and Figure 4.12 show classification results.  Eight of ten patients and 
eighty-six of ninety commons are successfully classified.  The mean value of estimated GLI 
was 33.2 in patients and 83.0 in commons.  In this experiment, the sensitivity was 0.96, 
specificity was 0.80 and accuracy was 0.94.  
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Figure 4.9  Gait features extraction results for 10 patients and 90 commons 
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Figure 4.10  Gait level index estimation results for patients.  
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Figure 4.11  Gait level index estimation results for all subject.  

 
Table 4.3  Classification results by GLI. 

Subjects 
Number of subject 

[persons] 
Number of True 

classified [persons]
Estimated GLI 

Mean SD 
Patients 10 8 (TN) 33.2 19.6 

Commons 90 86 (TP) 83.0 17.6 
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Figure 4.12  Classification results of 10 patients and 90 commons.  

 
For evaluation of classification results, we compared our method with support vector 

machine (SVM) with spline kernel [40], [41].  We employed extracted features based SVM 
and principal component analysis (PCA) [42], [43] based SVM.  The extracted based SVM 
classified the volunteers by using same features of our proposed method.  PCA based SVM 
classified volunteers by using feature which extracted by PCA.  Here, we input fourteen 
features as shown in Table 4.4 consist of gait features and age of the subjects to PCA.  In PCA, 
inputted data are standardized to be dispersion is 1 and mean is 1 before extraction.  Then, the 



52 | Chapter 4.  Gait Level Estimation Method from Sole Pressure Distributions 
 

 

standardized data is analyzed.  Table 4.5 shows the contributing ratio and cumulative 
contribution ratio of each principal component.  From considering about cumulative 
contribution ratio, we decided to employ four principal components, 1st, 2nd, 3rd and 4th.  
Then, we classified into commons and patients by SVM.  Table 4.6 shows comparison results.  
From this table, we can see that our proposed method obtained the highest accuracy and better 
sensitivity and specificity.  Thus, the proposed method is better than the other method.  
 

Table 4.4  Gait features fro PCA. 
Subject age Stride 

Right step length Left step length 
Cadence Maximum gait speed 

Time of gait cycle Time of double support period 
Time of right single support period Time of left single support period 

Time of right stance phase Time of right stance phase 
Total time of stance phase Gait balance 

 
Table 4.5  Cumulative contribution ratio of each Principal component. 

Principal component Contributing ratio [%] 
Cumulative contribution ratio 

[%] 
#1 48.9 48.9 
#2 12.6 61.4 
#3 10.6 72.0 
#4 8.6 80.7 
#5 6.0 86.6 
#6 4.7 91.3 
#7 2.9 94.3 
#8 2.5 96.7 
#9 1.5 98.2 
#10 1.2 99.4 
#11 0.5 99.9 
#12 0.1 100 
#13 0.0 100 
#14 0.0 100 

 
Table 4.6  Comparison result of classification by GLI. 

Method Sensitivity Specificity Accuracy 
Proposed method 0.96 0.80 0.94 

Extracted feature based SVM 0.99 0.50 0.94 

PCA based 
SVM 

1st 0.66 1.00 0.69 
1st, 2nd 0.72 1.00 0.75 

1st, 2nd, 3rd 0.72 1.00 0.75 
1st, 2nd, 3rd, 4th 0.67 1.00 0.70 
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4.6 Discussions   

In discussion, we focus on the estimated GLI of a patients and a common volunteer GLI. 
From Figure 4.14, patient #1 scored the highest GLI that was 75.0 and whose gait mean is 
independent walk.  However, this score is much higher than any other patients.  Her GLI 
shows that she did not have big problem about her gait.  Actually, she was undergoing 
rehabilitation for pain relief or controlling her own pain not for her gait.  Thus, we consider 
that the obtained GLI described the gait condition.  Next, we discuss about a common 
volunteer whose estimated low GLI.  Her estimated GLI was 17.3 that showed she had some 
problem in her gait.  About this common, the physical therapist said that extracted gait 
features that including we did not employed in our proposed method shows she was likely 
undergoing rehabilitation.  Thus she might be too nervous to walk on the sensor or actually 
she has some problem in her gait.  Thus, this estimation system found gait defective from 
commons as well.  
 
4.7 Conclusion   

This chapter proposed the gait condition estimation method based on fuzzy inference.  In our 
proposed method, we acquired gait data by the mat type load distribution sensor.  From four 
knowledge about human gait, we employed four gait features such as maximum gait speed, 
time of double support, gait balance and total time of stance phase.  Finally we calculated gait 
level index by fuzzy MIN-MAX center of gravity method.  The results show that our 
proposed method successfully estimated the GLI.  For evaluation, we classified one hundred 
gait data into Common or Patient by estimated GLI.  In classification results, our proposed 
method classified gait data with higher accuracy than PCA based SVM and extracted feature 
based SVM.  From these results, our proposed method estimated GLI almost successfully and 
found gait defective from patients and commons.  In this way, our proposed method was 
justified as the estimation system of gait condition.  

By using this system, it could be used in medical welfare and support diacritic of doctors. 
Thus, we will build up the system of this method in the future.  Toward these futures, we have 
to continue to research and improve the system for calculating the index more specifically and 
successfully with acquired gait data from more patients.  
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5 Biometric Personal Authentication Based on Gait Features 

This chapter proposes fuzzy aided biometric personal authentication system by using both of 
right and left sole pressure distribution.  The method classifies acquired sole pressure data to 
individual from characteristics of gait pattern.  Section 5.1 introduces the walking based 
biometric authentication system.  Section 5.2 shows data acquisition protocol and sole 
coordinate system.  Section 5.3 describes gait features for authentication system.  Section 5.4 
shows fuzzy logic based personal authentication method.  Section 5.5 describes experimental 
results.  Section 5.6 discusses about the biometric personal authentication system.  Section 5.7 
concludes this chapter.  
 
5.1 Introduction   

Information technologies and network based services, such as healthcare, commercial and 
social services become indispensable parts of our lives.  Reliable authentication of users is 
needed for secure access to these services to avoid compromising our privacy.  Passwords and 
PINs are still the major authentication methods for network services.  However, we have to 
remember a lot of passwords or PINs for several services.  Moreover, the information might 
be stolen by shoulder surfing, keystroke logging and so on.  Biometrics is an emerging 
technology to authenticate a person based on physical or behavioral features.  While 
techniques using physical features such as fingerprint [44], [48] and iris can achieve high 
recognition accuracy, behavioral features such as signature [49], speech [50] and walking [51] 
- [56] are more user-friendly.   

We focus on a biometric method based on sole pressure and dynamics in walking.  
Because walking is the most natural daily motion, biometrics systems that use walking do not 
require any training for authentication.  This method can be conveniently used to authenticate 
people while passing through a door or passageway.  It is available to an application where a 
person entering a room and walking toward a device or a computer can be authenticated and 
immediately logged in the room.  Walking patterns can be captured with cameras [51], [52], 
acceleration sensors [53] and pressure sensors [54]-[60].  The pressure sensor measures a 
walking as a dynamic change of pressures.  Several studies [54]-[58] have been introduced on 
this topic.  Addlesee et al. [56], Orr et al. [57] and Yamakawa et al. [58] focus on sole 
pressure change.  These methods use some features such as peak pressure value, time to peak 
pressure and form of pressure change curve.  They authenticate the walking person by 
employing only one foot. Qian et al. [55] has used step lengths, 3D trajectories of center of 
pressure and angles between right and left soles.  They measure over three steps for 
authentication by the use of large pressure sensor (3.7 m × 4.5 m).  However, these methods 
did not use shape information of the sole. Jung et al. [54] use footprint and center-of-pressure 
trajectory for authentication.  They employ both of right and left sole pressures, but their 
pressure sensor is too small to measure both foot (40 cm × 80 cm).  Furthermore, 
authentication accuracies of these methods are not enough to use them for security field. 

In this study, we propose a kind of integration approach [59]-[61] to improve 
authentication performance of biometrics based on walking.  Integration approaches improve 
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authentication accuracy by combining multi-methods, multi-features or multi-sampling.  This 
study combines the authentication score of right and left sole pressure data.  These right and 
left sole pressures are measured by middle size load distribution sensor, and it is designed to 
accommodate two steps of an average walker.  The load distribution sensor is a kind of the 
pressure sensors arranged on a two-dimensional pattern.  This arrangement of sensors enables 
us to acquire dynamic change of sole pressure distribution.  To authenticate person, gait 
features are extracted from the sole pressure distribution.  The gait features consist both of 
sole pressure change and footprint.  As the authentication score, the system calculates fuzzy 
degrees of each sole pressure for registered person.  The fuzzy degree means a degree of 
similarity of acquired sole pressure and registered data set for a person.  Here, fuzzy 
membership functions are statistically determined in learning process.  The system combines 
the fuzzy degree of right and left sole by a combination operator, and uses it for authentication.  
In the experiment, we employed six combination operators and evaluated these authentication 
performances.  We show the experimental results of 90 volunteers of each combination 
operator.  Then, we describe an optimal operator for combining left and right sole pressures.  

 
 

5.2 Preliminaries  

This personal authentication system acquires sole pressure distribution as the walking pattern.  
The sole pressure distribution is acquired by mat-type load distribution sensor (Arrow 
Industry Co., Ltd. AS-64X256-7PM) explained by Chapter 3.2.  The effective area of the load 
distribution sensor is 33 cm × 178 cm.  It is enough to acquire sole pressure distribution of a 
pair of right and left foot while walking.  In the experiments, subjects were asked to walk 
normally on the load distribution sensor platform.  The protocol is such that the subject must 
first halt right before the sensing area, and then walks through and past the sensor, typically 
involving two or three steps.  We consider the walking sense as the x-axis of the sensor.  The 
system acquires the sole pressure distribution during these steps and stores data in a computer 
as biometric evidence.  One limitation of the experiment is that the subjects must walk with 
bare feet or with socks.   

From the acquired sole pressure data, the system separates a right sole pressure data and 
a left sole pressure data.  The separated right sole and left sole pressure data is shown in 
Figure 5.1.  We define sole coordinate system as shown in Figure 5.2.  We consider a 
registered person set Y = {y1, y2, ..., yr, ..., yn}.  Here, the notation n denotes the number of 
registered person.  We take the sole pressure distribution data N times from each registered 
person, and use these pressure data in learning process of our system.  The notation SX   
denotes a pressure distribution change data when a person “ys” is walking.  A pressure 
data SX  has a right sole pressure data S

RX  and a left sole pressure data S
LX .   

Figure 5.3 shows procedure of the authentication system.  The system calculates 
authentication scores from right sole S

RX  and left sole S
LX , independently.  Then these scores 

are combined to authenticate a person.   
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0.1 sec 0.2 sec 0.3 sec 0.4 sec 0.5 sec 0.6 sec 0.7 sec 0.8 sec 0.9 sec  
(a) right sole pressure 

 

0.1 sec 0.2 sec 0.3 sec 0.4 sec 0.5 sec 0.6 sec 0.7 sec 0.8 sec 0.9 sec  
(b) left sole pressure  

Figure 5.1  Examples of separated right sole and left sole pressure data.  
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 (a) right sole (b) left sole  
Figure 5.2  Examples of separated right sole and left sole pressure data.  
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Figure 5.3  Procedure of personal authentication system.  
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5.3 Gait Feature Extraction  

For authentication, our system extracts thirty nine gait features from each sole pressure data 
S
kX , where the notation k denotes the index of the right foot (k = R) or the left foot (k = L).  

Twelve features are based on a footprint, and twenty seven features based on weight shift 
while walking.  The notation fi( S

kX ) denotes a gait feature with respect to a sole pressure data 
S
kX  where i denotes the index of each feature.  Table 5.1 shows the notation indexes with 

respect to a sole pressure data S
kX . 

The system extracts twelve features fi( S
kX ) from every footprint made from a sole 

pressure data S
kX .  A footprint is one of overlapped pressure distribution of the sole, and it is 

obtained by maximum of binary images of pressure distribution for all frames.  Figure 5.4 
shows procedure of the footprint production.  Binary images are calculated from every frame  

Table 5.1 Gait features of a sole pressure data. 
sole pressure data S

kX  
Notation Feature 
f1( S

kX ) The length of footprint 

f2( S
kX ) The width of footprint 

f3( S
kX ) The area of footprint 

f4( S
kX ) The angle of footprint 

f5( S
kX ) The area of inner side of heel   

f6( S
kX ), f7( S

kX ) The area of arch on footprint 

f8( S
kX ) The area of a big toe on footprint 

f9( S
kX ) The area of outer side of heel on footprint 

f10( S
kX ), f11( S

kX ) The area of arch on footprint 

f12( S
kX ) The area of toes on footprint 

f13( S
kX ) ~ f21( S

kX ) The normalized CSPs on footprint 

f22( S
kX ) ~ f30( S

kX ) The normalized HSPs on footprint 

f31( S
kX ) ~ f39( S

kX ) The normalized areas on footprint 

(a) Raw data Step 1: Binarization

(b) Binary images
Step 2: Combination by OR operator

(c) Footprint (left sole)
 

Figure 5.4  Procedure of the footprint production. 
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Figure 5.5  Examples of right footprints of 70 subjects. 
 
of the sole pressure data.  Black pixels have pressure values and white pixels do not have 
pressure value.  Figure 5.5 shows examples of right footprints.  As shown in this figure, 
footprints are different among persons.  From this footprint, we extract the length of footprint 
f1( S

kX ), the width of footprint f2( S
kX ), the area of footprint f3( S

kX ), the angel between the 
direction of footprint and x-axis of load distribution sensor f4( S

kX ) and the distribution of 
footprint f5( S

kX ),..., f12( S
kX ) as features. It is shown in Figure 5.6.  In this figure, white 

colored area shows non-sole area and black colored areas show the footprint.  The area of 
footprint f3( S

kX ) is calculated by the number of sole pixels in the footprint.  The area of 
footprint shows a sole size of the walking person.  The red straight line is obtained least 
square method for footprint.  We calculate the angle f4( S

kX ) between the red line and x-axis of 
the sensor.  This feature means an angle between a foot and walking direction because the 
data acquisition protocol sets the x-axis as a direction of walking.  The green rectangle is the 
circumscribed rectangle.  We use the length of long side of the this green circumscribed 
rectangle as the length of footprint f1( S

kX ) and use the length of short side as the width of 
footprint f2( S

kX ) as the features.  Since there are differences in the length and width of foot 
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between individuals, we employ these features for authentication.  The green dotted lines are 
quarter of the green circumscribed rectangle.  Then, we obtain eight small areas surrounded 
by the red straight line, the green circumscribed rectangle and the green dotted lines.  The 
distribution of footprint f5( S

kX ),..., f12( S
kX ) are calculated by number of sole pixels in each 

small areas.  For example, when the walking person has a flat foot, the area of arch on 
footprint f6( S

kX ) and f7( S
kX ) are bigger than that of normal foot.  Moreover, several footprints 

lack the area of toes f12( S
kX ), when the walker puts his/her weight on only a big toe.  As seen 

from the above, the area of footprint f3( S
kX ) shows a size of footprint, whereas the 

distribution of footprint f5( S
kX ),..., f12( S

kX ) express foot shape and posture of walk.  
The system extracts twenty seven features from every frame of a sole pressure data S

kX .  
We calculate the center of sole pressure (CSP), the highest sole pressure point (HSP) and the 
area of footprint from each frame.  The area is calculated by the number of sole pixels from 
each frame.  Figure 5.7 shows examples of CSPs and HSPs of each frame.  Generally, the area 
changes with a period of gait cycle, and the changes express weight shift of the walker.  The 
CSPs and HSPs show significant locations of sole pressure at the time.  Generally, these 
trajectories are drawn lines from heel to toe.  The CSPs trajectory is famous feature of gait 
analysis, and it is related to center-of-gravity while walking.  On the other hand, the HSP 
shows a point that is applied to the highest power by the walker on the time.  Figure 5.8 
shows two different right sole pressure data.  Thus these two data vary in the number of 
frames, thus the gait periods of two sole pressures are different.  To solve this problem, we 
normalize these features to nine frames sole data.  We suppose that the dynamic changes of 
each feature are similar in one step.  Therefore, the system approximates these features by a 
polygonal line, and the nine features are interpolated by liner interpolation.  The interpolated 
nine CSPs f13( S

kX ),..., f21( S
kX ) and nine HSPs f22( S

kX ),..., f30( S
kX ) are extracted from these 

trajectory, as shown in Figure 5.9.  The interpolated nine areas f31( S
kX ),..., f39( S

kX ) are 
extracted from the polygonal lines as shown in Figure 5.10.  
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(a) Right sole (b) Left sole  
Figure 5.6  Example of footprint and these features. 

 

0.1 sec 0.2 sec 0.3 sec 0.4 sec 0.5 sec 0.6 sec 0.7 sec 

CSP HSP  
Figure 5.7  Example of CSP and HSP of each frame. 

 



60 | Chapter 5.  Biometric Personal Authentication Based on Gait Features 
 

 

 

Initial contact Toe off  
Figure 5.8  Two sole data that the number of frames is different. 

 

CSP Normalized CSP  
Figure 5.9  An example of CSPs trajectory and nine normalized CSPs. 
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Figure 5.10  Example of nine normalize areas.. 
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5.4 Personal Authentication by Fuzzy Logic   

In this section, we explain a calculation method of two fuzzy degrees  r S
R RX and  r S

L LX  
for a registered person yr.  The fuzzy degrees  r S

R RX and  r S
L LX  are calculated from each 

sole pressure data S
RX and S

LX , respectively.  We employ these fuzzy degrees for 
authentication score of each foot.  We consider the following as knowledge about gait features 
for biometrics security.    

Knowledge 1 :  Features of same person are similar.   
Knowledge 2 : Feature with higher classification performance in learning pressure is more 

 primary for personal authentication more than other features.  
From these knowledge, the following fuzzy IF-THEN rules are derived. 

Rule 1 :  IF feature fi( S
kX ) is CLOSEk,i to a baseline value ,

S
k i  of a registered person yr, 

 THEN the degree of similarity  ,
r S

k i kP X  of the feature is high.   
Rule 2 :   IF classification score ,

S
k i  of learning sole pressure data is HIGHk,i, THEN the 

 degree of contribution  , ,
r r

k i k iW   for the authentication of the feature is high.   
The fuzzy membership functions CLOSEk,i and HIGHk,i are defined in Figure 5.11.  These 
functions have parameters ,

r
k i , ,

r
k i , ,

r
k it , ,

r
k iu  and S

k . Here, the notations ,
r
k it  and denotes 

width of the membership function CLOSEk,i.  The notation S
k  is a sum of the classification 

score ,
r
k i  of all features.  These parameters are determined by learning process.  The 

determination method of these parameters for any k and i is as follows.  Consider one test data 
and N learning data for a person, and determine the parameters by the learning data of all 
registered persons for the test data.  First, the system calculates the mean ,

r
k iMean  and a 

standard deviation ,
r
k iSD  of N learning data for k and i of yr.  Second, we initialize ,

r
k i  

← ,
r
k iMean , ,

r
k it ← ,

r
k iSD  and ,

r
k iu  ← ,

r
k iSD .  By this initialization, the membership function 

CLOSEk,i is formed as shown in Figure 5.12(a), and classification score ,
r
k i  is calculated by 

Equation 5.1. 
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(a) Rule1 (CLOSE) (b) Rule2 (HIGH)  
Figure 5.11  Fuzzy membership functions for personal authentication. 
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Here, the notation ,r j
kL and ,t j

kL  denote learning data of the target person yr and those of other 
registered persons yt, respectively.  The notation j denotes an index of learning data.  The 
notation N denotes the number of training samples of a registered person, and the notation n 
does the number of registered person.  The fuzzy degree of similarity  ,

r S
R i kP X of the feature 

is calculated by Equation 5.2. 

      , min ,
i k

r
k i k f XP X CLOSE S f   [degree] (5.2)

Here, the notation  S   denotes a fuzzy singleton function. The Equation 5.1 means the 
difference between the average degree of similarity  ,

r t
R i kP X  for other person and the average 

 ,
r r

R i kP X  for the target person yr.  We employ this value as the classification score.  Third, the 
system repeats the calculation of Equation 5.1 for all domains of ,

r
k iMean  - ,

r
k iSD  ≤ ,

r
k i  ≤ 

,
r
k iMean  + ,

r
k iSD , 0 ≤ ,

r
k it  ≤ 4 ,

r
k iSD  and 0 ≤ ,

r
k iu  ≤ ,

r
k iSD  at the interval of ,

r
k iSD  / 10.  Figure 

5.12(b) shows examples of the deformed membership function CLOSEk,i.  We obtain the 
classification score ,

r
k i  from all domains.  The system employs these parameters ,

r
k i , ,

r
k it , 

and ,
r
k iu  with the highest ,

r
k i among all domains for a feature fi( S

kX ) of person yr.  The 
determination process are repeated for all k and i of yr.  The parameter S

k  of membership 
function HIGHk,i is calculated by sum of classification score ,

r
k i of a person yr.  It is 

calculated by Equation 5.3. 
39

,
1

r r
k k i

i

 


    [degree] (5.3)

The fuzzy degree for a feature  ,
r S
k i kQ X  is defined by Equation 5.4.  We calculate the degree 

 ,
r S
k i kQ X  for all k and i of pressure data S

kX . 

     , , , ,
r S r S r r
k i k k i k k i k iQ X P X W     [degree] (5.4)

Here the fuzzy degree of contribution  , ,
r r

k i k iW   means the effectiveness of fi( S
kX ) for person 

yr , and it is defined by Equation 5.5. 

    
,

, , ,min , r
k i

r r
k i k i k iW HIGH S w    [degree] (5.5)
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(a) Example of initialized fuzzy membership function CLOSE 
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(b) Example of deformed fuzzy membership function CLOSE  

Figure 5.12  Examples of fuzzy membership functions deformation. 
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Finally, the system calculates a fuzzy degree  r S
k kX  of a sole pressure data S

kX  for all yr by 
Equation 5.6.  Here, the fuzzy degree of a sole pressure  r S

k kX  means an authentication 
score for the registered person calculated from one sole pressure data 

   
39

,
1

r S r S
k k k i k

i

X Q X


    [degree] (5.5)

In order to authenticate person, we calculate a combined fuzzy degree  r S
Sole X .  The 

combined fuzzy degree is calculated from fuzzy degrees of right sole  r S
R RX  and left sole 

 r S
L LX .  In this method, we identify and verify person by the fuzzy degree  r S

Sole X . For 
personal identification (1:n collation), the system calculates the combined fuzzy 
degree  r S

Sole X  for every registered person ys.  We obtain the highest fuzzy degree among 
the registered persons.  The system identifies the walking person ys as a registered person yr 
with the highest combined fuzzy degree.  For personal verification (1:1 collation), the system 
calculate combined fuzzy degree of SX  for a target person yr.  If the combined fuzzy degree 
is higher than a threshed, the system verifies the walking person ys as the target person yr. For 
example, Table 5.2 shows an example of the fuzzy degrees for 5 registered persons.  In this 
case, because fuzzy degree for registered person y2 is the highest, the system identifies the 
walking person as the person y2.  On the verification, when the threshold is set as 0.5, person 
y2 and y3 are verified as the waling person.  

In this paper, we employ mean (Equation 5.7), minimum (Equation 5.8), maximum 
(Equation 5.9), product, probabilistic sum (Equation 5.10) and weighted sum (Equation 5.11) 
as the combination operator.   

      1

2
r S r S r S
Sole R R L LX X X      [degree] (5.7)

       
 

r S r S r S
R R R R L Lr S

Sole r S
L L

X if X X
X

X otherwise

  




  



  [degree] (5.8)

       
 

r S r S r S
R R R R L Lr S

Sole r S
L L

X if X X
X

X otherwise

  




  



  [degree] (5.9)

           r S r S r S r S r S
Sole R R L L R R L LX X X X X          [degree] (5.10)

       1r S r S r S
Sole R R L LX w X w X         [degree] (5.11)

Here, the notation w is the weighting parameter, and w is within [0, 1].  When w is 0, the 
combined fuzzy degree equals the fuzzy degree of the left sole pressure, and when w is 1.0, 
the combined fuzzy degree equals the fuzzy degree of the right sole pressure.  In addition, 
when w is 0.5, the weighting sum operator means the mean operator.   

Table 5.2 Example of authentication process. 

Sole pressure 
Fuzzy degree 

 1 S
Sole X   2 S

Sole X   3 S
Sole X   4 S

Sole X   5 S
Sole X  

SX  0.1 0.8 0.6 0.4 0.3 
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5.5 Experimental Results   

In this experiment, we employed 90 volunteers as shown in Table 5.3.  For each volunteer, we 
took the sole pressure data six times.  These sole pressure data are acquired with socks.  We 
used five data for learning and used one data as test data.  We evaluate the proposed method 
by six-hold cross validation method.  False rejection rate (FRR), false acceptance rate (FAR) 
and equal error rate (EER) are employed for the performance test.  FRR and FAR are defined 
by Equation 5.12 and Equation 5.13, respectively.  FRR is concerned with the number of 
instance defined as an authorized individual being falsely rejected by an identification system.  
FAR is concerned with the number of instances defined as an unauthorized individual being 
falsely accepted by an identification system.  The higher FRR decreases the user-friendliness 
and higher FAR increases the risk of intrusion.  

Number of false rejectans
100

Number of authrized attempts
FRR     [%] (5.12)

Number of false acceptances
100

Number of impostor attempts
FAR     [%] (5.13)

The EER is the error rate that FRR equals to FAR in verification.  The lower EER implies 
higher accurate and more reliable personal authentication.  

We identified and verified the subjects by the proposed method.  We compared the 
combined fuzzy degrees  r S

Sole X  with the fuzzy degree of right sole  r S
R RX  and left sole 

 r S
L LX .  We compared authentication results of these combination operators with results of 

an authentication method based on Euclidean distance.  In the authentication method based on 
Euclidean distance, firstly, the system normalizes every gait feature using the maximum and 
minimum value.  Secondly, the system constructs template data for each registered person.  
The template data is made by mean value of learning data. Thirdly, the Euclidean distance rD  
is calculated by Equation 5.14.   

     
39 392 2

, ,
1 1

r r S r S
R i i R L i i L

i i

D tmp f X tmp f X
 

      (5.14)

Here, r
ktmp  denotes the template data of the registered person yr.  The template data is made by 

mean value of the feature fi( r
kL ) of learning data r

kL  as shown in Equation 5.15.   

 , ,
1

1 N
r r
k i i k i

j

tmp f L
N 

   (5.15)

Here, the notation j denotes an index of learning data.  The notation N denotes the number of 
training samples of a registered person.  In identification, the system calculates the Euclidean 
distance rD  for every registered person, and the walking person is identified as a registered 
person with the shortest Euclidean distance.  In verification, the system calculates the 

Table 5.3  Volunteers information of personal authentication system. 
Age [year] 20-29 30-39 40-49 50-59 60-69 70-79 80-89 Total 

Male [person] 11 4 5 2 2 8 4 36 
Female [person] 28 3 4 4 1 9 5 54 
Total [person] 39 7 9 6 3 17 9 90 
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Euclidean distance rD  for target person, if the Euclidean distance shorter than a threshold, the 
system accepts the walking person.  

We performed authentication for 20, 30, 40, 50 and 90 volunteers as shown in Table 5.4. 
Tables 5.5, 5.6 and 5.7 show a comparison of authentication results for each number of 
subjects.  From these results, we can see that the weighted sum operator had lower FRR and 
FAR than the other operators.  The probabilistic sum and the mean operators obtained lower 
EER than the others.  The mean, probabilistic sum and weighting sum operators had similar 
FRR, FAR and EER.  Figure 5.13 shows FRR and FAR of the mean operator for 20 and 90 
subjects with the threshold [0, 1].  The authentication performance of any operator decreases 
with the increment of the number.  Figure 5.14 shows the FRR and EER of with the weighting 
parameter [0, 1].  From this figure, we can see that the operator obtained the lowest FRR and 
EER when the weighting parameter almost 0.5.  From this fact, we consider that the mean 
operator was an optimal operator for sole pressure based biometrics.  Moreover, all 
combination operators achieved lower error rates than the results using only right or left sole 
pressure data.   

Table 5.4  Data set for performance test of authentication system. 

Number of 
subjects 

Age [year] 
20- 
29 

30- 
39 

40- 
49 

50- 
59 

60- 
69 

70- 
79 

80- 
89 

20 10 1 1 3 1 3 1 
30 17 1 2 3 1 5 1 
40 18 3 5 3 2 8 1 
50 20 3 5 3 3 10 6 
90 39 7 9 6 3 17 9 

 
Table 5.5  FRRs in identification of combination operators. 

Data 
set 

FRR [%] 
Combination operator 

r
R  r

L  Euclidian
distancemean min. max. product prob.

weighting 
sum 

20 0.0 8.3 10.0 3.3 0.0 0.0 (w=0.49) 16.7 16.7 32.5 
30 3.9 14.4 13.9 5.6 4.4 3.3 (w=0.51) 22.8 27.2 45.6 
40 7.5 19.2 21.3 7.9 7.1 7.1 (w=0.49) 30.4 33.8 50.0 
50 12.7 27.7 26.3 13.3 13.3 11.7 (w=0.52) 40.0 41.7 56.3 
90 35.0 49.3 48.0 35.6 36.1 35.0 (w=0.50) 59.4 59.6 73.7 

 
Table 5.6  FARs in identification of combination operators. 

Data 
set 

FAR [%] 
Combination operator 

r
R  r

L  Euclidian
distancemean min. max. product prob.

weighting 
sum 

20 0.00 0.44 0.53 0.18 0.00 0.00 (w=0.49) 0.87 0.87 1.71 
30 0.13 0.50 0.49 0.19 0.15 0.11 (w=0.51) 0.79 0.93 1.57 
40 0.19 0.49 0.54 0.20 0.18 0.18 (w=0.49) 0.78 0.87 1.28 
50 0.26 0.56 0.54 0.27 0.27 0.24 (w=0.52) 0.81 0.85 1.15 
90 0.39 0.55 0.54 0.40 0.41 0.39 (w=0.50) 0.67 0.67 0.82 
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We compared the proposed method with the biometrics based on walking.  The proposed 
method achieved 12.7% FRR in 50 subjects.  Considering past recognition systems by 
walking data, Ref. [62] achieved 85% recognition rate (15% FRR) in 10 subjects.  The 
comparison method has authenticated person based on image matching between acquired 
footprints and template. Ref. [63] achieved 4.3% FAR and 65.1% FRR in 8 subjects.  The 
method used center of pressures trajectory of one foot for authentication.  The center of 
pressure is modeled by Hidden Markov Model.  And Ref. [53] did 0.14% FAR and 1.36% 
FRR in 11 subjects.  The method used both of footprint and center of pressure trajectory.  The 
method calculated two authentication scores from footprint based on template matching and 
center of pressure based on Hidden Markov Model.  Then a LM learning method weighed 

Table 5.7  EERs in verification of combination operators. 

Data 
set 

EER [%] 
Combination operator 

r
R  r

L  Euclidian
distancemean min. max. product prob.

weighting 
sum 

20 3.27 5.57 4.12 3.33 2.52 2.52 (w=0.49) 8.09 7.37 17.5 
30 3.33 6.65 4.44 3.33 3.29 3.33 (w=0.51) 9.58 8.44 19.4 
40 4.17 7.12 5.01 4.57 3.76 4.15 (w=0.49) 9.69 9.35 21.8 
50 5.25 8.65 6.36 5.66 5.09 5.11 (w=0.52) 10.60 11.92 23.3 
90 8.78 11.33 10.30 9.03 8.90 8.78 (w=0.50) 13.49 14.97 29.2 
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Figure 5.13  Fuzzy membership functions for personal authentication. 
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each score, and the method calculated authentication score by weighted sum operation.  Our 
method achieved the lowest FRR among these methods.  Thus, our method aided by fuzzy 
logic would be a stepping stone future footprint biometric system.  
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Figure 5.14  Authentication performances on weighting sum operator. 
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5.6 Discussions   

From our experimental results, there was no great difference between the authentication 
performances by using right sole (  r S

R RX ) and left sole (  r S
L LX ).  Furthermore, the best 

weighting parameter was obtained almost 0.5.  However, the authentication performances 
were improved by using the combined fuzzy degree.  From the fact, we consider that the 
personal authentication method based on the combined fuzzy degree can use for other 
biometrics authentication system to improve its performance.   

In all operators, authentication performances were deteriorated with increasing the 
number of subjects.  Our method totally employed seventy eight features from both sole 
pressures.  However, the normalized CSPs were extracted from CSP trajectory, and the 
trajectory explains about a pattern of dynamics of weight shift.  Thus, we treat the nine 
normalized CSPs as one feature.  In the same way, we consider that the normalized HSPs and 
areas as one feature in each.  Thus, thirty features were substantially used for authentication.  
By the limit of dimensionality, we consider that authentication performances were 
deteriorated on over thirty volunteers.   

In the experiments, all volunteers waked with socks or bare feet.  However, in the real 
situation, subject might be ware shoes.  To test our method for shoes, we authenticate 
slippered person wearing slippers as a preliminary experiment for shoes.  In this experiment, 
we employ 11 volunteers shown in Table 5.8.  The system took sole pressure distribution with 
slippers as shown in Figure 5.15.  In this figure, Slippers 1 is thinner type slippers and the 
thickness is 0.6 cm.  On the other hand, Slippers 2 is thicker one and the thickness is 2.5 cm in 
heel area and 1.5cm in toe area.  Figure 5.16 shows examples of the right footprints of bare 
foot, Shipper 1, and Slipper 2.  We took the sole pressure data 18 times for a volunteer with 
bare foot (6 times), Slipper 1 (6 times) and Slipper 2 (6 times).  We call these data set that 
BARE, SL1 and SL2, respectively.  We verified these volunteers by the proposed method with 
mean operator.  First, we tested our proposed method by learning data of each data set.  Table 
5.9 shows the verification results of each learning data and test data, and Figure 5.17 shows 
FRR and FAR with threshold parameter change.  The proposed method obtained low EER for 

Table 5.8  Volunteer information of performance test with slipper. 
# Age [year] Gender Body height [cm] Body weight [kg] 
1 24 Male 165 58 
2 23 Male 172 63 
3 22 Male 173 60 
4 23 Male 170 81 
5 24 Male 160 44 
6 22 Male 171 62 
7 22 Male 169 62 
8 24 Male 175 62 
9 23 Male 172 70 
10 23 Male 162 48 
11 23 Male 173 63 
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the test data of same type data as the learning data.  However, we obtained high EER for the 
other test data.  Second, we tested the proposed method by employing two or three type 
learning data for a volunteer.  Table 5.10 shows the verification result of employing two or 
three type learning data for each volunteer.  We obtained low EER when the learning data 
included the same type data.  In addition, we obtained lower EER for the other test than that 
of employing one test dat.  Table 5.11 shows the FAR of threshold parameter was 0.35.  From 
these result, the proposed method was able to reject unauthorized individual being.  From 
these results, we think that to verify walking person wearing shoes, the system needs to 
employ learning data of various situation.   

 

 

27cm
26cm

 
(a) top view 

 
(b)side view 

Figure 5.15  Appearance of thinner type slippers (left) and thicker type slippers (right). 
 
 

  
(a) Bare foot 

  

(b) Slipper 1 

  

(c) Slipper 2 
Figure 5.16  Examples of footprint with bare foot, Slipper 1 and Slipper 2. 
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Table 5.9  Verification results by one learning data set. 

Learning data 
EER for each test data [%] 

Mean ± SD 
BEAR SL1 SL2 

BARE 1.29 23.79 26.7 17.24 ± 13.90 
SL1 27.12 1.15 21.14 16.47 ± 13.60 
SL2 25.68 12.65 0.15 12.82 ± 12.77 
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(b) FRR and FAR of learning data, BARE. 
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(b) FRR and FAR of learning data, SL1 
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(b) FRR and FAR of learning data, SL2 

Figure 5.17  Appearance of thinner type slippers (left) and thicker type slippers (right). 
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Table 5.10  Verification results by two or three learning data set. 

Learning data 
EER for each test data [%] 

Mean ± SD 
BEAR SL1 SL2 

BEAR and SL1 4.39 2.26 16.97 8.21 ± 7.61 
BEAR and SL2 2.88 12.58 2.27 5.91 ± 5.78 
SL1 and SL2 19.84 0.83 2.12 7.60 ± 10.62 
BEAR, SL1  

and SL2 
6.44 3.33 2.87 4.22 ± 1.94 

 
Table 5.11  False acceptance rate in parameter was 0.35. 

Learning data 
EER for each test data [%] 

Mean ± SD 
BEAR SL1 SL2 

BARE 0.12 0.00 0.15 0.09 ± 0.08 
SL1 0.61 0.15 0.00 0.25 ± 0.32 
SL2 0.00 0.15 0.00 0.05 ± 0.09 

BEAR and SL1 1.97 1.06 1.06 1.36 ± 0.53 
BEAR and SL2 1.21 1.36 0.91 1.16 ± 0.22 
SL1 and SL2 2.42 0.91 0.91 1.41 ± 0.87 
BEAR, SL1  

and SL2 
4.09 2.58 1.97 2.88 ± 1.09 

 
 



72 | Chapter 5.  Biometric Personal Authentication Based on Gait Features 
 

 

5.7 Conclusion   

We have proposed a biometric personal authentication system based on fuzzy logic.  We 
employed right and left sole pressure distributions duaring walking.  A mat-type load 
distribution sensor acquired the sole pressure data.  In authentication, the biometrics system 
extracted thirty nine features from each sole pressure data, and it described fuzzy if-then rules 
with statistically determined fuzzy membership functions in learning process for each feature.  
A fuzzy degree of both sole pressure data was calculated by combination operators.  It was 
evaluated in the personal authentication.  In identification, the system calculated the combined 
fuzzy degree for every registered person, and it identified walking person as a registered 
person with the highest fuzzy degree.  In verification, we calculated the fuzzy degree for the 
target person.  When the fuzzy degree is higher than a threshold, we verified the walking 
person as the target person.  In the experiments, we identified 0.0% in FRR and 0.0% in FAR, 
and we verified with 2.52% in EER by the weighted sum operator on 20 subjects.  We did 
with 35.0% in FRR and 0.39% in FAR, and we verified with 8.85% in EER on 90 subjects.  
Thus, this system achieved good performance on small number of subjects.  In it, we consider 
the six combination operators.  The mean operator obtained the lower error rates in 
authentication.  We consider the mean operator is an optimal operator for combining left and 
right sole pressures for biometric security.  In comparison with the other methods by walking 
data, our method achieved the lowest FRR.  

Health monitoring for walking condition is also important research for human healthcare. 
In the feature, we will improve the performance by optimizing the fuzzy membership 
functions, and add other biometric feature to the method, and authenticate person by 
multimodal approach. 
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6 Conclusion  

This dissertation introduced four personal classification systems aided by fuzzy logic.  In 
these methods, human movement was measured to classify the human.  To classify human, 
fuzzy degrees which represented a similarity degree of a category were obtained from 
developed fuzzy rules and fuzzy membership functions. Then, our systems classifies target 
objects by the fuzzy degree. 

We firstly described the object classification method from distance distribution image as 
the home security system.  In the security system, the TOF camera monitors front of entrance 
of a house in a day.  The system required night vision, human detection and human 
classification system.  For the night vision system, we employed infrared laser TOF camera to 
record distance distribution data.  From the recorded data, the system detected moving objects 
by fuzzy k-means clustering method.  The fuzzy k-means clustering method automatically 
determined cluster number k from distance and size of clusters.  To classify the detected 
objects, height, thickness, aspect ratio and occupancy of a silhouette were extracted as human 
characteristics.  The system classified the detected object by fuzzy degree determined from 
these characteristics.  In the experiment, we set two TOF cameras to measure distance 
distribution images.  The proposed method equally classified volunteers in the both TOF 
camera.  Thus, we consider that our proposed algorithm is high availability to camera.  As the 
result, the object classification method was good to use for home security system in both of 
daytime and nighttime.      

We secondly described the foot-age estimation method from sole pressure distribution 
data as a diagnosis and advice system to improve our gait condition.  To improve our gait, we 
need to know our gait condition.  However, conventional estimation method such as sports 
test imposed big physical burden for us.  For elderly people, we need to develop a novel 
estimation method which imposing few physical burden.  The foot-age which is age-related 
indexes was estimated from sole pressure distribution while about 5m walking.  The sole 
pressure data was acquired by portable mat-type load distribution sensor.  By analyzing sole 
pressure data acquired 225 subjects, we found four gait features related to aging.  Fuzzy 
degree of young age, middle age and elderly were decided by learned fuzzy membership 
functions.  Then, the foot-age was estimated from these fuzzy degrees.  We developed 
diagnosis and advice system by comparing the estimated foot-age and real-age.  In our 
experiment, we showed our method estimated foot-age with better mean absolute errors.  As 
the results, we consider that the foot-age estimation method automatic diagnoses and advises 
to improve our gait condition.   

We thirdly described the gait level index estimation method from sole pressure 
distribution data as diagnosis support system for rehabilitation.  In hospitals and medical 
welfares, an personalized rehabilitation program is made by medical doctors or physical 
therapists based on gait level of patients.  In now, the gait level was evaluated by their 
experience and subjectively.  For a quantitative evaluation, a novel index to evaluate gait level 
is needed.  The system estimated gait level index as the quantitative index from sole pressure 
distribution while walking.  Three gait features such as gait speed, time of double support and 
gait balance were extracted.  We derived fuzzy if-then rules and fuzzy membership function 
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from deference between the features extracted from patients and commons.  The gait level 
index was estimated by fuzzy MIN-MAX center of gravity method.  In our experiments, we 
estimated gait level index of 10 patients with good correlations of real gait conditions.  
Moreover, the gait level index classified volunteers to patient and commons with better 
accuracy than the other classification method.  As the result, we consider that estimation 
method developed a quantitative index to evaluate gait level for rehabilitation field.  

We fourthly described the biometric security system based on walking.  The walking is 
the most natural motion in our daily movements, and the system do not retardation us.  As the 
biometric feature we acquired a pair of right and left sole pressure distribution.  We extracted 
gait features based on shape of footprint and weight shift.  From these features, fuzzy degree 
of similarity and effectiveness were determined by statistics learned fuzzy membership 
functions.  The system authenticated person by combined fuzzy degree of right and left sole 
pressure.  In our experiment, we employed 90 volunteers and authenticated them with better 
accuracy than the other biometric method based on walking.  As the result, we consider that 
our method aided by fuzzy logic was good to use for security system.   

Thus, it was established that the classification system is applicable for security systems 
and health condition estimation system.  Furthermore, the four systems based on classification 
system aided by fuzzy logic obtained better accuracy than other method.  From this fact, we 
consider that the fuzzy logic is good choice to develop a classification system for human.     
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